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Abstract

The paper presents a novel strategy for design of high-performance non-free vortex axial flow rotors
with forward swept blades. The design methodology incorporates the determination of an optimum
extent of forward blade sweep into the non-free vortex design methodology, considering the realistic
three-dimensional blade-to-blade flow. The design methodology is to be completed with Computa-
tional Fluid Dynamics analysis and global measurements on the turbomachinery unit. A fan rotor
design example is presented.
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1. Introduction

Sweeping forward the blades of axial flow turbomachinery rotors offers a potential
for improvement of operational characteristics of the turbomachinery unit. In the
past years, a number of Computational Fluid Dynamics (CFD) investigations and
experiments pointed out advantageous tendencies related to forward blade sweep.
Measurements by MOHAMMAD and RAJ [17], WRIGHT and SIMMONS [30], and
YAMAGUCHI et al. [31] as well as experiments and CFD studies by BEILER [2]
and discussion by BREUGELMANS [4] confirmed that stage performance and effi-
ciency can be improved by sweeping the blades forward in an appropriate manner.
The above authors dedicated these favourable tendencies mostly to suppression of
secondary losses in the blade passages and in the blade tip region. WENNERSTROM
and PUTERBAUGH [29] and LAKSHMINARAYANA [15] conclude that by sweeping
the blades, onset of compressibility and the related shock losses can be reduced.
WRIGHT and SIMMONS [30], KODAMA and NAMBA [13], and SRIVASTAVA and
MEHMED [19] establish that the noise generated by the turbomachinery unit can
also be reduced by forward blade sweep. Although forward sweep raises blade me-
chanical problems, such difficulties can be eliminated by use of appropriate rotor
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blade materials (SRIVASTAVA and MEHMED [19]; THOMSON et al. [20]).
It is acknowledged that the simultaneous application of sweep and dihedral,

which may even change along the radius as appropriate, offers a unique possibil-
ity for fluid dynamic improvement of blading. However, such special prescription
of blade stacking line introduces difficulties in blade design. Systematic design
optimisation of blade sweep is a great challenge due to the complexity of rotor in-
terblade flow and difficulties in judgement of sweep effects on blade aerodynamics.
Harmonisation of swept blade geometry and 3D blade-to-blade flow is in lack of
generally applicable concepts. The optimum measure and manner of sweeping the
blades is sought even in some recent research programs by means of testing various
rotors of blade sweep prescribed in an arbitrary manner (e.g. GLAS and KUHN [9];
BEILER and CAROLUS [2]; GLAS [10]; K UHN [14]).

The overview of technical literature suggests the author to conclude that
favourable effects of forward sweep have been pointed out often in cases when
a spanwise gradient of blade circulation was present in the rotor. In such studies,
the rotor blade circulation was increasing with radius either due to the non-free vor-
tex (NFV) design concept (e.g. VAD and BENCZE[21]) or/and due to part load (flow
rate lower than design). MOHAMMAD and RAJ [17] found improved performance
characteristics due to forward sweep in the part load operational range. WRIGHT
and SIMMONS [30] reported that forward sweep resulted in increased total pres-
sure rise peak, shift of stall margin towards lower flow rate, and increased pressure
rise together with improved characteristics of boundary layer flow in the part load
range. The compressor rotor studied by YAMAGUCHI et al. [31] was designed for
NFV operation. YAMAGUCHI et al. [31] observed that sweeping the compressor
rotor blades forward led to an increased efficiency, and to a more accurate real-
ization of design radial distribution of flow coefficient and relative outflow angle.
The research program carried out on swept blades by BEILER [1] and BEILER and
CAROLUS [2] regarded also rotors of NFV design, giving a further confirmation
of advantages of sweep. For a rotor in which a slight blade circulation gradient
is present (FV design rotor in VAD et al. [27]), GLAS [9] predicted that optimum
fluid dynamic characteristics and increased efficiency can be achieved if the blades
are swept slightly forward. This tendency is also confirmed with study of works by
GLAS [10] and KUHN [14].

On the basis of above, it is expected that the advantages of forward sweep
can be mostly utilized for blades designed for NFV operation. The NFV rotor
blading of appropriate forward sweep can accommodate the three-dimensional (3D)
interblade flow corresponding to shed vorticity due to NFV operation, thus resulting
in improved fluid dynamical characteristics. The NFV design method, i.e. spanwise
increasing prescribed rotor blade circulation, is widely used for design of high
performance turbomachines (e.g. LAKSHMINARAYANA [15]). For this reason, it
is of great practical importance to find an appropriate concept for incorporation of
forward blade sweep in NFV design.

This paper draws guidelines to a novel NFV design method incorporating the
forward sweep of blades systematically in fluid dynamic blade optimisation. The
application of the design methodology is illustrated in a fan rotor design example.
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2. Background and Test Rotor

Department of Fluid Mechanics, Budapest University of Technology and Eco-
nomics maintains an active research program on high performance axial flow fans
of NFV design. Several fan units of unswept blades have been designed and tested
through global (characteristic curve and efficiency) measurements. Details of the
flow fields developing upstream and downstream of selected rotors were measured
using Laser Doppler Anemometry (LDA). Thanks to a significant contribution of
Department of Mechanics and Aeronautics, University of Rome ‘La Sapienza’ to
the research program, the means of turbomachinery research have been supple-
mented with a powerful CFD tool called ‘XENIOS’. This CFD technique offers a
unique possibility for investigation of interblade flow phenomena, which were not
accessible for the LDA tool.

One unswept rotor of which flow characteristics were found especially favou-
rable (designated ‘BUP-29’ in VAD and BENCZE [21]) was investigated by means
of a concerted application of LDA and CFD techniques in Hungarian – Italian co-
operation (CORSINI et al. [6]; VAD et al. [23]). In further collaborative studies on
the same rotor, design aspects of blade sweep in NFV design have been outlined
(VAD et al. [24]; VAD et al. [26]).

The design example given in this paper regards a high performance model
rotor of forward swept blades, designated hereby as SWUP-35 and to be studied
by means of CFD in a following common paper (CORSINI et al. [7]). Such studies
are harmonized with the collaborative research carried out so far. This means that
the basic geometrical and design flow parameters of the formerly studied unswept
bladed rotor (BUP-29) and the presently discussed swept bladed rotor must be
identical. As a consequence, a reasonable comparison can be carried out between
the unswept (BUP-29) and swept rotors in order to explore the effects of blade sweep
on rotor fluid dynamics. According to the above, and referring to former papers
reporting the characteristics of the unswept rotor (VAD and BENCZE [21], [22];
CORSINI et al. [6]), the global geometrical characteristics of the high performance
swept bladed NFV rotor in the design example are as follows: ducted isolated
axial flow rotor, blade numberN = 12, casing radiusrc = 0.315 m, average
tip clearanceτ = 0.002 m, hub-to-casing diameter ratioν = 0.676. The design
global flow coefficient is� = 0.50 and the design global ideal total pressure rise
coefficient is� = 0.7. It is expected from the rotor to carry out a rotor efficiency
of η = 0.88. The rotor is built up from blades of circular arc camber lines, with
a thin profile of uniform thickness along the camber lines, rounded at the leading
and trailing edges.

3. Outline of Blade Design Strategy

The presently proposed computer-aided design strategy of forward swept NFV axial
flow rotors is outlined inFig.1. The design methodology incorporates the following
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items:

A. The global operational parameters of the turbomachinery unit (flow coef-
ficient, total pressure rise coefficient, efficiency) reflecting the application
demands must be established.

B. The basic geometrical data of the rotor (hub-to-casing ratio, blade number,
tip clearance) must be selected in accordance with the global operational
parameters, on the basis of general design guidelines. The rotor inlet flow
condition must be prescribed on the basis of upstream flow measurements
or auxiliary CFD data. (The inlet condition includes swirl at the presence
of inlet guide vane.) A preliminary NFV outlet swirl function must also
be prescribed appropriately in the present design step, according to design
experiences.

C. A rotationally symmetric, quasi-3D theoretical rotor flow field must be com-
puted using basic fluid dynamical considerations, in accordance with the
global operational parameters. The rotationally symmetric flow solution and
a preliminary unswept blade design approach procedure are mutually cou-
pled in an iterative manner the following way. An approximate knowledge
of blade geometry is necessary for estimation of spanwise loss and radial
velocity distribution playing role in the rotationally symmetric flow solution.
On the other hand, the knowledge of rotationally symmetric theoretical flow
is essential for preliminary calculation of blade geometry.

D. A CFD study must be carried out on the rotor flow of preliminary unswept
blading.

E. The 3D blade-to-blade flow must be modelled. After pitchwise averaging,
the blade-to-blade flow model must correspond to the rotationally symmetric
theoretical flow solution at inlet and outlet. The torsion of stream surface seg-
ments inside the blading, i.e. inclination of streamlines in the blade passages
is estimated on the basis of the CFD study.

F. A swept blade design must be carried out, resulting in optimum blade ge-
ometrical parameters. An optimum extent of forward sweep is determined
ensuring a harmonization of blade passage geometry with the 3D blade-to-
blade flow.

G. The swept blade geometry must be tested through concerted CFD studies and
experiments (characteristic curve and efficiency measurements).

H. If the application demands are fulfilled, the design procedure is completed.
If not, a modification of theoretical flow field and a 3D blade-to-blade flow
model must be carried out on the basis of a parallel consideration of CFD
and global experimental data. The swept blade design, the CFD study and
the experimental verification must be carried out in an iterative manner.

In the following chapters, details of the design phases are presented.
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Fig. 1. Strategy for design of non-free vortex axial flow rotors with forward swept blades
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4. Rotationally Symmetric Quasi-3D Flow Solution

In this section, derivation of quasi-3D rotationally symmetric theoretical rotor flow
is discussed (seeFig. 1). At this preparatory design step, it is assumed that the flow
develops through the NFV rotor fitting to conical stream surfaces. According to
the assumption of a quasi-3D rotor flow field, all the descriptive relationships cited
in this section regard pitchwise-averaged flow characteristics. With prescription of
a spanwise constant blade circulation, the calculation method presented herein is a
transition into a free vortex design methodology.Fig.2 shows the scheme of flow
path through the rotor. Planes ‘0’ and ‘3’ are near upstream and downstream of the
rotor, respectively.

0 3
inlet plane outlet plane

inlet nose cone rotor hub rotor blading

midplane

R0

dR0

R03
R3

dR3

Inlet flow

Outlet flow

( )00 Rϕ
( )00 Rψ

( )33 Rϕ

( )33 Rψ

ε

Fig. 2. Flow path through an isolated NFV rotor, representing an elemental conical cascade

In order to illustrate the computation methodology in a simple but lifelike
manner, simplifying assumptions are considered, which are reasonable for fan rotors
with no inlet guide vanes:

Incompressible flow through the rotor,ρ = constant,
Swirl-free inlet flow,c0u = 0.
The calculation method allows an arbitrary axial inlet condition; i.e.c0x may
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vary with radius. Release of a uniform axial inlet condition is beneficial e.g. in
the cases when a short rotor inlet nose cone is present, performing a streamline
curvature effect and non-uniform inlet axial velocity profile. Thec0x distribution
must be determined on the basis of measurements or auxiliary CFD studies (VAD
et al. [25]).

Considering a conical stream surface fitting to radiir0 andr3 in the inlet and
exit planes, the increase of total pressure performed by the rotor is expressed using
the following equation:

p0t +�pt = p3t . (1)

Eq. (1) can be expressed in a more detailed way considering that�pt = η�ptid =
ηρu3cu3 with use of Euler equation of turbomachines, andp3t = p3 + ρc2

3/2 =
p3+(c2

3u +c2
3x +c2

3r )ρ/2. After introducing such details, let us make a derivative of
Eq.(1) by r3. It is assumed thatp0t is constant with radius. Furthermore, the Euler
equation offers an approximation of∂p3/∂r3 = ρc2

3u/r3. The flow downstream
of plane 3 is assumed to be stabilised, i.e. the flow characteristics do not depend
on the axial co-ordinate. As a consequence, the quasi-3D theoretical flow field
characteristics depend only uponr3 near downstream of the rotor, the spanwise
derivative ofEq. (1) appears as an ordinary differential equation:

d

dr3
(ηu3cu3) = c2

u3

r3
+ 1

2

d

dr3
(c2

3u + c2
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3r ). (2a)

In dimensionless form:
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[(
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3 + ϕ2

r3

]
. (2b)

Theϕ3(R3) distribution must correspond to the prescribed global flow coefficient:

� = 2

1 − ν2

∫ 1

ν

ϕ3R3 dR3. (3)

Parameters of NFVψ3(R3) distribution are prescribed by the designer. Contrary to
the former NFV design methods (e.g. BENCZEand SZLIVKA [3]; VAD and BENCZE
[21]; BEILER and CAROLUS [2]), the presently proposed design method is not
confined to swirl distributions prescribed with use of simple analytical functions.
An arbitrary swirl distribution can be prescribed, harmonizing with the physical
nature of rotor flow. Theψ3(R3) andϕ3(R3) distributions must correspond to the
prescribed global performance requirements:

η ·� ·� = 2

1 − ν2

∫ 1

ν

ηψ3ϕ3R3 dR3. (4)

η(R3) can be approached if preliminary unswept blade geometry fitting to the rota-
tionally symmetric theoretical flow field is calculated. Preliminary blade geometry
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calculation is explained in Chapter 5. If the approximate geometry of elemental
rotor blade cascades is computed, local losses related to the elemental cascades can
be estimated considering profile losses and secondary losses. Tip clearance losses
and annulus wall losses can also be estimated for the rotor and their distribution in
the vicinity of the annulus walls must be suitably modelled, on the basis of design
experiences. Eventually, a modelled spanwise loss and thus, efficiency distribution
can be predicted. For preliminary blade design and estimation of losses, author
refers to WALLIS [28].

It is also necessary to establish guidelines for estimation ofϕr3(R3). R3 and
R0 values related to the same hypothetical conical stream surface are calculated
with numerical integration of the continuity equation, with knowledge of the inlet
and outlet axial velocity profiles:∫ R0

ν

ϕ0R0 dR0 =
∫ R3

ν

ϕ3R3 dR3. (5a)

The dimensionless maximum axial chordh/rc of the blade must be estimated from
preliminary unswept blade design (see Chapter 5). Its value can be refined in the
consecutive iterative steps of determination of unswept cascade geometry. The
axial chordwise-averaged radial velocity is approached as follows:

ϕr03(R03) = ϕ03(R03) · tanε, (5b)

where

ε = tan−1 R3 − R0

h/rc
(5c)

is the cone half angle of the conical stream surface,

ϕ03 = ϕ0(R0)+ ϕ3(R3)

2
(5d)

is the mean axial flow coefficient, andR03 is the mean radius ofR3 and R0 (valid
in the rotor midplane). Such computation must be carried out for several elemental
rotors, establishing aϕr03(R03)distribution. According to the conical stream surface
approach, an approximation ofϕr3(R3) = ϕr03(R03)(= ϕr0(R0)) is introduced.

With incorporation of system ofEqs. (2)–(5) and the estimation process of
η(R3) into an iterative numerical solver procedure, outlet distributions ofψ3(R3)
andϕ3(R3) can be derived. Functions ofϕ0(R0), ϕ3(R3), ϕr03(R03), andψ3(R3)
form the basis of preliminary unswept blade design of an isolated rotor, as described
in the next chapter. If the pre-swirl is non-zero due to the presence of a prerotator
guide vane, there is no obstacle to consider theψ0(R0) function in the rotationally
symmetric flow solution and also in preliminary unswept blade design. However,
such case is not discussed herein for simplicity.

Flow characteristics for the test rotor are shown for three representative radii
in Table 1. For the test rotor being discussed herein,ϕ0(R0) has been specified
in accordance with former experimental data, andψ3(R3) has been prescribed to
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fit to the swirl distribution predicted by CFD for the unswept rotor in VAD et al.
[24], so forming a basis for comparison. The swirl is nearly constant near the hub
and increases progressively with radius, according to the non-free vortex design
concept aiming an increased contribution of blade sections at higher radii to rotor
performance. The nearly constant blade circulation in the vicinity of hub has been
prescribed in order to moderate suction side blade root – hub corner stall, according
to the proposition by VAD et al. [27]. ϕ3(R3) andϕr03(R03) are computed. In
order to consider the blockage effect of annulus wall boundary layers through the
rotor – resulting in increased axial velocity in the dominant portion of span – the
computational procedure has been carried out for a flow rate slightly higher than
� = 0.50. The reliability of this correction is based on experimental and CFD
experiences.

Table 1. Design flow characteristics

Hub Midspan Tip
R 0.676 0.838 1.000
ϕ0 0.574 0.501 0.436
ϕ3 0.501 0.519 0.540
ϕr03 0.000 0.028 0.000
ψ3 0.600 0.645 0.808

5. Preliminary Unswept Blade Design

At this calculation phase, conical stream surfaces are assumed through the rotor
(quasi-3D approach). The elemental blade cascades enclosed in two neighbouring
conical stream surfaces can be developed into two-dimensional cascade planes
(GRUBER [11]). Accordingly, the preliminary blade design can be based on a
cascade approach. Given that the cone angle of the stream surfaces is relatively
small, the distortion effect of transformation on the blade geometry is neglected
herein.

There are many possibilities for utilisation of cascade approach. This pa-
per presents a method based on experimental data on 2D stationary cascades (e.g.
HOWELL [12]; CARTER and HUGHES [5], L IEBLEIN [16]). Such ‘historical’ 2D
cascade data are applied widely even in these days in fan design (WALLIS [28]).
The quasi-3D blade design presented in this paper gives a new utilisation area of
these experimental data.

The following paragraph summarises the design methodology without a de-
tailed presentation of all steps.

Fig. 2 presents a segment of the theoretical rotationally symmetric flow
through an isolated rotor, enclosed in two neighbouring conical stream surfaces
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of infinitely small radial distance. Let us consider an infinitely thin elemental rotor
cascade enclosed in this stream tube. The radii of this stream tube at rotor inlet and
outlet areR0 and R3, respectively. The thickness of the stream tube is dR03 in the
rotor midplane and dR3 in the rotor outlet plane (Fig. 2).

The angular momentum equation must be applied to the fluid flowing in the
conical stream tube, including the elemental rotor. It must be considered that the
inlet flow is swirl-free. The angular momentum due to tangential friction forces
developing on the conical stream surfaces is neglected. The axial component of
angular momentum equation reads:

2πρcu3cx3r2
3 dr3 = dMx , (6)

where dMx is the momentum reacting on the elemental rotor by the flow. This
momentum must be equal to the shaft torque driving the elemental rotor.

The mean flow angle inside the elemental rotor:

β03 = cos−1 cx03/ cosε√
c2

x03 + c2
r03 +

(
u03 − cu3

2

)2
(7)

where the denominator reads the mean relative velocityw03. The shaft torque
driving the elemental rotor is expressed asN times the elemental torque acting on
a single elemental blade. The latter is calculated as the tangential forces acting on
a single elemental blade (having a mean extension of dr03 cosε along the stacking
line) multiplied by the arm ofr03. The shaft torque is:

dMx = Nr03

(ρ
2
w2

03�dr03 cosεclift

) sin(90◦ − β03 + δ)

cosδ
, (8)

whereδ = tan−1(cdrag/clift ). In the following section, the blade pitcht = 2r03π/N
is introduced. From continuity considerations,cx03r03dr03 = cx3r3dr3 is applied.
Using Eq. (7) w03 cosβ03 = cx03

cosε is derived. A combination ofEqs. (6) and (8),
using the above relationships, followed by nondimensionalization results in the
following equation:

�

t
clift = ψ3

R03ϕ03
· cosε cosβ03

1 + tg δtg β03
. (9)

This is the so-called rotor work equation, derived here on a special way for quasi-3D
flow approach. The next step is the determination of an optimum lift coefficient.
For this purpose, the inlet and outlet flow angles must be calculated:

β0 = tan−1 R0

ϕ03/ cosε
, (10a)

β3 = tan−1 R3 − (ψ3/2R3)

ϕ03/ cosε
. (10b)
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The optimum lift coefficient, as proposed e.g. by WALLIS [28], after HOWELL
[12], on the basis of experimental data:

c∗
lift = 2

(
cosβ0

cosβ3

)2.75

. (11)

The optimum blade solidity(�/t)∗ can be calculated on the basis ofEqs. (9) and
(11).

The optimum camber angle (central angle of circular arc blade chamber line)
can be calculated e.g. with consideration of Carter’s deviation angle rule (supplying
an empirical relationship for the difference between the outlet flow angle and trailing
edge blade angle, CARTER and HUGHES[5]):

θ∗ = β0 − i∗ − β3

1 − K
√

1/(�/t)∗
, (12)

where the coefficientK is dependent upon the stagger angleγ (being calculated
later) and thus, it must be determined in an iterative manner. The optimum incidence
anglei∗ (the difference between the inlet flow angle and leading edge blade angle)
can be estimated on the basis of empirical formulae (e.g. LIEBLEIN [16]).

The optimum stagger angle – measured from the circumferential direction –
is determined with use of the following relationship:

γ ∗ = 90◦ −
(
β0 − i∗ − θ∗

2

)
. (13)

The data sets of(�/t)∗, θ∗ andγ ∗ for several elemental conical cascades enclosed
in conical stream tubes of cone half-anglesε and mean radiiR03 determine the
preliminary optimum rotor blade skeleton geometry in an unswept blade approach.
For an easier representation of blade geometry in CFD study in the consecutive step,
the conical cascades are projected to cylindrical surfaces of mean radius equal to
that of the conical surface. The geometry of blade profiles set on the camber lines
is selected on the basis of design experiences or mechanical considerations.

From design point of view, the preliminary unswept blade geometry is ne-
cessary for estimation of spanwise loss distribution andϕr03(R03), playing role in
theoretical determination of the flow field, as described in Chapter 4. The prelim-
inary unswept blade geometry forms the subject of CFD in a first approach of 3D
blade-to-blade flow. The geometrical data of unswept blading serve also as a basis
for lifelike comparison with swept blade geometry.

6. 3D CFD Technique

In order to obtain information on the 3D blade-to-blade flow, the preliminary
unswept blade is subjected to a CFD investigation at the design flow rate (seeFig.1).
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This CFD simulation must return accurately with the global design pressure rise
coefficient. Furthermore, the CFD tool must resolve the viscous blade passage flow
at a sufficient accuracy, including characteristic 3D rotor flow phenomena. A 3D
turbulent finite element method is recommended. Although there exist theoretical
means for inviscid flow calculation in swept cascades (e.g. YEH and SMITH [18]),
consideration of viscosity effects is judged to be essential in axial flow rotor design.

Certain blade sections of a NFV rotor are of increased load, with an increased
chance of blade boundary layer thickening. Hub corner stall and accumulation of
low-energy fluid near the tip may also relate to a NFV behaviour. For an appropriate
resolution of such effects, the use of a non-linearκ − ε turbulence model is bene-
ficial, as optional in code XENIOS of Department of Mechanics and Aeronautics,
University of Rome ‘La Sapienza’.

Considering the complex 3D blade passage flow developing in rotors of NFV
operation, the accuracy of static pressure field measurements being carried out using
a simple pressure measurement tool cannot be guaranteed. Such difficulties are to
be surmounted with integration of a CFD tool in the design process. The appropri-
ateness of the CFD device is proposed to be verified by 3D velocity measurement
results, as reported in CORSINI et al. ([6], [7]).

During the design procedure, the CFD results are to be verified by global
experiments (characteristic curve and efficiency measurements) once a version of
rotor blading is manufactured.

7. 3D Blade-to-Blade Flow Modelling

At this phase (seeFig. 1), the relative streamlines in the vicinity of blade pressure
side (PS) and suction side (SS) must be modelled. The 3D blade-to-blade flow is
modelled the following way, as illustrated inFig. 3:

A. It is assumed that the pitchwise-averaged flow data upstream and downstream
of the rotor correspond to theϕ0(R0), ϕ3(R3), andψ3(R3) distributions of
the rotor flow field derived as described in Chapter 4.

B. It is assumed that the stream surfaces fit to conical surfaces near the blade.
These conical surfaces represent inward flow near the PS (radial velocity
component is directed toward the hub) and outward flow near the SS (radial
velocity component is directed toward the tip). Such flow behavior is char-
acteristic for rotors of non-free vortex operation (VAD and BENCZE [21]).
The conicity distribution of the PS and SS conesεPS(R03) andεSS(R03) can
be approximated using 3D CFD data obtained for the preliminary unswept
rotor.

For a better view, characteristic quantities are indicated inFig.3 for a stream-
line near the SS only. Quantities are defined for the PS flow in a similar manner.

The preliminary unswept rotor blading geometry (solidity, camber angle, stag-
ger angle) calculated for the present test rotor does not differ significantly, especially
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near and above midspan, from the unswept rotor studied formerly in CORSINI et
al. [6] and VAD et al. [23], [24], [26]. Therefore, CFD data reported in these pa-
pers have been considered as a reliable basis for establishment of spanwise conicity
distributions of the PS and SS cones in design of present test rotor.

It is expected on the basis of classical works (e.g. YEH and SMITH [18]) and
recent communications (GLAS [9]) that blade sweep will change the 3D blade-to-
blade flow and also the outlet axial flow coefficient and swirl distributions. Accord-
ingly, corrections can be carried out on theεSS(R03), εPS(R03), ϕ3(R3), andψ3(R3)
distributions derived from the rotationally symmetric flow condition and prelim-
inary unswept blade CFD, on the basis of CFD and design experiences. Such
corrections are also optional after the CFD activity carried out for the first version
of swept blade geometry.

R0 SS
R03 R3 SS

Inlet flow

( )
00 Rϕ

( )
00 Rψ

Outlet flow

( )
33 Rϕ

( )
33 Rψ

0 3

inlet plane outlet plane
midplane

R03
( ) R03

( )

ε SS

R03
( )

SS streamline

PS streamline

SS flow data:
R03

( )
0 SS0 Rϕ

R0 SS

( )
0 SS0 Rψ

R03
( )

( )
3 SS3 Rϕ

( )
3 SS3 Rψ

R3 SS R03
( )

ε
SS R03

( )

Fig. 3. 3D blade-to-blade flow model (quantities are indicated for the SS only, streamline
inclinations are exaggerated)
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8. Swept Blade Design

In the design method presented herein, the dihedral angle (e.g. SMITH and YEH
[18]; and BEILER and CAROLUS [2]) is taken as zero.

As discussed in detail in VAD et al. [24], [26], the swept blade geometry
is designed during a parallel optimisation of blade PS and SS. Let us consider a
related couple of PS and SS cones of equal mean radiusR03 (Fig. 3) onto which
two streamlines passing near the blade atR03 fit. The equality ofR03 for both PS
and SS streamlines forms the basis of the proper optimisation. The streamlines are
taken at the edge of the blade boundary layers, as in VAD et al. [24], [26]. In the
following explanation, only the SS streamline is referred for simplicity.

The SS streamline enters the blade passage at the radius ofR0SS and exits
at R3SS. These radii can be estimated with use of conicity dataεSS(R03) derived
from the CFD results (see Chapter 7), dimensionless mean axial chordh/rc of
preliminary unswept blading, and equation

εSS = tan−1 R3SS− R0SS

h/rc
(14a)

similar toEq. (5c).
It is assumed that the local axial flow coefficients and swirl coefficients do

not vary significantly in the pitchwise direction and thus, the inlet and outlet flow
conditions near the SS can be suitably characterised by the data obtained from the
rotationally symmetric flow solution (Chapter 4)ϕ0(R0SS), ϕ3(R3SS), ψ0(R0SS),
andψ3(R3SS). This assumption is reasonable, except for flow zones near the hub
and casing walls where characteristic 3D flow phenomena occur (VAD and BENCZE
[21]). The applicability of pitch-averaged data in the above-described approach has
been confirmed in blade load computations by VAD et al. [24].

The radial velocity along the SS cone is calculated as

ϕr3SS(R3SS) = ϕr03SS(R03) = ϕ03SS(R03) · tanεSS(R03), (14b)

where

ϕ03SS= ϕ0(R0SS)+ ϕ3(R3SS)

2
, (14c)

similarly to Eqs. (5b) and (5d).
Based on the above, the flow on the SS is considered as a flow through a conical

blade cascade ofεSS(R03). Using dataϕ0(R0SS), ϕ3(R3SS), ψ0(R0SS), ψ3(R3SS),
and ϕr03SS(R03), optimum cascade geometrical data(�/t)∗SS(R03), θ∗

SS(R03) and
γ ∗

SS(R03) can be determined separately for the SS, exactly the same way as described
for the preliminary unswept blade design in Chapter 5.

Following the same train of thoughts, using the data ofεPS(R03) established
from CFD results, optimum cascade geometrical data(�/t)∗PS(R03), θ∗

PS(R03) and
γ ∗

PS(R03) can be determined separately also for the PS on the same mean radiusR03.
Carrying out such two-side optimisation for several mean radiiR03, two ver-

sions of blade camber geometry are derived, representing optimum blade shapes
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separately for the SS and PS flow circumstances. The swept blade geometry must
unify these parallel shape demands, thus performing an accommodation of 3D
blade-to-blade flow.

Given that the flow condition differs significantly on the SS and PS due to
the difference in inclination of SS and PS streamlines, it is obvious that the SS and
PS optimum shape may show considerable differences. The conical cascades of
optimised geometry on both SS and PS must be projected to cylindrical surfaces of
mean radiusR03 equal to that of the conical surface. The experience shows that the
optimum camber and stagger angles (projected to the cylindrical surfaces) do not
differ significantly for the SS and PS. As a reasonable compromise, averaging the
SS and PS optimum angles derives the swept blade camber and stagger angles:

θ∗
SW(R03) = [θ∗

SS(R03)+ θ∗
PS(R03)]

2
, (15)

γ ∗
SW(R03) = [γ ∗

SS(R03)+ γ ∗
PS(R03)]

2
. (16)

In spite of above, a significant difference appears in the SS and PS blade solidi-
ties (more times ten percent for present test rotor). According to the NFV swirl
distribution and the nature of axial velocity profiles, it can be generally stated that
(�/t)∗PS(R03) > (�/t)∗SS(R03). Such contradictory conditions can be simultaneously
fulfilled exclusively with sweeping the blades forward to an appropriate extent.

Instead of presenting geometrical relationships, the sweep calculation is il-
lustrated inFig. 4. The classical definition of blade sweep generally used in the
turbomachinery society (e.g. SMITH and YEH [18]; BEILER and CAROLUS [2])
has been applied in this paper.

Before explanation of sweep calculation, the sweep is defined in a lifelike
way. The blade sweep can be obtained in a recursive manner, dividing the blading
to several elemental rotors fitting to cylindrical surfaces. The circular arc camber
line at a given radiusR03i (with stagger) must be drawn, and the halving pointPi
of the blade chord must be marked. A radial line fitting to this halving point must
be assumed. The halving pointPi+1 of the chord at the consecutive radiusR03i+1
must be stacked to this radial line. The next camber line (with stagger) must be
drawn in this position. Then, the camber line atR03i+1 must be ‘swept forward’ by
translating the camber line parallel to the chord in the upstream direction. During
translation,Pi+1 is forwarded to pointP′

i+1 at the radiusR03i+1. Angle Pi+1 Pi P ′
i+1

is the sweep angleλ. According to the sign convention used in the turbomachinery
society (e.g. SMITH and YEH [18]; BEILER and CAROLUS [2]), λ has a negative
value for forward sweep.

As Fig. 4 shows, the optimum sweep angleλ∗(R03) for the mean radiusR03
can be obtained as follows. The SS and PS optimum conical chords characterized
byεSS(R03), (�/t)∗SS(R03), εPS(R03), and(�/t)∗PS(R03) are represented as lines inter-
sected at radiusR03. The conical chords fit to identical plane at a given mean radius
R03. Such plane is determined by the radial direction (no dihedral prescribed) and
γ ∗

SW(R03). The conical chords form the diagonals of a parallelogram. The angle
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Fig. 4. Explanation of optimum blade sweep angle calculation. (The image of the blade
and the represented quantities are projected to the radial plane in the figure. Conical
chord inclinations are exaggerated.)

between the radial direction and the leading (or trailing) edge of the parallelogram
is considered as the optimum sweep angleλ∗(R03). The length of chordwise par-
allelogram side(s) (appearing as a projection to the cylindrical surface ofR03) is
considered as an optimum chord length(�/t)∗SW(R03).

The blading having optimum sweep calculated for severalR03 radii encloses
approximately the optimum conical chords for both SS and PS. Therefore, it ac-
commodates the realistic 3D blade-to- blade flow developing in the NFV rotor. If
the computed optimum sweep angle does not vary considerably with radius, it is
proposed to set it to a spanwise constant representative value.

According to the nature of swept blade design method presented herein, the
optimum solidity, camber angle and stagger angle values obtained for the swept
rotor are usually higher than those computed for the preliminary unswept blading.

9. Completion of Design Method

The swept bladed rotor must be subjected to a parallel CFD study and global ex-
periments (Fig. 1). If the characteristic curve and efficiency measurements verify
that the prescribed operational demands are fulfilled with a reasonably low relative
difference, the design procedure is considered to be completed. Otherwise, the
outlet flow data and the 3D interblade flow model must be modified on the basis of
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CFD results, which have been verified by the global experiments. The 3D blade-
to-blade flow modelling and swept blade design must be repeated on the basis of
the modified data. Such procedure is optional to be repeated in an iterative manner,
according to the demands (Fig. 1).

The blade geometry can also be optionally refined on the basis of CFD studies,
independently from the entire design procedure. For example, a need for modifi-
cation of blade shape near the leading edge for tuning the flow incidence angle can
be established from the CFD data in a lifelike manner.

The design methodology can be extended to design of guide vanes with blade
sweep.

10. Design Example

Table 2 presents a comparison between geometrical data determined for the prelimi-
nary unswept rotor and the first version of swept rotor (conf. Chapter 2) on the basis
of design methodology summarised above. The geometrical data are documented
for three representative radii. The data are considered as characteristics of blade
sections projected to cylindrical surfaces ofR.

It is conspicuous that blade solidity, camber angle, and stagger angle are
increased for the swept rotor, especially below and near midspan. This tendency is
expected to correspond to the fact that blade sweep results in decreased blade lift
(e.g. SMITH and YEH [18]) and thus, the solidity, camber angle and stagger angle
must be increased for retaining rotor performance.

The swept model rotor presented herein forms the basis of further CFD study
(CORSINI et al. [7]), in accordance with the design strategy outlined inFig.1.

Table 2. Comparative data of blade geometry for the unswept and swept rotors

Hub Midspan Tip
R 0.676 0.838 1.000

(�/t)∗ 1.74 1.15 1.13
Unswept θ∗ 34.4◦ 22.7◦ 20.3◦

rotor γ ∗ 55.3◦ 43.0◦ 37.4◦

λ 0◦ 0◦ 0◦

(�/t)∗ 1.79 1.23 1.13
Swept θ∗ 35.4◦ 25.4◦ 20.3◦

rotor γ ∗ 56.2◦ 43.1◦ 37.4◦

λ −35◦ −35◦ −35◦
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11. Summary

A novel design strategy for high-performance non-free vortex axial flow rotors with
forward swept blades has been presented herein. The design methodology incor-
porates the determination of an optimum extent of forward blade sweep, ensuring
an appropriate accommodation of 3D blade-to-blade flow by the blade geometry.
The design strategy involves theoretical considerations for computation of a quasi-
3D rotationally symmetric flow through the rotor, cascade concept for preliminary
unswept blade design, CFD activity for modelling the 3D blade-to-blade flow, a
concerted optimisation of suction side and pressure side blade geometry based on
cascade concept, and determination of optimum blade sweep guaranteeing a si-
multaneous fulfilment of optimum geometrical demands on both suction side and
pressure side. The computer-aided rotor optimisation strategy is built up in an
iterative manner, also including experimental verification of rotor design.
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Nomenclature

c [m/s] absolute velocity
cdrag [–] drag coefficient
clift [–] lift coefficient
h [m] mean axial chord
i [deg] incidence angle (measured positive from the inlet

blade angle if results in increased lift)
� [m] blade chord
M [Nm] torque
N [–] blade number
p [Pa] pressure
�p [Pa] pressure rise
r [m] radius
R = r/rc [–] dimensionless radius
t = 2rπ/N [m] blade pitch
u [m/s] circumferential velocity (r · ω)
uc [m/s] reference velocity (rc · ω)
w [m/s] relative velocity
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β [deg] flow angle (measured from the axial direction)
γ [deg] blade stagger angle (measured from the circumferen-

tial direction)
δ [deg] tan−1 of drag-to-lift ratio
ε [deg] cone half angle of conical stream surface
θ [deg] camber angle
λ [deg] blade sweep angle (measured as described in Chap-

ter 8)
� [–] design global flow coefficient (area-averaged axial

velocity in the annulus divided byuc)
� [–] design global ideal total pressure rise coefficient

(mass-averaged ideal total pressure rise in the annu-
lus normalised byρu2

c/2)
ϕ = cx/uc [–] local pitchwise-averaged axial flow coefficient
ϕr = cr/uc [–] local pitchwise-averaged radial flow coefficient
ψ = 2Rcu/uc [–] local pitchwise-averaged swirl coefficient
ρ [kg/m3] air density
ν [–] hub-to-casing diameter ratio
τ [m] average tip clearance
ω [1/s] rotor angular speed
η [–] local efficiency (ratio of realised and ideal local total

pressure rise)
η [–] mean efficiency (ratio of realised and ideal averaged

total pressure rise)

Subscripts and Superscripts

c casing wall
id ideal (total pressure rise)
PS, SS pressure side, suction side
r , u, x radial, tangential, axial
SW swept blade
t total (pressure)
0 rotor inlet plane
3 rotor exit plane
03 rotor midplane, mean value inside the rotor
∗ optimum value
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