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Abstract

The paper deals with the constructionkepatches in thel-dimensional projectively extended Eu-
clidean spacé’EOI on the basis ok consecutively applied one-parameter transformations of the space
to a fixed point. A special 3-patch (solid) modelling is described and some notes on solid intrinsic
geometric properties are given.
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1. Introduction

Let PEY be ad-dimensional projectively extended Euclidean space with the well-
defined inherited Euclidean metric and the fixed Cartesian homogeneous rectangu-
lar normed reference system. With respectljone can establish the following
designations.

Any point A in the spacd®EY can be represented by(d + 1)-tuple of real
numbers, at least one of which is different from zero

A (a(ao, al, ...,ad)t)

denoted as point homogeneous coordinates. These refer to an orthonormed basis
(€p; &) with (e, €)) = §; and (e, &,) = O foranya =0,1,...,d andi, ] =
1,2,...,d.

In the case of a real poirk, the coordinates® # 0, and(d + 1)-tuples
a(a’at,..., ad)t andax (a%, ax, ..., a“k)t for any real numbek # O repre-
sent the same point. Normalized form of the homogeneous coordinates of the real
pointA is a(d + 1)-tuple

al ad\'
a(l,g,...,g) , where 1= @t£0.
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For any point at infinityV>° determined by a proportional direction vector repre-
sented as@+1)-tuplev (v°, vt, ..., v"')t the coordinate® = Oandv (0, v%, . .., v"')t
is equivalent tosx (0, v'A, ..., 'Ud)\.)t for any real numbek # 0.

A geometric transformatio® of the spacePEY is a linear mapping of the
space

@ : PEY — PEY,
XX) = Y(Y),X >y~ DX

represented by a real regular square mafrof rankd + 1, de{T) £ 0

T T ... T
T=T/= Tol T,ll o T ;
T T

X yP = Thx* for «,p=0,1,....d

up to a nonzero real factat, thusT andz - T describe the same transformatidn
and for t

X = (a)’ela"'aed) (Xovxla"'axd) =Q1Xa
and .

y= (e, er....e) (Yo ¥ ... YY) =esyP,

y=Tx=Tex" =eT/x* ~eyr.

A composition ofn > 1 geometric transformatiod$,? T, ...," T in a predefined

order — a concatenated transformatibican be determined as a compositiomof
linear mappings and expressed as follows

X—>y="Tx—>z=Ty=2Tx > .. > w=
="Tv="T. 2TTx=Tx;
X = Y =TT 5 2 2TV ST X s w? SN TH =
2 1 o o
"L 2T TAx* = Trxe.
Geometric transformations applied consecutively in the predefined order can serve
for construction ok-patches from a given point in the spaRE.
Geometric transformations dependent on a parameterR can be deter-

mined as a one-parameter set of transformations defined on the dbrmaihand
it is represented in the matrix form

T : x* — y# = T (u)x*,

where the functiorT (u) that can be derived from the matri¥ is a continuously
differentiable function on the intervdl with the values in the set of real regular
square matrices of rark+ 1.
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Entries of any matrixfunctiomaﬂ(u), forae, B =0,1,...,darerealfunctions
of one real variable, all defined and differentiable on the same intérvahile
det(T/(u)) # O for any valueu € I.

The same rules will be applied for a compositioma$ 1 one-parameter sets
of geometric transformations in a predefined order.

2. Definitions

Definition 1 Ak-patch S(22) inad-dimensional projectively extended Euclidean
space PEY is a non-empty subset, that is a continuously differentiable mapping of
the region Q¢ ¢ Rk

@ Q- S(Qk) c PEY,

(uhu? U s (sh st L8,
u s (u), for  i,j=12...,k and «=0.1...,d.
Ak-patch S(X) isdenoted asa curve S(Q) for k = 1, asurface S(2?) for k = 2,
asolid S(22°) for k = 3 and an animation S(22*) (of the space-time) for k = 4.

Definition 2 Generating principle of a k-patch S(Q") in a d-dimensional projec-
tively extended Euclidean space PEY will be a finite sequence of k one-parameter
sets of geometric transformations

T 2T (W?),... T (U9}
defined for (ut,u?, ..., u¥) e Q% c R¥, such that applying these transformations

consecutively to an arbitrarily chosen fixed real point X € PEY, therelated k-patch
S(€¥) can be constructed.

Definition 3 Creative representation of a k-patch S(22¥) is an ordered pair
X, AT (U 2T (U?), .. KT (W)
of a fixed real point X € PEY and a generating principle
1T (uh) 2T (U3, ... 5T (U9}
defined above.

Further information concerning the form and structure of the geometric figure
creative representation is availableii [
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3. Modelling of 3-patches

Let the real poinA (a (a%at,..., ad)t) be a fixed point in the spad®E? and the
sequence of the three sets of one-parameter geometric transformations
1T (u).2T (u?) T (u®)} determined for real parametgts, u®, u®) € Q* c R®

let be defined as a generating principle of a 3-pa&(@°):

(A [T () 2T () T (7)}) ra

S3T (W8T (W)'T (U a:= S(2F)
represented by homogeneous coordinates

§ (Ut w2 1) =2 T8 (W) T (u?) TE (ut) &

Choosing constant values of parameters u?), (ut, u®), (u?, u®), whereu! = a,
u? = b, ud = ¢, (a, b, c) e Q2 respectively, isoparametric curve segments of the
3-patch (solid), forming three systems of curve segments, can be determined. For
the constant value of only one of the parameters we speak about three systems of
isoparametric surfaces. Any poiRtof the solid is determined by its curvilinear
coordinates(a, b, c) € @3, while homogeneous coordinates of the point can be
calculated from

P=s(a b, c) =2 T()?T(b)'T(aa.

Boundary elements of the solid (facets, edges, vertices) naturally correspond to the
boundary elements of the regi®x, but compression of parts 6f is also possible.

4. Intrinsic Geometric Properties of a Solid
Let the 3-patch (solidp(23) ¢ PE® be represented by
s(u') = (s (ut, v, ud), st (ut u? ud) L s (Ut U u3))t,

where the components§ (u‘) are homogeneous coordinate functions in three real
variables differentiable o®®. Let P be a point of the solid represented by homo-
geneous coordinates determined from the curvilinear coordiiatésc) e <2.

Partial derivatives of the function, with respect to all three variables, define
in this point Fig. 1):

tangent vectors to the isoparametric curve segments:

%(a, b, c) = si(a, b, c) =2 T(©)°T(b) T (a)a,

%(a, b, c) = s,(a, b, ¢) =2 T(©)?°T'(b)'T(a)a,
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Fig. 1.

%(a, b, c) = s3(a, b, ¢) =2 T'(¢)’T(b)'T(a)a,

twist vectors to the isoparametric surface patches:

2
ﬁ(a, b, c) = s1z(a, b, ¢) =2 T(©)*T'(b)!T'(a)a,
9%s 3 T/(~)\2 1/
TolgE @ PO =sis@ b, o) =TT T'@a,

2

ds
5(a.b.0) = 5@ b.©) =* T(©T' B T@a

density vector of distribution:
03s
aulou2ousd

(a, b, c) = sip3(a, b, c) =2 T(©)?T'(b)'T' (a)a.

125

The given vectors,, s,, s3 form atangent trinedron in the regular point of the solid.
Trihedron facets are tangent planes to the isoparametric surface patches, edges
are tangent lines to the isoparametric curve segments meeting in the solid point,
that is the trihedron vertex. The tangent trihedron determines intrinsic geometric
properties of the solid. They can be calculated by means of the coefficients of the
first fundamental form of the solid.

In the regular poinP of the solid there is a nonzero 3-minor determinant of

the Jacobi matrix

E , i=123; a=20,1,...,d
au!'
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which together with the standard scalar produd® i
0
Sop = (€4, €5) = 1

induce the infinitesimal metric on the solid.
We can define

9s*  3s’

gj = PV =<S,S] >=S§§j
in the sense above.
The arc length (or line element) quadrate is called the solid first fundamental

form ¢y (ut, u?, u®) and it is determined as
(ds)? = du'g;jdu! = (spdu’ + sdu? + s3du)? =
= (CT©*TO'T (@adu' +3 T()?T'(b)'T (a)adu®+
+3T(02T ()T (a)adu®)” =
= & (du?)’ + 255,dutdu? + 2 (du?)” + & (du?)” + 25 s5dudu® + & (du®)” +
+85 (du?)” + 25550u%du® + & (du?)® — (ﬁ (du?)’ + 3 (du?)® + & (du3)2) .

The first fundamental fornp, (u?, u2, u®) of the solid is determined as the sum of
the first fundamental formg, (u, u?), @1 (U, u3), @1 (% u®) of the isoparamet-
ric surface patches of the solid subtracted by the guai the first fundamental
forms of the isoparametric curve segments of the solid, that are squares of the total
differentials of the isoparametric curve segment point functions. With respect to
this relation some of the intrinsic geometric properties of the solid can be related
to the intrinsic geometric properties of the isoparametric subsets — curve segments
and surface patches.

Discriminant of the first fundamental form (u, u?, u®) of the solid is de-
fined in a solid regular point as the value of the determinant

O11 Q12 Qi3 $1S1 SIS SI1S3
D=Igj|=| 021 G2 Qs |=| 2% % S
O31 032 Os3 $S1 8BS S8S3

that is always positive.
Volume of the solid can be calculated from the discriminBntas the triple
integral over the regio®®

//J D (ul, u2, u3)du*du®du®.
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5. Example Calculations

We shall demonstrate how to use the machinery, introduced in previous sections.

5.1. Conical Solid

Revolving the poinA(1, a, 0, 0)' about the coordinate axisset of transformations

1T (u), up tothe angle2 acircle located in the ground projection plamey) can be
created, from which by the set of scaliffggv) to its centreO with the coefficient

1 we can create a disc. This is the basic figure subdued to the set of scalings
3T (w) with the centre in the poin¥ (1, b, ¢, d)', d # 0, conical solid vertex, and a
prescribed coefficierk # 0 (Fig. 2).

Fig. 2.

For the different values dfwe can create different forms of the conical solid.

If K =1 a cone can be created, for- 1 a doubled conical solid appears and
for k < 1 there can be modelled a truncated conical solid in-between the basic disc
and vertexV (for k > 0) or the opposite one (fdr < 0), as illustrated irFig. 3.

k<0

Fig. 3.

Matrices of the above transformations and their derivatives are in the following
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forms
1 0 0 0
1T () = 0 cosZzu —sin2ru O
— 1 O sinZrtu cosZzu O |’
0 0 0 1
0 0 0 0
- | O =27 sin2ru —2m cos2ru 0O
(u) = 0 2rcoszrtu  —27 sin2ru 0 |°
0 0 0 0
1 0 0 0 0 0 O O
2 1 0 1-v 0 0 20, | 0O =1 0 O
Tw=1o 0 1-v o |+ T®W=|lo o0 -1 0 |
0 0 0 1—v 0O 0 0 -1
1 0 0 0
bwk 1—wk 0 0
3 _
Tw=1cok 0 1-wk 0 :
dwk 0 0 1—wk
O 0O 0 O
bk -k 0 O
377 _
TwW=1 o 0 —k o0

dk 0 0 —k
The conical solid point function fafu, v, w) € [0, 1F can be calculated as
s(u, v, w) = T(W)’T W) T(WA =
= (1, a(1l—v)(1— wk) cos 2ru + bwk, a(1 — v)(1 — wk) sin 2ru + cwk, dwk)'.
Solid first fundamental form will be
®1(u, v, w) = 4r2a’(1 — v)%(1 — wk)?du? + a2(1 — wk)?dv+
+k? (b% + ¢ + d® + a%(1 — v)* — 2a(1 — v)(bcos 2ru + csin 2rw)) dw?+
+27ak(1l — v)(1 — wk)(ccos 2ru — bsin 2ru)dudw+
+ak(1l — wk) (a(1 — v) — bcos 2ru — c¢sin 2ru) dvdw

by straightforward computations.
Then we can calculate all the data indicated in section 4.
For the volume we get formulae

VD = 27a2dk(1 — v)(1 — wk)?,

1,1 p1 K2
V = // / VD (u, v, w)dudvdw = wa’dk (l—k+§> .
0J0 JO
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5.2. Toroidal Solid

Revolving the pointA = (1, a, 0, 0)! about the coordinate axisup to the angle
2, set of transformation$T (u) from the previous example, a circle located in the
ground projection plane can be created. From this, by the set of scilings
(from the previous example) to its cent@ with the scale coefficient 1 we can
create a disc. That will be translated in the direction of the Xy an arbitrary
distanceb > a (Fig. 4) in the simple geometric transformatidrtb). This disk will

be subdued to the set of revolutiofis(w) about the coordinate axig up to the
angle 2r, while the toroidal solid illustrated in thigig. 5 can be obtained.

1 000
b 1 00
T®={0o01 0]
0 001
1 0 0 0
0 cosz 0 —sin2r
Tw={o "o 1 o |
0 sinZrw 0 coszZw
0 0 0 0
, 0 —2mxsin2t 0 —2mcoszr
Tw=| g o o T
0 2rcosZztw O —-2wsinZrw

Fig. 4.

The toroidal solid point function
s(u, v, w) =2 T(W)T(L)*TW)'TWA =

= (1, (b+a(l—v)cosZru)cos2rw,a(l —v)sin2ru,
(b4 a(l — v) cos 2ru) sin 2rw)"
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for (u, v, w) € [0, 1]°.
Toroidal solid first fundamental form can be expressed as a result

®1(U, v, w) = 4r%a%(1 — v)2du® + a%dv® + 472 (b + a(1 — v) cos 2ru)? dw?.

To get this formula, tangent vectors to the solid isoparametric curves can be calcu-
lated from the above vector functions

si(u, v, w) = T(W)T(D)?T )T (WA =
= 27 (0, —a(l — v)sin 2rucos 2rw, a(l — v) cos 2ru,

—a(1l—v)sin2rusin 2rw)!,

SU, v, w) =2 TW)TO T W' TWA =
= (0, —aCcos 2ru cos Zrw, —asin 2ru, —a cos 2rusin 2rw)",

ss(u, v, w) = T' W) TWTE)I'TWA =
=27 (0, — (b + a(1 — v) cos 2ru) sin 2rw, 0, (b + a(1 — v) cos 2ru) cos rw)".
For the volume of the toroidal solid we receive formulae

D(u, v, w) = 47%a’(1 — v) (b + a(l — v) cos Zru),

1,1 p1
V = f f f v D(u, v, w)dudvdw = 272a®b.
0J0JO
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5.3. Hélical Solid

Revolving the fixed poinf = (1, a, 0, 0)' about the axig (set of transformations

1T (u) from the previous examples) up to the angte&circle located in the ground
projection plane can be created. From this we can create a disc by a set of scalings
2T (v) (from the previous examples) to its cen®awvith the scale coefficient 1. The

disc will be translated in the direction of the axi®y an arbitrary distanck > a,
applying the transformatiof (b) from the previous example. A helical solid can

be created from the disc by subduing it to the helical movement about the axis in
the arbitrary line. Let the axis of the helical movem&hi(w) be the coordinate

axisz up to the angle 2 and the pitch be # 0, as illustrated in th&ig. 6.

1 0 0 0
0 coszw —sinZrw O
0

3 _
Tz(w) = sin2rw  coszw O |’
27 Cw 0 0 1
0
0
0

0 0 0
—2rsin2Zrw —-2rcosZzw O
2rcosZzrw —2xsin2rw O

2nc 0 0 0

The helical solid point function fofu, v, w) € [0, 1F is in the form
S(u, v, w) = T,(w)TO*TO)'TWA =

= (1,bcosZrw +a(l —v)cos Zr(u+ w), bsin 2rw+
+a(l—v)sin 2r(u+ w), 2rcw)t .
Tangent vectors to the solid isoparametric curve segments can be determined from
the vector functions

si(u, v, w) = 27 (0, —a(l — v) sin 27 (u + w), a(l — v) cos Zr (U + w), O)*,
s (u, v, w) = (0, —acos 2r(u + w), —asin 27 (u + w), 0)',
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s3(U, v, w) = 27 (0, —bsin2rw — a(l — v)sin 2r (U + w),
bcos 2rw + a(l — v) cos 2r(u + w), ©)* .
Helical solid first fundamental form:

®1(U, v, w) = 4r%a%(1 — v)2du® + a’dv? + 4r? (b2 +c?+a%(l—v)°+
+2ab cos 2ru) dw? + 8z2a(l — v) (a(l — v)

+bcos 2ru) dudw — 4rab sin 2rudvdw.
Volume of the solid can be calculated from the formulae

vDU,v,w) = 4n2a20(1 — )
and

1
V = ff f v/D(u, v, w)dudvdw = 27?a’c.
0

Boundary of the created helical soli . 7) is a well-known circular helical surface
‘winded column’. Applying a different helical movement to the same disc in the
above example, a different helical solid can be created.

Fig. 7.

Let us choose the helical movemé‘rﬁtj(w) with the axis in the coordinate
axisy up to the angle 2 and the pitcic # 0 (Fig. 9). The helical solid illustrated
in Fig. 8 will be created with the boundary in the circular vaulted helicoid.

1 0 0 0
3 _ 0 <coszw O —sinZrw
=127 0 1 0 :

0 sinZrw 0 cosZw
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Fig. 9.
0 0 0 0
3T/ () — 0 —2rsin2rw 0 —2mwcosZrw
W) = 2rc 0 0 0

0 2rcosZzrtw 0 —-2wsinZrw
Solid point function for(u, v, w) € [0, 1F is in the form
s(u, v, w) =2 Ty(w)TO*T ) TWA =

= (1, (b+a(l—v)cos 2ru)cos Zrw, 2rcw + a(l — v) sin 2ru,
(b4 a(l — v) cos 2ru) sin 2rw)" .

Tangent vectors to the solid isoparametric curve segments can be derived from

functions
s1(u, v, w) = 27 (0, —a(l — v)sin 2rucos 2rw, a(l — v) cos 2ru,
—a(l—v)sin2rusin 2rw)',
S (U, v, w) = (0, —acos 2ru cos Zrw, —asin 2ru, —a cos 2rusin 2rw)',
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s3(U, v, w) = 27 (0, (b + a(l — v) cos 2ru) sin 2rw, C,
(b + a1 — v) cos 2ru) cos rw)" .
Solid first fundamental form
®1(U, v, w) = 4r%a%(1 — v)?du® + a’dv’+
+47% (¢ + (b +a(l — v) cos 2ru)®) dw’+
+47?%a(l — v) (=2(b + a(1 — v) cos 2ru) sin 27U sin 2rw cos Zrw—+
+ccos 2ru) dudw+
+4ra(—2(b+ a(l — v) cos 2ru) cos 2ru sin 2rw cos Zrw + €Ssin 27 u) dvdw.
Solid volume can be calculated from the formulae

VDU, v, w) = 47%a*(1 — v) (b + a(l — v) cos 2ru)

1
V = // / v/ D(u, v, w)dudvdw = 272a°b.
0

Computer algebra softwares (e.g. Maple, MathCad) can help us in these computa-
tions.
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