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Abstract

In the present paper a general job-shop type scheduling problem for FMS is considered. About ten
years ago by papeERKINS, KUMAR [3] a new direction, the use of hybrid dynamical approach to the
solution of manufacturing scheduling problems arose. RecenthyyMEEV, SAVKIN [5] developed

a qualitative theory for the investigation of these and similar problems.

In the present paper an attempt is made to show the place and way of use of this approach in
the solution of industrial problems. The formulation of the tasks involves complex problem obtained
by CAPP and PPS subsystems interaction of CIM systems. The effect of the use of hybrid dynamical
approach is in the opportunity of overlapping production, which may result in a significant increase
of efficiency of equipment utilization. A proposal is given to determine the so called demand rates
which are ideal inputs of servers (machines) realizing production according to the orders of higher
hierarchical levels of PPS. The use of hybrid dynamical approach can be well investigated for single-
machine (server) processing of multiple flows. But, at an ideal flow at the input of the machines
(servers) the outputs differ from the ideal input for the next machines in order. This gives difficulties
for job-shop type processing. A proposal is given in the paper to overcome this difficulty by the use
of controlled buffergproposed.

As far as we know, this is the first publication in Hungary dealing with the use of hybrid
dynamical approach to FMS scheduling.

Keywords:hybrid dynamical approach, FMS scheduling, demand rate, overlapping production, con-
trolled buffers.

1. Introduction

The good solution of the scheduling is one of the key problems of the effective-
ness of FMS (Flexible Manufacturing System) actions. FMS scheduling should be
contained in the integrated software system consisting of CAPP (Computer Aided
Process Planning), PPS (Production Planning System), CPC (Computer Process
Control) subsystems. Using the Engineering Data Base, given by CAPP, the MRP
subsystem of PPS (for example SAP) determines the production tasks for a given
period of production which contains: from which part (or product), what quantity

is required. Tasks are formulated as production orders. Then, scheduling of tasks
follows. The classic theory of scheduling is extremely well covered by literature.
This is due to the importance of the problem and to the wide field where it can
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be applied: computer and communication networks; computer software systems;
surface, water and air transport; supply systems; armed force actions organization
and many others are among the similar problems. From the enormous number of
references discussing the manufacturing scheduling problems as an example we cite
FRENCH[1]. In the present paper we deal with the general Job Shop type problem
only. The problem itself can be formulated as a general nonlinear programming, and
operational research approaches like dynamical programming, branch and bound
methods, integer programming, etc. can be used for finding optimal solutions. The
problem that causes all the difficulties lies in large dimensions and, much more, in
the difficulty to find a proper optimum criterion which would reflect all the differ-

ent aspects of FMS actions goodness. Cost would be a good criterion but it is very
difficult to estimate (compute) it. In fact, the problem can be approached from the
point of view of multi-criterion optimization and solution methods obtained.

In most of the practical problems no optimality criterions are explicitly for-
mulated and only ‘suitable’ solutions are required. So, for example, in general,
a schedule is good if it is ‘dense’ enough. For some parts (series) no lateness is
allowed. The proper schedules can easily be generated using heuristic methods
based in priority indices (like: FIFO, SLACK, STP, LPT, EDD, etc. (see e.g.:
FRENCH[1])). For those, the optimum criterions can be estimated. Decision about
the suitability of schedules can be made using these criterion values, or other as-
pects. Based on the heuristic methods expert systems can be developed, genetic
algorithms and other artificial intelligence approaches can also be used. Discrete
system simulation (Taylor, Simple ++, etc.) can be used with embedded scheduling.
Multimedia may help to increase effectiveness. Even the interconnection of PPS
and CAPP is possible by the feedback of the scheduling requirement to manufac-
turing data optimization (see the Secondary Optimization Method proposed by the
author in MLO, NAGY [2]).

So, the classically formulated scheduling problems have modern and effective
solutions. With the papergRkINS, KUMAR [3], ‘Stable Distributed, Real Time
Scheduling of Flexible Manufacturing Assembly, Disassembly Systems’ published
in 1989 a new direction of manufacturing scheduling, the hybrid dynamical ap-
proach has started. In 1993HESE, SERRANO and RAMAGE [4] formulated the
Switched Arrival and Switched Server Problems, showing that periodic trajectories
are characteristic of the behavior of the second and chaos for the first.

In the book of MATVEEV, SAVKIN [5], ‘Qualitative Theory of Hybrid Dy-
namical Systems’ research results are presented for hybrid systems, that is, for
systems where a network of digital and analog devices, or a digital device interact
with continuous environment. The theory of differential automatons is used.

The goal of present paper is to show that the hybrid dynamical approach
allows to organize ‘overlapping’ production of parts, increasing effectiveness of
FMS scheduling significantly.

In the2nd partof the present paper, using the literature, some introduction to
the hybrid dynamical approach for the solution of manufacturing scheduling prob-
lem is given. In therd partit is shown how the required inputs, that is the demand
rates can be determined using the classic formulation of jobshop type scheduling
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tasks. Itis also shown that the hybrid dynamical approach makes possible to realize
overlapping production. This highly increases the efficiency of equipment utiliza-
tion. In the4th parta proposal is outlined to ussontrolled buffers for demand

rate regulation The problem with the use of hybrid dynamical approach is that,
though, at the first machine making some part types ideal, inputs can be applied,
at the consecutive machines the real outputs of previous machines are the inputs.
This highly differs from the ideal. This difficulty may be solved in the proposed
way. That is buffers can be controlled in such a way that these could provide ideal
inputs for the consecutive machines. As it was mentioned, the proposed solution is
outlined in the 4th part. Thith partcontains conclusions.

2. Hybrid Dynamical Approach
2.1. Production of High Numbers of Parts (HNP)

Flexible Manufacturing Systems are dedicated to process one of a kind of parts or
small series in automated way. Nevertheless, some FMS-s are suitable to manufac-
ture high number parts (HNP). By high humber we understand several hundreds,
several thousands or more parts (sometime less). Of course, the character of man-
ufacturing depends not only on the number but on ‘size’ of parts, too (the meaning
of ‘size’ here is the volume, the complication, etc.).

2.2. The Task and Database

The task of scheduling for an FMS is usually given by MieP subsystem of PPS
(Formally, we use partly the notation oRENCH [1]):

One has:

n jobs(J, J, ..., Jn), to be processed om machinegM, Mo, ..., My). By
machineswe mean an equivalent group of machines, which can be in practice
one machine, too. Sometimes instead of the word machine weearser For

all of the jobs the number of parts, the due dateld, the release date (r; —

is the time at which} becomes available for processing) are givélgy, is the
scheduling period. ThEAPPsubsystem determines for every jdh(a job J is

n; parts of typei) the operation sequencg, wherej = 1,2,..., j (ji —is the
number of operation sequences),— is an integer showing in which machine the
given operation is performed. Very important information aregioeessing times

gij. The processing times are determined by the operation planning subsystem
of CAPP including the manufacturing data determination section. We note that
the engineering database for scheduling is generated from CAPP results. But, it
needs proper modification. In engineering database for scheduling it is convenient

to applyz; = ?1#:] whereny, is the number of machines in the equivalent group.
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Sometimes it is convenient to use:

Tih = Tjj
or
h
Tj = Tj>

whereh is the index of the machine on which tlieh operation is realized for the
i-th part type. In the following always the most convenient form will be used hoping
that it will not cause misunderstanding. |E®RKINS, KUMAR [3] (unlike FRENCH

[1]) revisiting of the same machine is also considered. In this @ié)s& Tih IS
used at thé-th visit to the same machine.

2.3. Hybrid Dynamical Approach to Scheduling for a Single Machine

Following PERKINS, KUMAR [3] let us consider the processing of three high num-
ber of parts (HNP) job&J,, J,, J3), by a single machine. We consider a time period
the beginning of which is later than theleasetimer; , the end of which is earlier
than due datdd, and the end of scheduling period is long enough to be considered
as a time section from=0tot = co.

In traditional formulation of the tasks for scheduling, the number of parts to
be produced; during the production period is given. Hybrid dynamical approach
uses the demand ratk at the input of the machines. In this paper it is supposed
thatd, has a constant value. This is the number of parts to be produced during a
unit time. Later, some aspects of its determination will be given.

Let be

u; (t) := (the total input (part demand) forth job in [0, t]).

Then
ui (t) = dit 4+ u; (0). (1)
u; (t) has a real material meaning only at time instants when
k
ty = — k=12...).
K= 3 ( )

Let us define also

yi (1) := (the total production of job int = [0, t]).

zi (1) := (the buffer level of part (job) at timet),

then
z(t) =u(t) —yi(t) =dit — yi(t) + u; (0). (2)
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Z; (t) — corresponds to the error signal when using terms of classic control systems.
Here the buffer is a suitable local storing device dedicated to the parts or to the
machines. In fact, the task can be formulated in the following way: the rough parts
are coming to the input buffer of the machine from the central buffer having infinite
capacity with some given rate (corresponding to the demand rate). The input buffer
content, at the same time, represents an order for processing. At a given time
instant, due to the fulfilment of some conditions, the switching to produce a new
part type is realized. Then, preparation for the production of the new part should
be performed. This is the set-up of the equipment, transport and manipulation of
parts. Some of these actions may be performed in parallel. In the following the
time of the machine that cannot be used for real production, because of the above
actions, will be termed as inactivity time.

The methods, based on which switching is determined are callsgvitehing
policy. After the inactivity timethe production of another part type starts. The
buffers can be imagined as individuals for every part type and every machine.
But, in reality different part types (and even machines) can be served from the
same ‘physical’ buffer. Let us consider a time ‘windofi, t;] of the process
shown inFig. 1. In this figure Clear the Largest Buffer Level Switching Policy is
demonstrated.

A decision is made about switching wherever a buffer is emptied. At time
t; parts belonging tak are processed. Let us suppose initial conditign) =
Vo(ty) = ya(ty) = 0, theuy(ty), ua(ty), uz(ty) initial conditions are shown iRig. 1.

The processing rates are

Pin = i )

Tih
So, if a machine is active

Yi(t —t1) = yi(t) + pin(t — t1). (4)

Switching fromi = 3 occurs if

Z3(ts1) = U3(ts1) +Y3(ts1) = Uz(ty) = da(tsa—t1) —[Y3(t1) + Pan(tsai—t1)] = 0. (5)

ts1 — is the time of switching.

Then, a switch to processing another part type follows. In the given case we apply
the so-called Clear the Largest Buffer Level Policy. Becazaég) > zi(ts), a
switch to processing of part typd is realized. Then, the manufacturing of parts

of type J, is performed until the buffer content af becomes zero, etc.

As it was mentioned, after the switching time instant some inactivity period
of the machine follows. Then instead of tygetype J, is produced. Thés, —
inactivity time is the maximum of different action times (set-up, transport, etc.)
going on in parallel. It follows the above that at momgnéa switch to processing
part type J; occurs, etc. IrFig. 1, for the better demonstration, the proportion
of the inactivity times is enlarged. In the Flexible Manufacturing Systems the
proportion of inactivity time — activity time is very low. This is due to the high
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Fig. 1. Clear the Largest Buffer Level Switching Policy

level of automation not only of the part production but of the set-up, transport, and
manipulation tasks, too.

In Fig. 2 the picture of the change of the buffer levels, the sum of buffer levels
and the input, output values are shown.

In the paper BRKINS, KUMAR [3] the definition of the stability for a given
system is proposed. According to that a switching policstableif

Stlriui O -yl = StJrIZi D] <= Mi < +oo, (6)
for all part types(J, J, J3). That is,it is required for the stability that all of the
buffer levels should be bounded.

Necessary Condition of Stability

It is clear that for any switching policy the necessary condition of stability is

p = Zfihdi <1l (7)
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Fig. 2. The change of the buffer (a), summary buffer levels (b) and output values (c)

Here on the left side, for the sake of simplicity, it is not indicated that everything
is related to the machine with inddx The necessary conditiofor practical
scheduling taskss always satisfied. Indeed, let on the machineluring thes

time periodny, Ny, ..., N, ..., npnumber of the parts be produced. Letus suppose
that the production is equally distributed for the period of scheduling.

Then the following condition should be satisfied.

Z TihNi = Th.
i

n.
d =—.
Th
One obtains the necessary conditidh (t is also clear that

d < i 8)

Tih

should also be always satisfied for a@ny
The MRP subsystem of PPS checks the fulfilment of condifipar{d never
delivers a task which does not satisfy it.
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In PERKINS, KUMAR [3] it is proved that the Clear the Largest Buffer Level
Policy is stable.

Letus analyze the main features of this policy. Firstletus deal with the switch-
ing time instants. According toBRKINS, KUMAR [3] the consecutive switching
time instants are determined by

tsj+1) = tsj + [1 — ditin ] [8ki + 2z (ts))Tin - 9)

Here:i indicates to which johk} a switch is performedj; indicates the inactivity
time necessary to change job type frdnto J . Thets;, tsj;1) are the consecutive
switching time values.

Indeed, to empty; (ts;) one needs time

ts(+1 = tsj + ki + zi (ts) Tin + (ts(j+1) — sj)di Tin. (10)
Eq. (9) follows from Eq. (10). An important quantity is
p = Z Tin . (11)
i
This quantity is calledhachine load factarAccording to the necessary conditidh (
p=1
A component ofo is
pi = TinGi. (12)

This is the particular machine load due to part type

It is easy to recognize that characterizes the part of the machining time,
which is really spent to manufacturingl — p) characterizes inactivity and idle
times. Ifpisfarless than 1 and the set-up (transport, etc.) times have low values the
switching policies may result in a very good performance, when the output closely
follows the input and low buffer levels are present.

In PERKINS, KUMAR [3] it is proved (as mentioned before) that the Clear
the Largest Buffer Level Policy is stable. Also a formula for the upper bound of
the summary buffer level was obtained. According to it, if the initial buffer levels
satisfy

Zzi(O)g nd m_ax('o_pi>,
: A—p) i Tih

then

Zzi(t)ga—p—i-ﬂm_ax(p_pi), (13)
i Th  Th(l—p) i Tih

forallt > 0. Here,n is the number of part types. It is supposed that the inactivity
time §; = 4 is valid for all cases

Tih = MiN Tjp; Tih = MaXTip.
— I I
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In PERKINS, KUMAR [3] a rather general case of switching policy, the Clear-a-
Fraction (CAF) was analyzed. The Clear-the-Largest-Buffer-Level (CLB) Policy
is a special case of CAF case Policy. Inthe above paper the Clear- the- Largest Work
Policy was analyzed, too. Stability was proved and upper bounds were obtained.

In MATVEEV, SAVKIN [5] periodic switching policies and another version
of the Clear-the-Largest-Buffer-Policy were considered. Deep analysis of the pro-
cesses was performed.

Let us turn to the general aspects of the above analyzed problemvedyv,
SAVKIN [5] proved that this system could be described by a skigi€-differential
equations Indeed, let be& := {qu, 02, 03} Whereq, 0z, gz are symbols. The dis-
crete state];, wherej = 1, 2, 3, corresponds to the case when the server (machine)
removes (produces) work from the buffgrand the discrete state varialjé) € Q
describes the state of the server (machine) at time

X(t) — is the continuous state, that is the vector of the buffer contents. In the
given casex(t) € R®.

One can recognize that earlier (and later) we use for the zémeHere, we
changed tx(t) to emphasize the hybrid dynamical aspect.

The logic differential equation applied to the above example, if the inactivity
times can be neglected is

dj — v;

Xj
X d, i =123 i #]j.

If q(t) = g then { x (14)

Here

1

vj = —. (15)

Tjh
q(t) is determined in the following way: If at any tinteone of the buffer contents
becomes zeray(ts) = gk if Xk(ts) > X;(ts) for the other two buffers. The control
law (14) is valid until the j-th buffer is emptied. Then a new section follows until
thek-th buffer is emptied, etc.

If the inactivity period is taken into consideration a slight modification is
needed.

For that casd-ig. 3, taken from MATVEEV, SAVKIN [5], demonstrates the
processes. Here, the cyclic switching policy is applied. That is, whbacomes
empty, a switch to, occurs, etc. After the last buffer is emptied, a switch to the
first comes again.

The general form of description of hybrid dynamical systems is

x(®) = fx),qm]l, x(t) € R,
q(tyo) = P[X(1), q®)], a® € Q.

Herex(t) andq(t) stand for the continuous and discrete states, respectively. Sys-
tems described bylg) are called multi-valued differential automatons (MDA).
MATVEEV, SAVKIN [5] analyze the qualitative behavior of this kind of systems. In
particular, those which describe manufacturing scheduling problems.

(16)
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X1 =p1— P X1 =1 X1 = p1
X2 = P2 Jo— Qi | X2 = p2 g — Q| X2=p2—p
X3 = P3 X3 = pP3 X3 = P3

Jo a1 02
If x1=0 If X1 = 812pP1 If xo=0
then go togs then go togz then go tags

0s — do 02 — O3

X1 = p1 X1 = p1 X1 = p1
X2 = P2 Os < Q4 | X2 = P2 Qs <03 | X2 = P2
X3 = P3 X3=ps—p X3 = p3

ds Qa4 03
If X3 = 3831P3 If x3=0 If X2 = 831p2
then go tago then go togs then go tagy

Fig. 3. Cyclic switching policy

2.4. Hybrid Dynamical Approach to Scheduling for Job Shop Type Production

Hybrid Dynamical Approach makes possible to schedule jobs in FMS. Usually,
these problems are of job shop typeERRINS, KUMAR [3] show that assembly
and disassembly processes may also be considered.

At HNP processing the type number (the variety) of parts, usually, is not very
high. If p has a low value (e.g. .8 - 0.5) and the inactivity times allow it, the
demand rates for the consecutive machines can be close to the ideal. At a closer
look, it may be noticed that for any part type of any machine if the input is the ideal
demand rate, the output, that is, the input for the next machine, may highly differ
from the ideal. This input is of the kind as showrHig.2c. In points A,B,C... the
number of produced parts coincide with the required one. In section AA’ no parts
are delivered to the next machine. Starvation for parts may occur.

Necessary Condition for Stability

The definition of stability may be given in the same way as for Single-Machine
(see: {)). Clearly, the necessary condition for stability is

.h
Ph Z=de[féﬁ+T’()i)+fl():|?1)+-..+‘[g;1p )]Sla h:1725""m‘
p

17)
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In (17), rg‘ﬁf is the processing time required by a part type with ingeon itsk-th

visit to the machine.rg,:p’h) is the processing time at the last visit (let us notice

that, unlike in RENCH[1], several visits to the machines are allowed). In practical
scheduling tasksl{) is always fulfilled, because the MRP subsystem of PPS never
releases a task where this condition is not satisfied.

PERKINS, KUMAR [3] emphasized, that they could not find conditions pro-
viding stability when, at the first machine, the input is the ideal demand and at
the consecutive machines the real output of the machine before is applied. On the
contrary, the authors could construct a sample, wdhyeramical instability occurred
(see also BPRKINS, HUMES, KUMAR [6]). PERKINS, KUMAR [3] could show the
stability of CAF with back off switching policyThere, the machines are considered
as working in isolation (for these results for the Single-Machine case are valid).
The difference is that in the case of the ‘ideal buffer content’, if there is starvation
of part at the input of the machine, (see AAkig. 2¢c) the machine is kept idle.

3. Hybrid Dynamical Approach to the Solution of FM S Scheduling Problems

3.1. Demand Rate for Single Machine Processing

Now, let us try to determine the demandrades = 1, 2, . . ., n, for single machine
processing. Itis clear that the upper limit value of demand rate is

— 1 ,

limd = —, i=12...,n, (18)

Tij
j —is the machine group identification number.

This is due to the machining intensity constraint. As already mentioed,
is determined on CAPP subsystem level. In practice

6 < 2 — (Adu) (19)

should be used, wher@\d,p); is the upper demand rate reserve value necessary
for the realization. The lower limit of the demand rate is

. N;
limd = 20
hm G ad -, (20)
or
n;
limd = —, 21
lim ¢, = (21)
which represent the production task requirement. These relations give
n;
i Adp)i 22
dlzdd—ri—i_( d|0)| ( )

or
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d > _:—I + (Adp)i, (23)

sch

where(Adp); is the lower demand rate reserve value. In the following, for the sake
of simplicity, only 1) and ¢3) will be considered. To generalize the results for
the other case is a single task.

Another upper limit is given by the machine capacity constraint. It can be
derived from the necessary condition of stability formulated above. Let us consider
this relation in form

P
From that
P
Now, let us determine the coefficiemtvhich makesZ4) and @5) turn into equality.
T. T,
== (26)
2pNpTpi Iy
where
tyj = Z NpTp;
P
is the summary machining time requirement on the machine
From the above the other upper limit value is
— N;
limd = —. (27)
iy
Taking (L8) into consideration the upper limit should be
— 1 n;
lim d, :min{—,—'}. (28)
T Iy
So, one gets the domain for demand rate
n; . 1 n
— + (Ado)i <d <minj—, — — (Ady)i. (29)
Tscn Tij tyj

Note that the increase af is desirable. But, the necessary set-up, etc., times
requirements constrain this increase. (This should be reflected in the value of
(Adyp)i, too.) We think that the best aids for final decisions are the simulation
studies.

Now, let us turn to the case of multi-machine job-shop type manufacturing.
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3.2. Demand Rate for Multi-Machine Processing. Overlapping Production

In the 1st part of this paper, formulation of the classic problems of scheduling was
given. Let us suppose that for some given problems;Jord,, ..., J,) part types,
schedules were generated (e.g.: using a heuristic method based on FIFO, SLACK,
or other priority indices). Let us suppose that we could construct and choose a
‘suitable’ schedule satisfying constraints and quality requirementssigld the
GANTT diagrams for thé-th part type are given.

Machine 4
groups

[
tilast Tsch t

Fig. 4. GANTT diagramsfor i -th part type

Let us outline the basic features of the solution. The first operation begins at
tiy > ri. Theend of the last operation isat tj < dd. At the input and output of
the machines, buffers of size n; are needed. In flexible manufacturing, overlapping
production of parts is possible. This is due to the fact that buffers, transport and
manipulation devices are automated. Set-up, transport, manipulation timesare low.
In Fig. 5 overlapping production is demonstrated for two consecutive machines.
No set-up, etc. times are considered here. Clearly, the time for not overlapping
production is

ty =11+t = (5-y + )N
Here and in the following, renumbering of the machine groups will be used.
Ti1, Ti2, . . . , Ty @eintheorder of processing part-typei. Of course, the machining
goes on the proper machine tool. In overlapping case

ty = -y + Tij Ni.

Here 7jj_1y < mj is supposed. The decrease of lead time is significant. The
necessary buffer size decreases, too. Let us consider the general case. Asit can be
seen from Fig. 6, no set-up and/or transportation times are considered. The total
time for the first 2 machinesis

1
{5, = Ti1 + Ti2h
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Machine 4
groups

v

Fig. 5. Overlapping production

Ti2 = Ti1,
(30)

2
t5o = 71 + T2

Ti2 < Tj1.
From 2to| (wherel istheindex of the last machine) for the j-th machine, one has

1
tzj = tgjfl + (Tij — Ti(j—p)Ni + Ti(j-1)

Tij = Ti(j-1)»
(31)

2 _ _a .
tyj = t3j_1 + T

Tj < T(-n-
aislor 2. Thetotal time of production of parts of type J is
(tx)i =t&, (aislor?2). (32)

Aswe analyze the HNP production (and we are not interested in * starting the line
and ‘finishing production’ problems) the ‘cruising’ regime of production can be
imagined as a permanent flow. In this case the picture shown in Fig.6 is extended
to form a permanent flow.

Now, let us discuss the determination of the demand rates for multi-machine
processing. Itisclear that the demand rate should satisfy the following upper limit

1
(di)j < —, fordl j, (33)
Tij
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Fig. 6. Overlapping production in several machines

where j indicates the machines part-typei isprocessed on, and (d); isthe demand
rate constrained by the given machine conditions.
It is supposed that the rate is constant for some part-types, irrespective of the
machine it is processed on.
So, from (33) one gets
1

d < .
Max;;
J

(34)

Just asin the single-machine case, the lower limit of demand rate is determined by

N
limd = —
Tsch

(35)

Let us determine the upper limit value given by the total time necessary for the
production of parts. The upper limit value of the demand rates can be determined
simply based on (32), because no processing is possible for shorter time than

limd = —. (36)

Let us simplify the above result. It is easy to recognize that

|
nimaxg; <t < (n —1) max 7 + Zr,, (37)
i
j=1
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Because n; isof high valueit is clear that

t3, ~ n; max tj; (38)
j

can be taken and so, for the demand rate one gets the upper limit given by relation
(34). Thatis
1

. 39
T (39)
J

di<

The important relation (39) reflects that the overall machining time for overlapping
production gives the same upper limit value for demand rate as the machining
intensity constraint.

Until now, the set-up, etc. times effects were neglected. For taking these into
consideration, reserves should be introduced. For those, decrease of demand rates
from the upper limit value is necessary. To produce n parts of type J MRP alows
to use (dd — r;) or in analyzed case Tgy, time period. It is usually much higher
than t&, in overlapped production. Of course, it should be kept in mind that in these
cases several HNP series are processed in parallel.

For these cases the necessary condition for stability (L7) should also be satis-
fied. To provide it let us determine the upper limit by

— 1 tx

limd = —. 40
i max; Tschn (40)
i

Here n isaproperly chosen coefficient. In relation @0) instead of t&, simply ty is

used

.According to the necessary condition of stability (see relation (L7), if only
one visit to machines is considered)

n
ph:Zdi‘L’ihfl, h:l,2,...,m. (41)
i=1
As

ty A~ N max g (42

j

(see (38)) N
d =— 43
i Tschn ( )

can be taken, and from (41)

n

n.
ZT—ITihnfl, h=12....m (44)

i—1 sch
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isobtained. In (44)
n
Znirih =1, h=12....m (45)
i=1

is the total working time to perform the production tasks on the machine with
index h.

From relation (44) one gets the efficiency coefficient n, which turns (44) into
equality for every machine group

T
(U)h=tih, h=12...,m (46)
h
Accordingly,
> T ! h=1,2 m (47)
77_ SthhaXth’ — 41,4 ..., .
From (40), (42) and (47)
lim di = . (48)
mhaXth

Having (34) and (48), the upper limit value of demand rateis

Iimdi—min{ ! dl } (49)

maxt; ’ mﬁxth
i

The lower limit value is given by (35). So

nj . 1 N

—_— Adp)i < d Adyp)i. 50

Ter + (Adp)i < di <min | max; ) mr?xth ] + (Adyp)i (50)
J

Now, let us consider the demand rates for the consecutive machines. The first
machine getsa d ramp-input signal. The consecutive machines get the same with
7jj time delay as shown in Fig. 7.

3.3. Time Gain by Overlapped Manufacturing

The lead time of overlapped production is much less than that of batch processing.
Itisclear that the straight comparison of different values does not give afull picture
because of the complex nature of the problem. Nevertheless let us compare the
overall time of production using these two approaches. As shown for overlapped
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Part demand u;

demand

Ty T Tit t
Fig. 7. Demand rates at consecutive machine groups

production the lead time for a type of parts can be well approximated by (see
relation (38))
ty1 = Ny max Tjj - (51)
i

The same applies to batch processing (in the most favorable case).
[
(tx)p = Z niTj, (52)
j=1

wherel istheindex of the last machine the part is processed on. Therelation of the

two valuesis |

Znifij

t =
gz(zl)b: j=1 ' (53)
tx N; MaxXtj;
j
If maxti; = Tik, then
j

[ [
Zninj Z‘Kij
j-1 j-1

=142 =142 (54)

N; MaXtij Tik
i

The second term in equation (54) may have a significant value. So, the time gain
by overlapped production may be very high.
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3.4. Use of Secondary Optimization to Further Increase of Efficiency of FMS
Scheduling

Itisclear fromrelation (50) that in some cases the demand rates can beincreased by
the decrease of the value max; t;; . The decrease of this value can be realized using
the so-called Secondary Optimization Method (see: SOMLO, NAGY [2]; SOMLO,

WATANABE [7]; WATANABE, SAKAMOTO [8]). It is shown in Fig. 8 that in the
manufacturing data determination of CAPP subsystem, it is possible to determine
not only the optimal (7 opt giving minimum cost), but minimum time (7 min) and
minimum tool wear (j; max) regimes, too. Also, any 74 value (the index g means
given) can berealized in an optima manner. How the Secondary Optimization may
help to improve FM S scheduling? The following principle can be applied: rrJ]axn i

values can be decreased to 7 min Values. If 7jj min goes below any other 5; value
this procedure can be repeated.

Ti]'min |Tijg
[ i [ ]
L/ N
Tijopt Tijmax

>
t
Fig. 8. Secondary optimization of manufacturing data

4. Active Buffer Policies

Asmentioned, PERKINS, KUMAR [3] proposed to use distributed CAF (in particu-
lar Clear the Largest Buffer) policy with back off to provide stability of processesin
genera job shop type FM S scheduling. MATVEEV, SAVKIN [5] analyzed multiple
server flow networks which also cover thisfield. They proposed to construct regu-
larizable switched multiple server flow networks which exhibit a regular behavior.

PERKINS, HUMES, KUMAR [ 6] proposed to use the so called regul ated buffer
stabilizing techniques to reach stable performance for FM S scheduling problems.

Here we propose a different technique to be able to use the results of hybrid
dynamical approach for single machines in the case of multiple-machine, job shop
type FMS scheduling.

Let us first suppose that flexible buffers for al part types and machines of
FMSare provided and al devices, including buffers, are computer controlled.

In Fig. 9 theideal inputs and the actual outputs for two consecutive machines
are shown. Let us suppose that at timeinstant T; (point A) the input buffer storing
typei of parts on machine (j — 1) is emptied. Then, a switch for serving some
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other partsfollows. Parts of typei are not produced, the input buffer (j — 1) grows
by zj—y =di(t — Ty).

Let us suppose that at time instant Tg,, the conditions to produce part type i
are fulfilled again. Then, after set up (etc.) period machining of part typei begins
until the input buffer empties (point B).

Now, let us consider the next (j -th) machine to produce part typei. At time
instant T, the conditions to switch fromtyper totypei arefulfilled (Before, T, part
typer was produced). After [4;]; inactivity period at Tp,» the machining of parts
i follows. But, asit can be recognized from Fig. 9 in the period [ Tpr2, Tpr1] NO part
of typei at the input buffer of the j-th machine is available. After T,1 the output
of (j — 1) machine can cover the input of the j-th machine. Even in this respect
there are some problems. Indeed, if 5; < 7j(j_1) the output of (j — 1) machine will
not provide continuous production on j-th machine.

To avoid thiskind of problems the following method, called controlled buffer
technique is proposed herket usintroduce the so called (virtual) auxiliary buffer
as shown in Fig. 10.

A UjG-1) B
Yig- .
B | (-D-th
l machine
A \»
[ Part i b \ }’i(j-llb 1
art €61,9 iS
produced [&(i]i-l I Ti(j_l)
1 1 |
| i | >
T, Tew i T, T, t
Ay i
machine
T 1
% L
Ta Tpr2 Tb >
t

Fig. 9. ldeal inputs and actual outputs of machine
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The controlled buffers act as followAt the input buffer of j-th machine the ideal
input (d; demand rate) and the corresponding number of parts already machined
on (j — 1) machine should always be introduced. If the output buffer of machine
(j — 1) isunableto cover demands, then the auxiliary buffer comestoits place and
delivers the proper number of parts (not finished production). The proper content
of the auxiliary buffer is provided before the regular system actions. (It is also
possible to include service sections during regular actions to fulfill thistask.) There
is always surplus which goes to fill back the auxiliary buffer. When the part typei
production on machine (j — 1) begins, the d demand rate on machine j is covered
by this production. It can be recognized that the same number of parts that was
taken out of the auxiliary buffer, later, isreturned from the output of the (j — 1)-th
machine. Indeed, asin an ‘activity’ period the (j — 1) machine produces exactly
the number of parts between two empty buffer positions (A and B in Fig. 9) the
number of parts will return which were taken from the auxiliary buffer.

(j — Dout-auxiliary buffer

Zia
Yia
Yi(j-1 Yici-1) dit Yij
Zij "
Buffer Buffer
(j — Dout Jin

Fig. 10. Controlled buffer technique

We think that using the results of PERKINS, KUMAR [3]; PERKINS, HUMES,

KUMAR [6] and MATVEEV, SAVKIN [5] the stability conditions of the use of the
controlled buffer technique and parameter estimations (buffer sizes, etc.) for this
may be obtained. Namely, if the initial auxiliary buffer content is higher than the
boundary valuefor theinput buffer content, the proposed system will work properly.
The periodic motion of (j — 1) output, (j — 1) auxiliary buffer flows stay local.
This does not affect the system performance where al of the d required demand

rates could be realized.
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Stopping Conditions

Clearly, the stopping condition for delivering rough parts to the system is

Tstop
/ d dt =n;. (55)
0

Here d; isthe demand rate not only for the ‘regular’ part of work, but also for the
filling up regime of the auxiliary buffers. At the end of production of some part
types clearing of the auxiliary buffers regimes is also necessary. Realization of
these tasksis very simple.

Virtual Buffers

It is easy to recognize that the above mentioned buffers have virtual character. It
means that during the physical realization on any machine there can be a unique
buffer for part type J, or for severa part types. The output, auxiliary and input
buffers are formed virtually on the control computer without any physical motion.

Real-Time, Distributed Control of FMS Actions

It has been shown in the present paper that the demand rates for manufacturing
HNP can be determined in a unique manner. It iswell known (see: the literature)
that for single-machine processing suitable switching policies based on the input
buffer content can be developed which have stable performance characteristics. In
the present paper, proposal was outlined to provide the given demand rate for any
machine. This was based on the use of controlled buffers. Using this, the single
machine approach can be extended to job shop type FM S scheduling.

In the following, the real-time, distributed control strategy will be outlined.
This strategy was originally proposed in PERKINS, KUMAR [3].

Time O Set Tp := Oand z; = z;(Tp) for al i and j (for smplicity, no return to
the same machine is considered here).

Determine according to the switching policy for al i and j which part type
will be served. Letit be (J); for the j-th machine.

Now, let us consider any time when a switch of the type of parts produced on
machine j occurs. The time when a switch from |-th to k-th type isrealized is T,
(for simplicity no other indices are applied). Then after time

Th + dik,
part type K is produced until

Zj (Th) ™) + ik

Thy1 =T,
n+1 n+ 1_ dkfkj

(56)
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(See Eq.(9)).

At T, 1 aswitch to the production of a new part type is realized, which part
is determined by the switching policy.

When using auxiliary buffers parts of type k, and the other types can always
be delivered to the machine at the required rate. The buffer contents can be updated.
Formally,

Zj(Thr1) =0, (57)
Zsj (Tn+1) L= ZSJ (Tn) + (Tn+1 - Tn)ds; for S= 1, 2, o ooy n; and S # k.

The switching policy is based on the buffer content only. So, the system control
actions have real-time, distributed character.

Fluid Analogs of FMS Scheduling Problems

In the literature (see: CHASE, SERANO, RAMADGE [4], MATVEEV, SAVKIN [5])
fluid, tank and server analogs of work flow, buffer and machining processesin FMS
are considered. This visualizes the HNP manufacturing very well. (At the same
time, one should be careful because the manufacturing problems are discrete in
nature, which is reflected when processes on micro level are considered).

In Fig. 11 the scheme of fluid analogous to the use of controlled buffer tech-
nique is given. The Figure does not need too many comments. The fluids come to
thetanks at given rates (d, d, ..., dy). Theservers (the valves) remove fluid from
the tanks at given rates according to some switching policies. After the switches
some inactivity period occurs. The constant input flows are realized by the locally
acting input, output, auxiliary buffer control from the auxiliary buffer.

When there is no output at the yi(j_1) flow line, the V1 intelligent valve provides
the d;; flow from the auxiliary buffer. When the output (j — 1) is‘active’, it partly
coversd; for the next tank and partly fills up the auxiliary tank. This action isdue
tointelligent valves V1 and V2. Inthisway it is provided that dyj_1) = dp; = dp;

di(jfl) = dij =d; d|(j,1) = d|j =d,, al thetime.

Working Principle Summary

Now, let us summarize the method proposed for on-line, real-time, distributed
closed-loop control of job-shop type FMS.

Let us suppose to have J, J,, ..., Jy jobs which are served according to
the conditions and requirements. The serving machines (servers) are equipped
with computer controlled buffers. These can serve all inputs and outputs and form
auxiliary buffers, too. The rough parts are coming to the first machine at the given
demand rate determined according to the method proposed in the 3rd part of this
paper. The parts to the first machine processing some parts type are coming from
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Fig. 11 Fluid analog of processesin FMS

the central buffer, having infinite capacity. The input buffers contents, at the same
time, represent the production order, too. The same demand rateisintroduced to the
consecutive machines with atime delay having the val ue of one part production time
onthemachinebefore. Thesedemandratesarenot only introduced but realized, too,
as input flows to the input buffers. This opportunity is due to the use of controlled
buffers applying the auxiliary buffer local control schemes.

Then, all the machines are controlled in real-time, distributed manner accord-
ing to the given switching policies.
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5. Conclusions

Theideaof hybrid dynamical approach to the solution of FM S scheduling problem
gives an opportunity to significantly increase the effectiveness of utilization of the
equipment of these high value systems. So, the economic effect of the use of this
may be very high.

The theoretical results obtained recently concerning hybrid dynamical sys-
tems give strong basis for the solution of problems. PERKINS, KUMAR [3];
MATVEEV, SAVKIN [5] can be considered as basic works.

In the present paper an attempt ismade to clear the relation of classic schedul-
ing problems formulation and hybrid dynamical approach. It has been shown that
the essence of the effect of the latter is the opportunity of overlapping production.
The use of hybrid dynamical approach to a single-machine problem is well estab-
lished with nice results. Not so clear is the situation when examining job-shop
type multi-machine problems in FM Ss (with possible assembling and disassem-
bling processes included). In the present paper the buffer control is proposed as a
solution to reduce the problems to the use of the single-machine case.

The modern simulation methods (Taylor, Simple ++, etc. aswell as the con-
tinuous system simulation languages Matlab, Matrix-x, PSIM, etc.) give excellent
opportunity to analyze the application problems details concerning the use of hybrid
dynamical approach. These studies can lead to new results and better understanding
of the problems.
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