
230|https://doi.org/10.3311/PPme.14134
Creative Commons Attribution b

Periodica Polytechnica Mechanical Engineering, 63(3), pp. 230–239, 2019

Cite this article as: Hajgató, G., Gyires-Tóth, B., Paál, Gy. "Accelerating Convergence of Fluid Dynamics Simulations with Convolutional Neural Networks",
Periodica Polytechnica Mechanical Engineering, 63(3), pp. 230–239, 2019. https://doi.org/10.3311/PPme.14134

Accelerating Convergence of Fluid Dynamics Simulations with
Convolutional Neural Networks

Gergely Hajgató1*, Bálint Gyires-Tóth2, György Paál1

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering,
Budapest University of Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary

2 Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary

* Corresponding author, e-mail: ghajgato@hds.bme.hu

Received: 02 April 2019, Accepted: 16 May 2019, Published online: 27 May 2019

Abstract

A novel technique to accelerate optimization-driven aerodynamic shape design is presented in the paper. The methodology of

optimization-driven design is based on the automated evaluation of many similar shapes which are generated according to the output

of an optimization algorithm. The vast amount of numerical simulations makes this process slow but the resource-intensive simulation

part can be changed to so-called surrogate models or metamodels. However, there isn’t any guarantee of this solution’s accuracy.

The motivation of this work was to develop an acceleration method to speedup optimization sessions without losing accuracy.

Accordingly, the numerical simulation is kept in the pipeline but it is initialized with a velocity field that is close to the expected solution.

This velocity field is generated by a predictive initializer that is based on a convolutional deep neural network. The network has to

be trained before using it for initializing numerical simulations; the data generation, the training and the testing of the network are

described in the paper as well.

The performance of predictive initializing is presented through a test problem based on a deformable u-bend geometry. It has been

found that the speedup in the convergence speed of the numerical simulation depends on the resolution of the predictive initializer

and on the handling of velocities in the near-wall cells. A speedup of 13 % was achieved on a test set of 500 geometries that were not

seen by the initializer before.

Keywords

predictive initialization, CFD initialization, deep learning, convolutional neural networks, metamodeling

1 Introduction
Modern design methods in mechanical engineering heav-
ily rely on shape optimization as the accessible computa-
tional resources are getting bigger. This is especially true
in the field of aerodynamic shape design, where diverse
products are constructed with the aim of automated opti-
mization techniques. These methods have proven their
usefulness in many fields, however, the design process
itself is still slow. Several techniques are available to sur-
rogate the time-consuming part of the optimization but
at the expense of accuracy. This paper presents a method
wherewith the design process can be accelerated without
making a compromise on precision. Besides, the presented
metamodel works with a parameter-free representation of
the shape which could be beneficial in specific cases.

The basic building blocks of an optimization-driven
design framework are the parameterized computer model
of the geometry, an evaluation method and an optimization
algorithm. In such a setting, the optimization algorithm tries
to find the global extrema of the return value of the evalua-
tion by varying the descriptive parameters of the geometry.

In aerodynamic shape design, the objective is based
mostly on some macroscopic aerodynamic parameter of
the shape, e.g. hydraulic efficiency or drag force coefficient
or a combination of such values, etc. Therefore, a compu-
tational fluid dynamics (CFD) solver has to be utilized to
model the underlying physics and to calculate the objective
according to a specific shape. Evolutionary algorithms are
used most frequently to find the empirical global extrema

https://doi.org/10.3311/PPme.14134
https://doi.org/10.3311/PPme.14134
mailto:ghajgato@hds.bme.hu

Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019|231

of the objective function according to [1]. The schematic of
such a framework is depicted on the left side of Fig. 1.

Besides, gradient-based algorithms can be used when
the objective function is expected to be smooth. In such
cases, state-of-the-art optimization algorithms involve
adjoint CFD-techniques to compute the sensitivity of the
flow field to the geometry [2].

Considering time, no matter what the optimization
technique is, the bottleneck of the process is the evalua-
tion of the shape, namely the runtime of the CFD solver.

This drawback led to the rise of metamodeling in aerody-
namic shape optimization. Metamodels completely surro-
gate the “accurate” simulation with a function approximator
in the optimization process, by mapping the parameteriza-
tion of the geometry to the objective value directly. Such a
framework is depicted on the right side of Fig. 1.

The time-consuming numerical simulation is omitted
this way but the accuracy is sacrificed for speed, that may
lead to qualifying an improper shape as the optimum.

Another drawback of using a metamodel comes up when
the parameterization of the geometry has to be changed.
This happens when the optimum shape lies on the boundary
of the parameter set1 or the shape constraints are changed for
some reason. In these cases, the already fitted metamodel is
useless with the new parameterization, thus, new CFD cal-
culations have to be executed to re-fit the metamodel.

A novel method based on deep learning is presented
here, wherewith the CFD simulations of an optimization
session can be accelerated without losing accuracy, and
the accelerator can be re-used even if the parameterization
of the geometry is changed. The schematic of an optimi-
zation-driven design framework using the proposed model
is depicted in Fig. 2.

2 Related work
State-of-the-art shape optimization algorithms exhaust the
benefits of metamodeling but the metamodel has to be fit-
ted prior to the optimization session. Generating samples
to fit metamodels is often conducted with design and anal-
ysis of computer experiments (DACE) techniques. DACE
is originated from the design of experiments (DOE) and
was introduced in [3]. While DOE methods assume that
random error is present in the observations, DACE meth-
ods take into account that the results of computer simula-
tions have mostly deterministic error and are repeatable.

1 This suggests that an even better shape lies outside the original
boundaries.

Kriging [4] and the response surface model are proposed
in [3] as metamodels for computer simulations. Indeed, these
methods were used successfully in [5] to optimize the shape
of a helicopter rotor-blade, described by 31 parameters.

Feedforward artificial neural networks (ANN) are
named as good candidates for approximating nonlinear
response surfaces in [6]. Besides, a comprehensive over-
view of optimization and metamodeling techniques is
given as well. Kriging and response surface models are
also mentioned here, and their performance is held similar
in design optimization. Simpson et al. [6] also emphasize

Fig. 1 Schematic diagram of optimization-driven aerodynamic shape
design (left side) and the same but using metamodel (right side). Cold

start means, that the simulation is initialized conventionally with a
zero velocity field.

Optimization
algorithm

Predicted value of
objective

Descriptive
parameters

M
e
t
a
m
o
d
e
l

Sh
ap

e
ev

al
ua

tio
n

w
ith

 c
ol

d
st

ar
t

Optimization
algorithm

Geometry generation

Simulation initialization

Simulation

Post-processing

Value of objective

Descriptive parameters

Fig. 2 Schematic diagram of optimization-driven aerodynamic design
with warm start of the simulation.

Sh
ap

e
ev

al
ua

tio
n

w
ith

 w
ar

m
 s

ta
rt

Optimization
algorithm

Value of objective

Descriptive parameters

Geometry generation

Simulation initialization

Simulation

Post-processing

Solution prediction

232|Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019

that the descriptive parameters of the model should be
screened when their number is large.

The drawback of screening is mentioned in [7], wherein
the uncertainty of metamodels is presented among several
real-life optimization problems as well. Screening is a class
of techniques, wherewith the unimportant parameters of an
optimization problem can be identified in order to reduce
the parameter set during optimization. As mentioned in [7],
screening can hide the optimum if the response function of
the problem is sensitive to a specific parameter only near the
optimum. Thus, the best practice is to finish the optimization
involving all the original parameters and to omit the meta-
model that was fitted to the reduced parameter set.

Simpson et al. [8] give an extensive review on DACE
methods in design optimization with the most import-
ant milestones in the development of such techniques.
Besides, the state-of-the-art solutions are presented there
and the combination of various metamodels is stated as a
robust estimator to surrogate the simulation based on the
physical model.

The book of Thévenin and Janiga [1] summarizes the
individual work of many authors in the field of design opti-
mization with computational fluid dynamics. Different
optimization algorithms, some metamodeling techniques
and some DOE methods are described as well. The two-
level optimization framework presented by René A. Van
den Braembussche involves artificial neural networks to
predict the fitness of a new individual in a genetic algo-
rithm, and only a fraction of the individuals is evaluated
with the computationally intensive numerical solver.

The basics of feedforward ANNs are also described here
and Braembussche presents a study on the effect of fitting
an ANN on randomly sampled data over fitting the same
network on data generated with a full factorial design. The
latter performs better in terms of “global error” but the
meaning of this metric is not described.

Response surface models, kriging and feedforward
ANNs have proven to be useful in the field of metamod-
eling-assisted design optimization (among others) and
some of them are available even in commercial software
nowadays. Though new techniques have been invented
and many improvements have been done, state-of-the-art
research [9, 10] utilizes the same core idea as presented in
the introductory paper of DACE [3].

The main idea of the present work is to accelerate the
optimization-driven design without losing accuracy and
mostly, without losing the detailed results that can be pro-
vided only by the CFD simulation. To accomplish this

goal, the initial conditions of the simulation are set with a
predictive initializer, which makes a guess on the solution
of the flow field. This guess is based purely on the param-
eter-free representation of the geometry.

Thus, the present work differs from the studies above
in two aspects. First, the model aims not at surrogating
the simulation but to accelerate the convergence of the
simulation. Second, the model maps a function that is
independent of the geometry parameters, to a function
that is independent of the objective value. In this way, the
proposed predictive initializer is still useful even when
the parameterization of the geometry is changed or when
a new objective value is considered.

Although this study is based on deep learning, no lit-
erature review on the topic is given here due to length
considerations. The readers are encouraged to take a look
at [11] wherein a light literature study is given on fluid
dynamics research involving deep learning and also a
short introduction to artificial neural networks and con-
volutional neural networks.

3 Methodology
The predictive initializer is based on a convolutional
deep neural network, wherewith the velocity fields in the
fluid domain can be predicted for a specific geometry as
depicted in Fig. 3. These velocity fields are used thereaf-
ter to initialize the CFD simulation to get accurate results
on the flow variables.

The CFD case, the treatment of the data wherewith the
predictive initializer can be trained, and the construction
of the model are presented in this section. A more detailed
study on the predicting abilities of the proposed convolu-
tional neural network is given in [11].

3.1 Fluid dynamics simulation
The geometry presented in [12] has been rebuilt to serve as
a test case, although the CFD setup has been changed and
the optimization of the geometry is omitted. The purpose
of the test case was to generate data for the training of the
initializer and to generate data to measure the performance
of the trained initializer only. Because of this, some simpli-
fications were considered compared to the analysis intro-
duced in [12], where a more accurate solution was needed
to solve a real-life optimization task.

3.1.1 Geometry
The geometry is depicted in Fig. 4, where the conventional
shape is presented on the left side and a distorted shape

Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019|233

on the right side. The outer and inner walls of the bend
are described with 4-4 Beziér-curves, respectively. Both
the endpoints and the endpoint tangents are depicted in
Fig. 5, where the free directions for the control points are
also shown. The shape can be distorted in the plane of the
figure by moving the control points (the endpoints and the
endpoint tangents) of the Beziér-curves inside a feasibility
area. The free coordinates of these points form a parame-
ter set with 26 parameters altogether.

The real-life geometry would be the straight extrusion
of the planar view in the third dimension. In this experi-
ment, the spatiality was omitted and the flow was consid-
ered planar.

In the present setup, the flow enters the geometry in
the left leg and leaves the fluid domain through the right
leg. The channel width was 75 mm on the inlet and outlet
sections but it was subject to change elsewhere due to the
parameterization.

An additional straight part was added to the down-
stream side of the geometry to handle the boundary condi-
tions as depicted in Fig. 4.

Fig. 3 Velocity distributions in a U-bend computed by a finite-volume solver and predicted by the proposed model. From top to bottom: vx, vy and
the velocity magnitude fields. From left to right: CFD result; prediction with the convolutional neural network with a 256 x 256 resolution output;

absolute difference.

Fig. 4 The conventional geometry with the deformable part and the
extension for boundary handling. (left side) A distorted shape with the

inlet and outlet boundary conditions emphasized. (right side)

velocity
parabolic
inlet

outlet
pressure

Dh

deformation allowed

3.
26

·D
h

2.52·Dh

3.1·Dh

3·
D h

234|Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019

3.1.2 Boundary and initial conditions
Incompressible air entered the fluid domain with a con-
stant kinematic viscosity of 1 5 10 5

. ⋅ −
m s
2 . A parabolic

velocity distribution with a peak value of 8.8 m/s was pre-
scribed at the inlet and a constant pressure of 0 Pa was
prescribed on the outlet. Moreover, a turbulence intensity
of 6 % and a turbulence length scale 15 % of the channel
width was considered at the inlet.

The boundaries of a distorted shape are depicted on the
right side of Fig. 4, except the bottom and top surfaces, that
were treated as symmetry planes. Hydraulically smooth
walls were considered to bound the geometry.

The deformable part was extended to the downstream
side with a straight section, where the flow was allowed
to settle down before leaving the fluid domain on the out-
let. The extension was considered to make sure, that the
outlet boundary condition has no effect on the flow field
inside the turning part.

The velocity and pressure fields were initialized to
equally zero in the data generation phase.

3.1.3 Simulation setup
The geometry was discretized with a block-structured
mesh generated by Gmsh [13]. The numerical grid con-
sisted of 15300 elements in total, and the resolution of the
boundary layer was aligned such, that the maximum y+

value did not exceed 1, even for the distorted geometries.
This allowed the use of the low-Re Launder-Sharma k-ε
turbulence model available in OpenFOAM [14].

Moreover, the flow was considered steady-state and the
numerical model was solved with the simpleFoam solver,
that is suitable to compute stationary flow fields, and it
utilizes the SIMPLE algorithm (as seen in, e.g. [15]) to
solve the Navier-Stokes equations. A convergence thresh-
old of 10−4 was prescribed2 for the residuals as stopping
criterion, as no significant improvement in the results was
observed below this limit.

This simulation setup was used to generate data for
the model training and to measure the performance of the
trained predictive initializer.

3.2 Data preprocessing
As the proposed convolutional neural network (CNN)
aimed at predicting velocity fields purely from the shape
of the geometry, both the velocity fields and the geometry
have to be extracted from the simulation data.

3.2.1 Geometry
The binary image of the geometry was extracted from the
numerical grid. Former studies conducted in [16] showed
that the signed distance field performs slightly better in
similar experiments, thus, the signed distance field was
computed after retrieving the binary image.

Thereafter, a fixed-size and fixed-position square area
around the signed distance field (wherein the out-of-do-
main area was set to zero) was considered as the input
of the CNN and was resampled to equidistant meshes
of different resolutions. These resolutions were: 64x64,
128x128, 256x256.

3.2.2 Velocity fields
The velocity fields in the x and the y directions were
extracted separately. This made it possible to reconstruct
the velocity vectors in the domain as depicted in Fig. 3.

These velocity fields were resampled on the same equi-
distant mesh as the signed distance field of the corre-
sponding geometry.

As by the preprocessing of the geometry, the out-of-
domain part of the velocity fields was set to zero as well.

2 A more rigorous convergence criterion was found appropriate in [12]
for the fully featured, spatial geometry with slightly higher inlet velocity.

Fig. 5 Control points of the parameterized geometry with free
coordinates, denoted with arrows. Corresponding endpoints and

endpoint tangents are linked with red lines. The width in 3 positions
and the ρ curvature on the left-hand side is also prescribed.

ρ
ρ

Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019|235

3.3 Convolutional neural network
An autoencoder-style convolutional deep neural network
was utilized as the predictive model. The network topol-
ogy presented by Guo et al. in [16] was considered as a
baseline but several modifications were taken for better
performance in terms of prediction accuracy and shorter
training time. The capabilities of the neural network to
predict flow fields and to recognize some kind of flow phe-
nomena is presented by the authors in [11]. For clarity, the
properties of the network are described here, but the basics
of neural networks are not.

The network topology was subject to hyperparameter
optimization; the best performing variant is depicted in
Fig. 6 with an input and output resolution of 128 x 128.

This network utilizes dense, convolutional and trans-
posed convolutional (often called deconvolution) lay-
ers. The latter two layer types are summarized as fol-
lows: {layer depth}@{layer width_x}x{layer width_y},
f:{filter_x}x{filter_y}, s:{filter stride_x}x{filter stride_y},
z:{zero padding_x}x{zero padding_y}. Convolutional
and transposed convolutional filter properties are denoted
at the preceding layer since the filter is applied there.

A dense layer serves as the „bottleneck” of the network.
The filter and layer sizes were different for different input
and output resolutions; the corresponding sizes are sum-
marized in Table 1.

Table 1 Layer and filter sizes for different input and output resolutions.
Zero padding is not indicated, since it was 0 for each of the filters.

Layer name 64x64 128x128 256x256

input 1@64x64
f:4x4, s:4x4

1@128x128
f:4x4, s:4x4

1@256x256
f:4x4, s:4x4

conv_1 128@16x16
f:4x4, s:4x4

128@32x32
f:4x4, s:4x4

128@64x64
f:4x4, s:4x4

conv_2 256@4x4
f:2x2, s:2x2

256@8x8
f:2x2, s:2x2

256@16x16
f:4x4, s:4x4

conv_3 512@2x2 512@4x4 512@4x4

dense 512 1024 2048

deconv_1 256@4x4
f:4x4, s:4x4

256@8x8
f:4x4, s:4x4

256@16x16
f:4x4, s:4x4

deconv_2 128@16x16
f:2x2, s:2x2

128@32x32
f:2x2, s:2x2

128@64x64
f:2x2, s:2x2

deconv_3 64@32x32
f:2x2, s:2x2

64@64x64
f:2x2, s:2x2

64@128x128
f:2x2, s:2x2

deconv_4 1@64x64 1@128x128 1@256x256

Fig. 6 Topology of the convolutional neural network for an input resolution of 128 x 128. Conv and deconv stands for convolutional layer and transposed
convolutional layer, respectively. Filter properties (filter size, stride, zero padding) of a layer are denoted at the preceding layer, since the filter is applied

there. Filters are depicted for the first convolutional and for the last transposed convolutional layer only. Visualization based on [17].

+ ·

+ ·

sgn

in
pu

t
1@

12
8x

12
8

f:4
x4

,s
:4
x4

,z
:0
x0

co
nv

1
1@

32
x3

2
f:4

x4
,s
:4
x4

,z
:0
x0

co
nv

2
1@

8x
8

f:2
x2

,s
:2
x2

,z
:0
x0

co
nv

3
51

2@
4x

4
fla

tt
en

de
ns

e
10

24

de
co

nv
1

25
6@

8x
8

f:4
x4

,s
:4
x4

,z
:0
x0

de
co

nv
2

12
8@

32
x3

2
f:2

x2
,s
:2
x2

,z
:0
x0

de
co

nv
3

64
@

64
x6

4
f:2

x2
,s
:2
x2

,z
:0
x0

de
co

nv
4

1@
12

8x
12

8

ou
tp
ut

1@
12

8x
12

8

236|Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019

Since this is a feed-forward neural network, the dataflow
in the graph is as follows. The network takes the signed
distance function on its input and processes it with three
convolutional layers. The output of the last convolutional
layer is flattened and fed to a densely connected layer.
Thereafter, a transposed convolutional part is coming,
wherewith the velocity fields are constructed in the x and
y directions, separately. Gradient information to align the
weights of the network is computed by backpropagation.

There is a residual connection between the output of
the first convolutional layer and the input of the second
transpose convolutional layer. The connection was utilized
according to the results of the hyperparameter optimization
discussed in [11]. The technique itself is introduced in [18]
to overcome the vanishing gradient problem in deep neural
networks and to improve convergence of such networks.

Finally, the output is multiplied by the sign function of
the input to mask the out-of-domain area from the predic-
tions. This connection was kept during inference to guar-
antee, that the CNN predicts non-zero elements for the
velocity field only inside the fluid domain.

The weights of the network were optimized with the
Adam optimizer (introduced in [19]) while the mean
squared error was considered as the loss metric. As the
output is field data, the point-wise loss was averaged over
the fluid domain. The metrics, the neural network topol-
ogy and its training were built up with TensorFlow [20].

4 Numerical experiments and results
Although the experiment was conducted to get an impres-
sion on the performance of predictive initializing, the ini-
tializer had to be trained first. The details of the data gen-
eration, the training of the model and the conduction of the
tests are presented in this section.

4.1 Fitting the predictive initializer
5000 different geometries were generated from the full
parameter space with latin hypercube sampling [21]. The
size of the dataset is in concordance roughly with the num-
ber of evaluations in an optimization session for a geome-
try with similar complexity (similar number of descriptive
parameters) according to [1, 5].

According to Braembussche in [1] and Verstraete et al.
in [12], artificial neural networks give better predictions
when they are trained on a DOE sampled dataset than
trained on a random dataset which is uniformly distrib-
uted. In the present experiment, the latin hypercube sam-
pling was utilized only to guarantee that no two identical

geometries are in the original dataset, possible additional
benefits were not investigated.

The corresponding flow fields were calculated thereaf-
ter with the CFD setup described above and the data for the
input (signed distance field) and the output (velocity fields
in the x- and in the y-direction) of the CNN. Besides, the
number of the outer iteration steps of the fluid dynamics
solver was measured and was written to a log file in accor-
dance with the descriptive parameters of the geometry.

Data were split randomly into training, validation and
test sets with a ratio of 0.8, 0.1, 0.1 compared to the size of
the original set, respectively.

Thereafter, the three neural networks were trained with
the three datasets of different resolution. The training was
stopped in each case when the loss measured on the valida-
tion dataset has not been changed for 30 epochs. The hard-
ware used was an NVIDIA GeForce Titan Xp GPU, the
runtimes are summarized in Table 2. The mean squared
error (MSE) computed on the test set and the MSE val-
ues for 2 dummy predictions (predicting the mean of the
field in every grid point and predicting zero everywhere)
are also indicated in the same place. The latter ones serve
as baselines to obtain an idea on the quality of the result
achieved with the neural network.

The result of a specific geometry from the test set is
depicted in Fig. 3 where the velocity fields computed by
the CFD solver and the proposed convolutional deep neu-
ral network is presented.

4.2 Performance of the predictive initializer
The trained model was utilized to give a better initial con-
dition for the velocity field as the commonly used „every-
where zero” initial condition. The latter is referred to as
cold start here, while warm start refers to the use of the
predicted velocity field as an initial condition.

The data in the test database were re-evaluated with the
same CFD code and setup as in the data generation phase

Table 2 Training runtimes and accuracies calculated on the equidistant
grid used by the predictive initializer. The loss metric is communicated
for 2 types of dummy predictions: the mean of the velocity field computed

with CFD and the zero velocity field.

Runtime
Mean squared error between the CFD result and

CNN prediction CFD mean Zero field

min m2 / s2

64x64 31 7 ∙ 10−5 8.40 ∙ 10−2 3.15 ∙ 10−1

128x128 90 1.4 ∙ 10−4 8.07 ∙ 10−2 3.08 ∙ 10−1

256x256 627 1.8 ∙ 10−4 8.17∙ 10−2 3.15 ∙ 10−1

Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019|237

but with the initial velocity fields changed those predicted
by the CNN. As the numerical solver starts from a condi-
tion that is closer to the real solution (as depicted in Fig. 3),
a smaller runtime and a faster convergence are expected.

To conduct a CFD simulation with warm-starting (ini-
tializing the velocity fields with the predictions from the
CNN), the following steps were taken.

1. The geometry was built up according to the param-
eter list.

2. The geometry was meshed by a meshing script.
3. The signed distance field of the fluid domain and the

coordinates of the cell centers of the numerical grid
were extracted.

4. The velocity fields were predicted according to the
representation of the geometry, and the results were
interpolated on the numerical grid.

5. New initial conditions were written for the numeri-
cal solver; the computation was executed.

6. The number of the outer steps taken by the numerical
solver was written to a database.

The time required for the predictions was not consid-
ered here, since it was several magnitudes less than the
time-requirement of the CFD simulations [11].

The steps above were conducted on every element of the
test data set. Thereafter, the speedup of the simulation was
calculated as the ratio of the number of iteration steps with
cold start and the number of iteration steps with warm start.

Preliminary results are depicted in Fig. 7. The speedup
is summarized in the histogram for the test dataset and for
the three different resolutions. The y-axis is normalized, the
area under the bars for a specific resolution sums up to 1.

Although some speedup is seen in the convergence of
the simulation, the results are not satisfying. The poor
performance of the network with the finest resolution was
unexpected, thus further examination was conducted.

By checking the geometries with the worst speedup
(with a decrease in convergence speed), it has been found,
that the predictive initializer sometimes predicts non-zero
wall velocities. This leads to the form of high-velocity,
artificial flow structures during the iterative steps of the
CFD simulator but these structures vanish later on.

To overcome this adverse effect, a second experiment
was conducted, where the predicted velocity was multi-
plied by a factor of 0.25 in the cells adjacent to the wall.
The results are depicted in Fig. 8.

The highest speedup belongs to the finest resolution,
though the mean calculated on the full test set is just

slightly higher than the best one in the previous case. This
is unexpected in the light of Fig. 3.

The explanation comes from the different resolutions
of the grids used for the prediction and for the numeri-
cal simulation. As the finest resolution grid wherein the
velocity field gets predicted is still coarse compared to
the numerical mesh, Fig. 3. presents the bulk flow only.
The boundary layer is thinner than the resolution of the
predicted output, so, the near-wall treatment has an effect

Fig. 7 Speedup of the convergence with warm starting the simulations
with three different resolution velocity field. The y-axis is normalized,
thus the area under the bars for a specific resolution sums up to 1. Bars
over 1.0 mean acceleration in convergence speed. The mean for each

network is denoted by a vertical line.

Fig. 8 Speedup of the convergence with warm starting the simulations
with three different resolution velocity field. The y-axis is normalized,

thus the area under the bars for a specific resolution sums up to 1.
Bars over 1.0 mean acceleration in convergence speed. The mean for
each network is denoted by a vertical line. The predicted velocity was

multiplied by a factor of 0.25 in the near-wall cells.

238|Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019

References
[1] Thévenin, D., Janiga, G. "Optimization and Computational Fluid

Dynamics", 1st ed., Springer-Verlag Berlin Heidelberg, Berlin,
Germany, 2008.

 https://doi.org/10.1007/978-3-540-72153-6
[2] Skinner, S. N., Zare-Behtash, H. "State-of-the-art in aerody-

namic shape optimisation methods", Applied Soft Computing, 62,
pp. 933–962, 2018.

 https://doi.org/10.1016/j.asoc.2017.09.030
[3] Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P. "Design and

Analysis of Computer Experiments", Statistical Science, 4(4),
pp. 409–423, 1989.

 https://doi.org/10.1214/ss/1177012413
[4] Krige, D. G. "A Statistical Approach to Some Basic Mine Valuation

Problems on the Witwatersrand", Journal of the Chemical,
Metallurgical and Mining Society of South Africa, 52(6), pp.
119–139, 1951. [online] Available at: https://journals.co.za/content/
saimm/52/6/AJA0038223X_4792 [Accessed: 20 February 2019]

[5] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini B. D., Torczon V.,
Trosset M. W. "A rigorous framework for optimization of expen-
sive functions by surrogates", Structural Optimization, 17(1),
pp. 1–13, 1999.

 https://doi.org/10.1007/BF01197708
[6] Simpson, T. W., Poplinski, J., Koch, P. N., Allen, J. K. "Metamodels

for Computer-based Engineering Design: Survey and recommen-
dations", Engineering with Computers, 17(2), pp. 129–150, 2001.

 https://doi.org/10.1007/PL00007198

[7] Simpson, T. W., Booker, A. J., Ghosh, D., Giunta, A. A.,
Koch, P. N., Yang, R.-J. "Approximation methods in multidisci-
plinary analysis and optimization: a panel discussion", Structural
and Multidisciplinary Optimization, 27(5), pp. 302–313, 2004.

 https://doi.org/10.1007/s00158-004-0389-9
[8] Simpson, T. W., Toropov, V., Balabanov, V., Viana, F. A. C. "Design

and Analysis of Computer Experiments in Multidisciplinary Design
Optimization: A Review of How Far We Have Come - Or Not", In:
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Victoria, British Columbia, Canada, 2008, pp. 1–22.

 https://doi.org/10.2514/6.2008-5802
[9] Weinmeister, J., Gao, X., Roy, S. "Analysis of a Polynomial

Chaos-Kriging Metamodel for Uncertainty Quantification in
Aerodynamics", AIAA Journal, Ahead of printing, pp. 1–17, 2019.

 https://doi.org/10.2514/1.J057527
[10] Li, L., Cheng, Z., Lange, C. F. "CFD-Based Optimization of

Fluid Flow Product Aided by Artificial Intelligence and Design
Space Validation", Mathematical Problems in Engineering, 2018,
pp. 1–14, 2018.

 https://doi.org/10.1155/2018/8465020
[11] Hajgató, G., Gyires-Tóth, B., Paál, G. "Predicting the flow field

in a U-bend with deep neural networks", In: Proceedings of
Conference on Modelling Fluid Flow (CMFF’18): 17th event of
the International Conference Series on Fluid Flow Technologies,
Budapest, Hungary, 2018, pp. 1–8.

outside the boundary layer as well. This leads to an arti-
ficially thicker boundary layer in the prediction than in
the real case, and it takes a lot of iterations to wash it out
from the domain.

5 Conclusions and outlook
Predictive initialization has been presented here, where-
with aerodynamic shape optimization can be accelerated.
The CFD simulation of 500 different U-bend shapes was
initialized with the novel technique, wherewith a mean
speedup of 13 % was achieved without any loss in accuracy.

The initializer can be trained on the results of a prelim-
inary optimization session (which is common in practice)
or on a dataset generated specifically to train the neural
network. Thereafter, the optimization can be carried out
with an extended framework like the one depicted in Fig. 2.

At the present state, only a significantly smaller
speedup can be achieved by the predictive initializer pro-
posed in this paper compared to using conventional meta-
models but where accuracy is a must, metamodels cannot
be utilized. This is more straightforward by looking at the

conceptual differences depicted in Fig. 1. (for metamod-
els) and Fig. 2 (for predictive initialization).

In addition, the predictive initializer presented here
does not depend on the descriptive parameters of the geom-
etry, so, if a similar geometry is optimized with another
parameterization, the initializer can be re-used without re-
training. This is even true for such cases, where the new
geometries have small areas lying outside the range of the
training geometries according to [11].

Moreover, better results are expected to be achieved
with the further development in the handling of the near-
wall cell velocities.

Acknowledgement
The research presented in this paper has been sup-
ported by the BME-Artificial Intelligence FIKP grant of
Ministry of Human Resources (BME FIKP-MI/SC) and
by János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. We gratefully acknowledge the
support of NVIDIA Corporation with the donation of the
Titan Xp GPU used for this research.

https://doi.org/10.1007/978-3-540-72153-6
https://doi.org/10.1016/j.asoc.2017.09.030
https://doi.org/10.1214/ss/1177012413
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792
https://doi.org/10.1007/BF01197708
https://doi.org/10.1007/PL00007198
https://doi.org/10.1007/s00158-004-0389-9
https://doi.org/10.2514/6.2008-5802
https://doi.org/10.2514/1.J057527
https://doi.org/10.1155/2018/8465020

Hajgató et al.
Period. Polytech. Mech. Eng., 63(3), pp. 230–239, 2019|239

[12] Vertsraete, T., Coletti, F., Bulle, J., Vanderwielen, T., Arts, T.
"Optimization of a U-Bend for Minimal Pressure Loss in Internal
Cooling Channels: Part I—Numerical Method", In: ASME 2011
Turbo Expo: Turbine Technical Conference and Exposition,
Vancouver, British Columbia, Canada, 2011, pp. 1665–1676.

 https://doi.org/10.1115/GT2011-46541
[13] Geuziane, C., Remacle, J-F. "Gmsh: a 3-D finite element mesh

generator with built-in pre- and post-processing facilities",
International Journal for Numerical Methods in Engineering, 79,
pp. 1309–1331, 2009.

 https://doi.org/10.1002/nme.2579
[14] Weller, H. G., Tabor, G., Jasak, H., Fureby, C. "A tensorial approach

to computational continuum mechanics using object-oriented
techniques", Computers in Physics, 12(6), pp. 620–631, 1998.

 https://doi.org/10.1063/1.168744
[15] Ferziger, J. H., Perić, M. "Computational Methods for Fluid

Dynamics", 3rd ed., Springer-Verlag Berlin Heidelberg, Berlin,
Germany, 2002.

 https://doi.org/10.1007/978-3-642-56026-2
[16] Guo, X., Li, W., Iorio, F. "Convolutional Neural Networks for

Steady Flow Approximation", In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, California, USA, 2016, pp. 481–490.

 https://doi.org/10.1145/2939672.2939738
[17] Iqbal, H. "PlotNeuralNet", [computer program] Available at:

https://doi.org/10.5281/zenodo.2526396

[18] He, K., Zhang, X., Ren, S., Sun, J. "Deep Residual Learning for
Image Recognition", In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016,
pp. 770–778.

 https://doi.org/10.1109/CVPR.2016.90
[19] Kingma, D. P., Ba, L. J. "Adam: A Method for Stochastic

Optimization", In: International Conference on Learning and
Representations, San Diego, California, USA, 2015, pp. 1–13.
[online] Available at: https://arxiv.org/abs/1412.6980v5 [Accessed:
20 February 2019]

[20] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia,
Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M.,
Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X. "TensorFlow: Large-scale machine learning on
heterogeneous systems", [computer program] Available at: https://
www.tensorflow.org

[21] McKay, M. D., Beckman, R. J., Conover, W. J. "A Comparison
of Three Methods for Selecting Values of Input Variables in the
Analysis of Output from a Computer Code", Technometrics, 21(2),
pp. 239–245, 1979.

 https://doi.org/10.2307/1268522

https://doi.org/10.1115/GT2011-46541
https://doi.org/10.1002/nme.2579
https://doi.org/10.1063/1.168744
https://doi.org/10.1007/978-3-642-56026-2
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1412.6980v5
https://www.tensorflow.org
https://www.tensorflow.org
https://doi.org/10.2307/1268522

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Fluid dynamics simulation
	3.1.1 Geometry
	3.1.2 Boundary and initial conditions
	3.1.3 Simulation setup

	3.2 Data preprocessing
	3.2.1 Geometry
	3.2.2 Velocity fields

	3.3 Convolutional neural network

	4 Numerical experiments and results
	4.1 Fitting the predictive initializer
	4.2 Performance of the predictive initializer

	5 Conclusions and outlook
	Acknowledgement
	References

