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Abstract

The paper deals with the construction ofk-patches in thed-dimensional projectively extended Eu-
clidean spacePEd on the basis ofk consecutively applied one-parameter transformations of the space
to a fixed point. A special 3-patch (solid) modelling is described and some notes on solid intrinsic
geometric properties are given.
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1. Introduction

Let PEd be ad-dimensional projectively extended Euclidean space with the well-
defined inherited Euclidean metric and the fixed Cartesian homogeneous rectangu-
lar normed reference system. With respect to [1] we can establish the following
designations.

Any point A in the spacePEd can be represented by a(d + 1)-tuple of real
numbers, at least one of which is different from zero

A
(

a
(
a0, a1, . . . , ad

)t
)

denoted as point homogeneous coordinates. These refer to an orthonormed basis
(e0; ei ) with 〈ei , e j 〉 = δi j and 〈e0, eα〉 = 0 for anyα = 0, 1, . . . , d and i, j =
1, 2, . . . , d.

In the case of a real pointA, the coordinatea0 �= 0, and(d + 1)-tuples
a

(
a0, a1, . . . , ad

)t
andaλ

(
a0λ, a1λ, . . . , adλ

)t
for any real numberλ �= 0 repre-

sent the same point. Normalized form of the homogeneous coordinates of the real
point A is a(d + 1)-tuple

a
(

1,
a1

a0
, . . . ,

ad

a0

)t

, where λ = (a0)−1 �= 0.
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For any point at infinityV∞ determined by a proportional direction vector repre-
sented as a(d+1)-tuplev

(
v0, v1, . . . , vd

)t
the coordinatev0 = 0 andv

(
0, v1, . . . , vd

)t

is equivalent tovλ
(
0, v1λ, . . . , vdλ

)t
for any real numberλ �= 0.

A geometric transformation	 of the spacePEd is a linear mapping of the
space

	 : PEd → PEd,

X(x) → Y(y), x → y ∼ 	x

represented by a real regular square matrixT of rankd + 1, det(T) �= 0

T = T β
α =




T 0
0 T 0

1 . . . T 0
d

T 1
0 T 1

1 . . . T 1
d÷ ÷ ÷ ÷

T d
0 T d

1 . . . T d
d


 ,

xα 
→ yβ = T β
α xα for α, β = 0, 1, . . . , d

up to a nonzero real factorτ , thusT andτ · T describe the same transformation	,
and for

x = (e0, e1, . . . , ed)
(
x0, x1, . . . , xd

)t = eαxα

and
y = (e0, e1, . . . , ed)

(
y0, y1, . . . , yd

)t = eβ yβ,

y = Tx = Teαxα = eβ T β
α xα ∼ eβ yβ.

A composition ofn > 1 geometric transformations1T,2 T, . . . ,n T in a predefined
order – a concatenated transformationT can be determined as a composition ofn
linear mappings and expressed as follows

x → y =1 Tx → z =2 Ty =2 T1Tx → · · · → w =
=n Tv =n T . . .2 T1Tx = Tx;

xα → yβ =1 T β
α xα → zγ =2 T γ

β yβ =2 T γ

β
1T β

α xα → · · · → wρ =n T ρ
σ νσ =

nT ρ
σ . . .2 T γ

β
1T β

α xα = T ρ
α xα.

Geometric transformations applied consecutively in the predefined order can serve
for construction ofk-patches from a given point in the spacePEd .

Geometric transformations dependent on a parameteru ∈ R can be deter-
mined as a one-parameter set of transformations defined on the domainI ⊂ R and
it is represented in the matrix form

T(u) : xα → yβ = T β
α (u)xα,

where the functionT(u) that can be derived from the matrixTβ
α is a continuously

differentiable function on the intervalI with the values in the set of real regular
square matrices of rankd + 1.
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Entries of any matrix functionT β
α (u), forα, β = 0, 1, . . . , d are real functions

of one real variable, all defined and differentiable on the same intervalI , while
det

(
T β

α (u)
) �= 0 for any valueu ∈ I .

The same rules will be applied for a composition ofn > 1 one-parameter sets
of geometric transformations in a predefined order.

2. Definitions

Definition 1 A k-patch S
(
�k

)
in a d-dimensional projectively extended Euclidean

space PEd is a non-empty subset, that is a continuously differentiable mapping of
the region �k ⊂ Rk

ϕ : �k → S
(
�k

) ⊂ PEd,

(
u1, u2, . . . , uk

) 
→ (
s0, s1, . . . , sd

)
,

ui 
→ sα
(
u j

)
, for i, j = 1, 2, . . . , k and α = 0, 1, . . . , d.

A k-patch S
(
�k

)
is denoted as a curve S(�) for k = 1, a surface S

(
�2

)
for k = 2,

a solid S
(
�3

)
for k = 3 and an animation S

(
�4

)
(of the space-time) for k = 4.

Definition 2 Generating principle of a k-patch S
(
�k

)
in a d-dimensional projec-

tively extended Euclidean space PEd will be a finite sequence of k one-parameter
sets of geometric transformations

{1T
(
u1) ,2 T

(
u2) , . . . ,k T

(
uk

)}

defined for
(
u1, u2, . . . , uk

) ∈ �k ⊂ Rk, such that applying these transformations
consecutively to an arbitrarily chosen fixed real point X ∈ PEd, the related k-patch
S

(
�k

)
can be constructed.

Definition 3 Creative representation of a k-patch S
(
�k

)
is an ordered pair

(
X,

{
1T

(
u1

)
,2 T

(
u2

)
, . . . ,k T

(
uk

)})

of a fixed real point X ∈ PEd and a generating principle

{
1T

(
u1

)
,2 T

(
u2

)
, . . . ,k T

(
uk

)}
defined above.

Further information concerning the form and structure of the geometric figure
creative representation is available in [2].
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3. Modelling of 3-patches

Let the real pointA
(

a
(
a0, a1, . . . , ad

)t
)

be a fixed point in the spacePEd and the

sequence of the three sets of one-parameter geometric transformations{
1T

(
u1

)
,2 T

(
u2

)
,3 T

(
u3

)}
determined for real parameters

(
u1, u2, u3

)∈ �3 ⊂ R3

let be defined as a generating principle of a 3-patchS
(
�3

)
:

(
A,

{
1T

(
u1

)
,2 T

(
u2

)
,3 T

(
u3

)}) : a →
→3 T

(
u3

)2
T

(
u2

)1
T

(
u1

)
a := S

(
�3

)
represented by homogeneous coordinates

sδ
(
u1, u2, u3) =3 Tδ

γ

(
u3)2

Tγ

β

(
u2)1

Tβ
α

(
u1) aα.

Choosing constant values of parameters
(
u1, u2

)
,
(
u1, u3

)
,
(
u2, u3

)
, whereu1 = a,

u2 = b, u3 = c, (a, b, c) ∈ �3 respectively, isoparametric curve segments of the
3-patch (solid), forming three systems of curve segments, can be determined. For
the constant value of only one of the parameters we speak about three systems of
isoparametric surfaces. Any pointP of the solid is determined by its curvilinear
coordinates(a, b, c) ∈ �3, while homogeneous coordinates of the point can be
calculated from

P = s(a, b, c) =3 T(c)2T(b)1T(a)a.

Boundary elements of the solid (facets, edges, vertices) naturally correspond to the
boundary elements of the region�3, but compression of parts of�3 is also possible.

4. Intrinsic Geometric Properties of a Solid

Let the 3-patch (solid)S
(
�3

) ⊂ PEd be represented by

s
(
ui

) = (
s0

(
u1, u2, u3

)
, s1

(
u1, u2, u3

)
, . . . , sd

(
u1, u2, u3

))t
,

where the componentssα
(
ui

)
are homogeneous coordinate functions in three real

variables differentiable on�3. Let P be a point of the solid represented by homo-
geneous coordinates determined from the curvilinear coordinates(a, b, c) ∈ �3.

Partial derivatives of the function, with respect to all three variables, define
in this point (Fig. 1):

tangent vectors to the isoparametric curve segments:

∂s
∂u1

(a, b, c) = s1(a, b, c) =3 T(c)2T(b)1T′(a)a,

∂s
∂u2

(a, b, c) = s2(a, b, c) =3 T(c)2T′(b)1T(a)a,



SOME NOTES ON MODELLING 125

Fig. 1.

∂s
∂u3

(a, b, c) = s3(a, b, c) =3 T′(c)2T(b)1T(a)a,

twist vectors to the isoparametric surface patches:

∂2s
∂u1∂u2

(a, b, c) = s12(a, b, c) =3 T(c)2T′(b)1T′(a)a,

∂2s
∂u1∂u3

(a, b, c) = s13(a, b, c) =3 T′(c)2T(b)1T′(a)a,

∂2s
∂u2∂u3

(a, b, c) = s23(a, b, c) =3 T′(c)2T′(b)1T(a)a,

density vector of distribution:

∂3s
∂u1∂u2∂u3

(a, b, c) = s123(a, b, c) =3 T′(c)2T′(b)1T′(a)a.

The given vectorss1, s2, s3 form a tangent trihedron in the regular point of the solid.
Trihedron facets are tangent planes to the isoparametric surface patches, edges
are tangent lines to the isoparametric curve segments meeting in the solid point,
that is the trihedron vertex. The tangent trihedron determines intrinsic geometric
properties of the solid. They can be calculated by means of the coefficients of the
first fundamental form of the solid.

In the regular pointP of the solid there is a nonzero 3-minor determinant of
the Jacobi matrix(

∂sα

∂ui

)
, i = 1, 2, 3; α = 0, 1, . . . , d
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which together with the standard scalar product inPEd

δαβ = 〈
eα, eβ

〉 =



0
1

1
1




induce the infinitesimal metric on the solid.
We can define

gij = ∂sα

∂ui
δαβ

∂sβ

∂u j
=< si , s j >= si s j

in the sense above.
The arc length (or line element) quadrate is called the solid first fundamental

form ϕ1
(
u1, u2, u3

)
and it is determined as

(ds)2 = dui gi j du j = (s1du1 + s2du2 + s3du3)2 =
= (3T(c)2T(b)1T′(a)adu1 +3 T(c)2T′(b)1T(a)adu2+

+ 3T′(c)2T(b)1T(a)adu3
)2 =

= s2
1

(
du1)2 + 2s1s2du1du2 + s2

2

(
du2)2 + s2

1

(
du1)2 + 2s1s3du1du3 + s2

3

(
du3)2 +

+s2
2

(
du2)2 + 2s2s3du2du3 + s2

3

(
du3)2 −

(
s2
1

(
du1)2 + s2

2

(
du2)2 + s2

3

(
du3)2

)
.

The first fundamental formϕ1
(
u1, u2, u3

)
of the solid is determined as the sum of

the first fundamental formsϕ1
(
u1, u2

)
, ϕ1

(
u1, u3

)
, ϕ1

(
u2, u3

)
of the isoparamet-

ric surface patches of the solid subtracted by the sumϕ of the first fundamental
forms of the isoparametric curve segments of the solid, that are squares of the total
differentials of the isoparametric curve segment point functions. With respect to
this relation some of the intrinsic geometric properties of the solid can be related
to the intrinsic geometric properties of the isoparametric subsets – curve segments
and surface patches.

Discriminant of the first fundamental formϕ1
(
u1, u2, u3

)
of the solid is de-

fined in a solid regular point as the value of the determinant

D = ∣∣gij

∣∣ =
∣∣∣∣∣

g11 g12 g13
g21 g22 g23
g31 g32 g33

∣∣∣∣∣ =
∣∣∣∣∣

s1s1 s1s2 s1s3
s2s1 s2s2 s2s3
s3s1 s3s2 s3s3

∣∣∣∣∣
that is always positive.

Volume of the solid can be calculated from the discriminantD, as the triple
integral over the region�3

∫ ∫
�

∫ √
D

(
u1, u2, u3

)
du1du2du3.
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5. Example Calculations

We shall demonstrate how to use the machinery, introduced in previous sections.

5.1. Conical Solid

Revolving the pointA(1, a, 0, 0)t about the coordinate axisz, set of transformations
1T(u), up to the angle 2π a circle located in the ground projection plane(x, y) can be
created, from which by the set of scalings2T(v) to its centreO with the coefficient
1 we can create a disc. This is the basic figure subdued to the set of scalings
3T(w) with the centre in the pointV(1, b, c, d)t , d �= 0, conical solid vertex, and a
prescribed coefficientk �= 0 (Fig. 2).

Fig. 2.

For the different values ofk we can create different forms of the conical solid.
If k = 1 a cone can be created, fork > 1 a doubled conical solid appears and

for k < 1 there can be modelled a truncated conical solid in-between the basic disc
and vertexV (for k > 0) or the opposite one (fork < 0), as illustrated inFig. 3.

Fig. 3.

Matrices of the above transformations and their derivatives are in the following
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forms

1T(u) =



1 0 0 0
0 cos 2πu − sin 2πu 0
0 sin 2πu cos 2πu 0
0 0 0 1


 ,

1T′(u) =



0 0 0 0
0 −2π sin 2πu −2π cos 2πu 0
0 2π cos 2πu −2π sin 2πu 0
0 0 0 0


 ,

2T(v) =



1 0 0 0
0 1− v 0 0
0 0 1− v 0
0 0 0 1− v


 , 2T′(v) =




0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,

3T(w) =



1 0 0 0
bwk 1 − wk 0 0
cwk 0 1− wk 0
dwk 0 0 1− wk


 ,

3T′(w) =



0 0 0 0
bk −k 0 0
ck 0 −k 0
dk 0 0 −k


 .

The conical solid point function for(u, v,w) ∈ [0, 1]3 can be calculated as

s(u, v,w) =3 T(w)2T(v)1T(u)A =
= (1, a(1− v)(1−wk) cos 2πu + bwk, a(1− v)(1− wk) sin 2πu + cwk, dwk)t .

Solid first fundamental form will be

	1(u, v,w) = 4π2a2(1 − v)2(1 − wk)2du2 + a2(1 − wk)2dv2+
+k2 (

b2 + c2 + d2 + a2(1 − v)2 − 2a(1 − v)(b cos 2πu + c sin 2πu)
)

dw2+
+2πak(1 − v)(1 − wk)(c cos 2πu − b sin 2πu)dudw+
+ak(1 − wk) (a(1 − v) − b cos 2πu − c sin 2πu) dvdw

by straightforward computations.
Then we can calculate all the data indicated in section 4.
For the volume we get formulae

√
D = 2πa2dk(1 − v)(1 − wk)2,

V =
∫ 1

0

∫ 1

0

∫ 1

0

√
D (u, v,w)dudvdw = πa2dk

(
1 − k + k2

3

)
.



SOME NOTES ON MODELLING 129

5.2. Toroidal Solid

Revolving the pointA = (1, a, 0, 0)t about the coordinate axisz up to the angle
2π , set of transformations1T(u) from the previous example, a circle located in the
ground projection plane can be created. From this, by the set of scalings2T(v)
(from the previous example) to its centreO with the scale coefficient 1 we can
create a disc. That will be translated in the direction of the axisx by an arbitrary
distanceb > a (Fig. 4) in the simple geometric transformationT(b). This disk will
be subdued to the set of revolutions3T(w) about the coordinate axisy up to the
angle 2π , while the toroidal solid illustrated in theFig. 5 can be obtained.

T(b) =



1 0 0 0
b 1 0 0
0 0 1 0
0 0 0 1


 ,

3T(w) =



1 0 0 0
0 cos 2πw 0 − sin 2πw
0 0 1 0
0 sin 2πw 0 cos 2πw


 ,

3T′(w) =



0 0 0 0
0 −2π sin 2πw 0 −2π cos 2πw
0 0 0 0
0 2π cos 2πw 0 −2π sin 2πw


 .

Fig. 4.

The toroidal solid point function

s(u, v,w) =3 T(w)T(b)2T(v)1T(u)A =
= (1, (b + a(1 − v) cos 2πu) cos 2πw, a(1 − v) sin 2πu,

(b + a(1 − v) cos 2πu) sin 2πw)t



130 D. VELICHOVÁ

Fig. 5.

for (u, v,w) ∈ [0, 1]3.
Toroidal solid first fundamental form can be expressed as a result

	1(u, v,w) = 4π2a2(1 − v)2du2 + a2dv2 + 4π2 (b + a(1 − v) cos 2πu)2 dw2.

To get this formula, tangent vectors to the solid isoparametric curves can be calcu-
lated from the above vector functions

s1(u, v,w) =3 T(w)T(b)2T(v)1T′(u)A =
= 2π (0,−a(1 − v) sin 2πu cos 2πw, a(1 − v) cos 2πu,

−a(1 − v) sin 2πu sin 2πw)t ,

s2(u, v,w) =3 T(w)T(b)2T′(v)1T(u)A =
= (0,−a cos 2πu cos 2πw,−a sin 2πu,−a cos 2πu sin 2πw)t ,

s3(u, v,w) =3 T′(w)T(u)2T(v)1T(u)A =
= 2π (0,− (b + a(1 − v) cos 2πu) sin 2πw, 0, (b + a(1 − v) cos 2πu) cos 2πw)t .

For the volume of the toroidal solid we receive formulae
√

D(u, v,w) = 4π2a2(1 − v) (b + a(1 − v) cos 2πu) ,

V =
∫ 1

0

∫ 1

0

∫ 1

0

√
D(u, v,w)dudvdw = 2π2a2b.
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5.3. Helical Solid

Revolving the fixed pointA = (1, a, 0, 0)t about the axisz (set of transformations
1T(u) from the previous examples) up to the angle 2π a circle located in the ground
projection plane can be created. From this we can create a disc by a set of scalings
2T(v) (from the previous examples) to its centreO with the scale coefficient 1. The
disc will be translated in the direction of the axisx by an arbitrary distanceb > a,
applying the transformationT(b) from the previous example. A helical solid can
be created from the disc by subduing it to the helical movement about the axis in
the arbitrary line. Let the axis of the helical movement3Tz(w) be the coordinate
axis z up to the angle 2π and the pitch bec �= 0, as illustrated in theFig. 6.

Fig. 6.

3Tz(w) =



1 0 0 0
0 cos 2πw − sin 2πw 0
0 sin 2πw cos 2πw 0

2πcw 0 0 1


 ,

3T′
z(w) =




0 0 0 0
0 −2π sin 2πw −2π cos 2πw 0
0 2π cos 2πw −2π sin 2πw 0

2πc 0 0 0


 .

The helical solid point function for(u, v,w) ∈ [0, 1]3 is in the form

s(u, v,w) =3 Tz(w)T(b)2T(v)1T(u)A =
= (1, b cos 2πw + a(1 − v) cos 2π(u + w), b sin 2πw+

+a(1 − v) sin 2π(u + w), 2πcw)t .

Tangent vectors to the solid isoparametric curve segments can be determined from
the vector functions

s1(u, v,w) = 2π (0,−a(1 − v) sin 2π(u + w), a(1 − v) cos 2π(u + w), 0)t ,

s2(u, v,w) = (0,−a cos 2π(u + w),−a sin 2π(u + w), 0)t ,
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s3(u, v,w) = 2π (0,−b sin 2πw − a(1 − v) sin 2π(u + w),

b cos 2πw + a(1 − v) cos 2π(u + w), c)t .

Helical solid first fundamental form:

	1(u, v,w) = 4π2a2(1 − v)2du2 + a2dv2 + 4π2
(
b2 + c2 + a2(1 − v)2+

+2ab cos 2πu) dw2 + 8π2a(1 − v) (a(1 − v)

+b cos 2πu) dudw − 4πab sin 2πudvdw.

Volume of the solid can be calculated from the formulae√
D(u, v,w) = 4π2a2c(1 − v)

and

V =
∫ ∫ 1

0

∫ √
D(u, v,w)dudvdw = 2π2a2c.

Boundary of the created helical solid (Fig. 7) is a well-known circular helical surface
‘winded column’. Applying a different helical movement to the same disc in the
above example, a different helical solid can be created.

Fig. 7.

Let us choose the helical movement3Ty(w) with the axis in the coordinate
axis y up to the angle 2π and the pitchc �= 0 (Fig. 9). The helical solid illustrated
in Fig. 8 will be created with the boundary in the circular vaulted helicoid.

3Ty(w) =



1 0 0 0
0 cos 2πw 0 − sin 2πw

2πcw 0 1 0
0 sin 2πw 0 cos 2πw


 ,
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Fig. 8.

Fig. 9.

3T′
y(w) =




0 0 0 0
0 −2π sin 2πw 0 −2π cos 2πw

2πc 0 0 0
0 2π cos 2πw 0 −2π sin 2πw


 .

Solid point function for(u, v,w) ∈ [0, 1]3 is in the form

s(u, v,w) =3 Ty(w)T(b)2T(v)1T(u)A =
= (1, (b + a(1 − v) cos 2πu) cos 2πw, 2πcw + a(1 − v) sin 2πu,

(b + a(1 − v) cos 2πu) sin 2πw)t .

Tangent vectors to the solid isoparametric curve segments can be derived from
functions

s1(u, v,w) = 2π (0,−a(1 − v) sin 2πu cos 2πw, a(1 − v) cos 2πu,

−a(1 − v) sin 2πu sin 2πw)t ,

s2(u, v,w) = (0,−a cos 2πu cos 2πw,−a sin 2πu,−a cos 2πu sin 2πw)t ,
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s3(u, v,w) = 2π (0, (b + a(1 − v) cos 2πu) sin 2πw, c,

(b + a(1 − v) cos 2πu) cos 2πw)t .

Solid first fundamental form

	1(u, v,w) = 4π2a2(1 − v)2du2 + a2dv2+
+4π2 (

c2 + (b + a(1 − v) cos 2πu)2) dw2+
+4π2a(1 − v) (−2(b + a(1 − v) cos 2πu) sin 2πu sin 2πw cos 2πw+

+c cos 2πu) dudw+
+4πa (−2 (b + a(1 − v) cos 2πu) cos 2πu sin 2πw cos 2πw + c sin 2πu) dvdw.

Solid volume can be calculated from the formulae√
D(u, v,w) = 4π2a2(1 − v) (b + a(1 − v) cos 2πu)

V =
∫ ∫ 1

0

∫ √
D(u, v,w)dudvdw = 2π2a2b.

Computer algebra softwares (e.g. Maple, MathCad) can help us in these computa-
tions.
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