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Abstract

In engineering practice, chaotic oscillations are often observed which disappear suddenly. This
phenomenon is often referred to as transient chaos. The life expectancy of these oscillations varies
stochastically. In this work, a method is presented for the simple estimation of the expected length
of the chaotic behaviour. As an example, the Lorenz system is considered at some specific parameter
values.
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1. Introduction

There are several examples in engineering vibration problems where chaotic os-
cillations may occur. These oscillations appear much more often than engineers
expect them. One reason for this is the fact that the chaotic oscillations often disap-
pear suddenly – this phenomenon is referred to as transient chaos. This oscillation
is usually considered by engineers as a regular motion since it may look like the
conventional transient behaviour when a machine starts its operation. However,
this transient behaviour cannot be characterised by conventional damping factors
since the transient chaotic oscillation does not produce an exponential decay in
amplitudes, it rather disappears unexpectedly. Actually, similar initial operation of
a machine may produce very different time period of transient oscillations. The
life expectancy of these oscillations – which can be an important parameter for
the design work – varies stochastically, so the estimation of the duration of the
transient motion needs extensive simulation work and statistical analysis. To avoid
this we would like to develop a semi-analytical method, which can help us to give
estimations quickly. The method is based on appropriate 1D maps, constructed by
Poincaré sections.

We apply the proposed method in the so-called Lorenz model, because it is
well-known and studied, and the equations are not complicated.
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2. The Lorenz Model

2.1. Stability Analysis

For the analysis of the convection of heated fluid film, the equations introduced by
Lorenz [1] are

ẋ = −σ x + σ y,

ẏ = ρx − y − xz, (1)
ż = −βz + xy,

whereσ , β and ρ are positive parameters depending on the geometry and the
physical properties of the fluid. This system of equations is theLorenz model. We
restrict ourselves toσ = 10 andβ = 8/3, as Lorenz did.

Forρ < 1 the origin is the single fixed point:P0 = (0, 0, 0), while forρ > 1
two more fixed points appear:P± = (±√

β(ρ − 1),±√
β(ρ − 1), ρ − 1).

The stability of the trivial solution of (1) can be investigated by means of the
variational system: (

ẋ
ẏ
ż

)
=
(−σ σ 0

ρ −1 0
0 0 −β

)(
x
y
z

)
.

The eigenvalues and the eigenvectors of the above matrix are:

µ1,2 = 1

2

[
−(1 + σ ) ±

√
(1 + σ )2 + 4σ (ρ − 1)

]
,

V1,2 =
(

1,
1

2σ

[
−(1 + σ ) ±

√
(1 + σ )2 + 4σ (ρ − 1) + 2σ

]
, 0

)
, (2)

µ3 = −β,

V3 = (0, 0, 1).

Easy to see that ifρ < 1 all three eigenvalues are negative, while in the other case
µ1 > 0, thus atρ = 1 P0 becomes unstable with a 2D invariant set spanned byV2
andV3.

Moving the origin of the coordinate system into theP± points we get the
following equation:(

ẋ
ẏ
ż

)
=
( −σ σ 0

1 −1 ∓√
β(ρ − 1)

±√
β(ρ − 1) ±√

β(ρ − 1) −β

)(
x
y
z

)
+
(

0
−xz
xy

)
=

= Ax + f(x). (3)

The characteristic equation of the matrix related to the linear part of this system:

λ3 + (β + σ + 1)λ2 + β(ρ + σ )λ + 2σβ(ρ − 1) = 0. (4)
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The Routh–Hurwitz criterion applied to coefficients results in the following condi-
tion of the exponential asymptotical stability of this solution:

ρ < ρcr = σ (σ + β + 3)

σ − β − 1
.

Here σ > β + 1 is assumed, which is fulfilled with the standard parameters.
ρcr ≈ 24.74 if β = 8/3 andσ = 10. It means that the losing of stability ofP0
passes off by means of a Pitchfork bifurcation, because atρ = 1 the stable origin
becomes unstable and two stable fixed points appear.

The characteristic equation atρcr :

λ3 + (β + σ + 1)λ2 + 2βσ(σ + 1)

σ − β − 1
λ + 2σβ

σ 2 + σβ + 2σ + β + 1

σ − β − 1
= 0. (5)

As ρ exceedsρcr the P± points become unstable. We may assume that at this point
a Hopf bifurcation occurs. In the next section this suspicion is going to be proved.

2.2. Hopf Bifurcation Analysis

If P+ andP− lose stability by means of Hopf bifurcation, the complex conjugated
roots (λ1,2) of (4) must be pure imaginary at the critical value of parameterρ, and
the real part of theλ′ = dλ1,2(ρ)

dρ
derivatives must not disappear atρcr [2],[3].

Thus we can try to calculate these roots using the following assumption:

λ1,2 = ±iα. Substituting these values into (5) we find thatα =
√

2βσ(σ+1)

σ−β−1 satisfies

it. After dividing (5) by(λ−iα)(λ+iα) we get the following system of eigenvalues:

λ1,2 = ±iα = ±i

√
2βσ(σ + 1)

σ − β − 1
,

λ3 = −(β + 1 + σ ). (6)

λ3 is negative, thus there must be attractive manifolds in the neighbourhood of the
P± points.

Now we have to prove that the real part of theλ′ derivatives are not zero at
the critical parameter. The simplest way to do it is to derive equation (4) taking into
account thatλ is function ofρ. After substitutingλ1,2 into the derivative of (4) the
following equation results:

−3α2λ′ ± 2(β + 1 + σ )iαλ′ + βσλ′ ± βiα + β
σ(σ + β + 3)

σ − β − 1
λ′ + 2βσ = 0.

Solving this simple equation we find that

λ′
cr = −(2βσ ± βiα)

±2(β + σ + 1)iα + β
σ(σ+β+3)

σ−β−1 + βσ − 3α2
.
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With the standard parametersλ′
cr ≈ 0.0302225± 0.1814503i , thus the conditions

of the Hopf bifurcation are fulfilled. It means that limit cycles exist around theP±
points. The geometry and the stability properties of these cycles can be determined
by the so-called Hopf bifurcation analysis. For applying this method we must
calculate the eigenvectors of theA matrix in (3) atρcr :

S1,2 =

 1

1 ± α
σ

i
2bβσ+bα2±(bβ−2bσ)αi

σ(α2+β2)


 , S3 =


 1

−β+1
σ

−β(β+1+σ)

bβ


 , (7)

whereb =
√

β
σ2+2σ+(σ+1)β+1

σ−β−1 , α was defined above.
The plane spanned by theS1,2 vectors is tangent to the attractive central

manifold at the origin, that is atP+ or P− depending on the chosen coordinate
system. Using also the third eigenvector we can define a matrix:

T = (ReS1, I mS1, S3) =

 1 0 1

1 α
σ

−β+1
σ

2bβσ+bα2

σ(α2+β2)

(bβ−2bσ)α

σ(α2+β2)
−β(β+1+σ)

bβ


 (8)

and a new set of variables: (
x
y
z

)
= T

(
ξ1
ξ2
ξ3

)
.

With these new variables we get the so-called Poincaré normal form of equation (3):

ξ̇ = T −1AT ξ + T −1f(T ξ) =
(

0 α 0
−α 0 0
0 0 λ3

)(
ξ1
ξ2
ξ3

)
+

+




∑
j + k + l = 2

j, k, l ≥ 0

m jkl ξ
j

1 ξ k
2ξ l

3∑
j + k + l = 2

j, k, l ≥ 0

n jkl ξ
j

1 ξ k
2ξ l

3∑
j + k + l = 2

j, k, l ≥ 0

o jkl ξ
j

1 ξ k
2ξ l

3


 , (9)

To be able to calculate the radius of the limit cycle we must separate the third
variableξ3. This can be done using the center manifold theorem [4]. It means that
we can approximateξ3 with the following expression:

ξ3 = h1ξ
2
1 + h2ξ1ξ2 + h3ξ

2
2 .

The derivative of this formula:

ξ̇3 = 2h1ξ1ξ̇1 + h2(ξ1ξ̇2 + ξ2ξ̇1) + 2h3ξ2ξ̇2.
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Taking into account thaṫξ1 ≈ αξ2 andξ̇2 ≈ −αξ1 we get that

ξ̇3 = −h2αξ2
1 + h2αξ2

2 + (2h1 − 2h3)αξ1ξ2.

Substituting the expression ofξ3 into (9) ξ̇3 can be expressed in another way. Com-
paring the corresponding terms of the two expressions and neglect the higher order
ones, thehi coefficients can be calculated:

h1 = λ3α(T 2
32 + T 2

22) − (λ2
3 + 2α2)(T32T31 + T22)

det(T )(λ3(λ
2
3 + 2α2) + 2λ3α2)

,

h3 = 2α2h1 det(T ) − (T 2
32 + T 2

22)α

det(T )(λ2
3 + 2α2)

,

h2 = λ3h3

α
.

Here the elements of theT matrix – whose determinant is det(T ) – are denoted by
Tij .

Thus the first two rows of (9) can be separated:

(
ξ̇1
ξ̇2
ξ̇3

)
=
(

0 α 0
−α 0 0
0 0 λ3

)(
ξ1
ξ2
ξ3

)
+



∑

j + k = 3
j, k > 0

a jk ξ
j

1 ξ k
2 + . . .

∑
j + k = 3
j, k > 0

b jk ξ
j

1 ξ k
2 + . . .

. . .


 , (10)

where the coefficients are the following:

a20 = −T32T31 + T22

det(T )
, a02 = 0, a11 = −T 2

32 + T 2
22

det(T )
, a12 = a1h3 + a2h2,

a21 = a1h2 + a2h1, a30 = a1h1, a03 = a2h3,

b20 = T31(T31 − T33) + (1 − T23)

det(T )
, b02 = 0, b11 = b2, b12 = b1h3 + b2h2,

b21 = b1h2 + b2h1, b30 = b1h1, b03 = b2h3,

where

a1 = −T32(T33 + T31) + T22(T23 + T21)

det(T )
, a2 = −T 2

32 + T 2
22

det(T )

b1 = T 2
31 − T 2

33 + 1 − T 2
23

det(T )
, b2 = T32(T31 − T33) + T22(1 − T23)

det(T )
.
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These coefficients are needed for the calculation of the parameter

δ = 1

8

{
1

α

[
(a20 + a02)(−a11 + b20 − b02) + (b20 + b02)(a20 − a02 + b11)

]
+

+(3a30 + a12 + b21 + 3b03)

}
.

With the standard parametersδ ≈ 0.0038669. As shown in [3], the positiveness
of δ proves the existence of a subcritical Hopf bifurcation, that is unstable periodic
solutions exist around theP± points. The amplituder of this periodic motion can
be given in the following simple form (see [3]):

r =
√

− Reλ′
cr

δ
(ρ − ρcr ).

Now the curve of the limit cycle is given by(
ξ1
ξ2
ξ3

)
=
(

r sin(αt)
r cos(αt)

0

)
,

but these formulae are written in the transformed coordinate system, so we have to
transform them back into the original one:(

x
y
z

)
= T

(
ξ1
ξ2
ξ3

)
=

=

 r sin(αt) + x0

r sin(αt) + r α
σ

cos(αt) + y0

r 2bβσ+bα2

σ(α2+β2)
sin(αt) + r bβ−2bσ

σ(α2+β2)
cos(αt) + z0


 .

Here(x0, y0, z0) are the coordinates of theP+ or the P− points. Obviously, there
may be difference between the above calculated curve and the real limit cycle,
because some higher order terms were neglected. In the first picture the phase
space of the Lorenz model can be seen, with a cylinder drawn onto the limit cycle
aroundP+. This cylinder is parallel to the attracting eigenvector ofA, thus if a
trajectory starts from the inside of it, the motion will damp out, while in the other
case the trajectory tends to the center manifold, but moves away from the fixed
point.

As numerical investigations show [5, 6], in the 1< ρ < 13.926 range there
are no limit cycles, because as we decreaseρ from ρcr the limit cycles expand, and
at ρ = 13.926 they touch the origin and a homoclinic bifurcation occurs. In this
parameter range the trajectories begin to tend to one of the fixed points immediately.
On the other hand atρ ≈ 24.06 the so-called Lorenz attractor evolves, and for
ρ > 24.06 the trajectories tend to the fixed points only with 0 possibility. But
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Fig. 1. The phase-space of the Lorenz system

in the 13.926. ρ . 24.06 range transient chaotic motion occurs. It means that
after some chaotic switches between the circulation aroundP+ and the circulation
aroundP−, the trajectory may jump inside one or another limit cycle, and tends to
one of the stable fixed points. In the next section we are going to try to estimate the
life expectancy of this transient oscillation.

3. Estimation of the Duration of the Transient Chaotic Behaviour

3.1. Reduction of the Complexity

The complexity of the system can be reduced if we switch to the examination
of a two-dimensional Poincaré map. The� Poincaré surface is thez = ρ − 1
plane, which contains theP± points. The map is defined by the intersection points
which we get as the trajectory of a solution intersects the� plane from the upward
direction. In the next figure these points are presented between the fixed points,
while the other two branches belong to the intersections from downward.

As it was already mentioned, ifρ > 1 the origin is a saddle point with a 2D
invariant set. The intersection of� and this invariant set divides the Poincaré plane
into two parts: theP+ and P− half-plane. The intersection curve is approximated
with a line inFig. 2.
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Fig. 2. The 2D Poincarémap

If we have a 2D Poincaré map, we can reduce it to a one-dimensional one by
the following procedure. We project the points of the 2D map – which belong to
intersections from upward – on the P+ − P− line perpendicularly, then we measure
the distance of the obtained points from one of the fixed points. If the last intersection
from the downward direction took place on the P+ half-plane, we measure the
distance from P+, while in the other case from P−. Denoting the nth distance by
Mn , and plotting the successive pairs (Mn, Mn+1) we get a sharply peaked � shaped
curve. In Fig. 3 the result of simulations starting from 15 different initial points is
presented at ρ = 23.

The construction makes possible to distinguish the points which we get when
the trajectory only oscillates around a fixed point – these are on the left branch of
the graph – from the points which evolve after a jump to the other fixed point – the
right branch belongs to these points.

The E point on the outside right belongs to a trajectory starting from the
neighborhood of the origin, while the unstable fixed point on the left (Fs ) indicates
the unstable limit cycles around the stable fixed points of the original system. The
method treats these fixed points together, their image is in the origin. Easy to see,
that a trajectory starting from the section between the origin and Fs tends to the
origin, because the graph of the map is below the diagonal line.

There is another fixed point on the right as well (Fb). It indicates that there
may exist an unstable solution when the trajectory oscillates periodically between
P+ and P−.
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Fig. 3. The 1D map

3.2. Estimation Method

To make estimations on the base of the 1D map we must find a simple formula
to express it explicitly. If the formula is not simple enough, the “mean kickout
number” – the average number of intersections before the trajectory jumps in an
attracting set – cannot be determined.

Piecewise linear maps may be suitable for trying to make analytical estima-
tions. First we fitted a section to the smaller fixed point (Fs) and the maximum of
the curve (P), and another section to Kb and P . Kb is that point on the right branch
of the curve which has the same ‘ Mn+1’ coordinate as Fs has. See Fig. 4.

We assumed that the maximum of the peak (P) equals the ‘ Mn ’ coordinate of
E , although the tangent of the curve increases very quickly in the neighbourhood
of P .

Let us denote the tangent of the Fs P section by t1, the absolute value of the
tangent of P Kb by t2, the Kb E section by I1 and the section between the origin and
Fs by I0. In the following I0 and I1 will also denote the length of the projections of
these sections on the Mn axis.

Using an interpolation method or a simple data processing program these data
can easily be measured, because the shape of the graph evolves quickly after few
simulations.

The sequence of the ideas is the following: the trajectory can jump into the
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Fig. 4. The first approximation of the curve

attracting domain (I0) only from I1. Thus if we want to know, how many iteration
steps are needed to reach I0, it is obvious to calculate the pre-images of I1. There
are two intervals from which 2 steps lead to I0, the length of them is I1/t1 and I1/t2.
Easy to see that 2n−1 intervals belong to n steps. The length of the intervals can be
represented in a tree-structure:

1 step: I1
↙ ↘

2 steps: I1
t1

I1
t2↙ ↘ ↙ ↘

3 steps: I1
t1t1

I1
t1t2

I1
t1t1

I1
t1t2

And so on . . . . . .

Denoting the joint length of the intervals from which n steps lead to I0 by sn ,
we get that

S =
∞∑
0

sn = I0 + I1 + S

t1
+ S

t2
= I0 + I1

t1t2
t1t2 − t1 − t2

.
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This quantity is needed to estimate the mean kickout number:

N =
∑∞

0 nsn∑∞
0 sn

. (11)

The numerator of (11) can be calculated with the above introduced recursive met-
hod. The weighted sum forms a tree-structure:

0 step: 0I0
↓

1 step: 1I1
↙ ↘

2 steps: 2 I1
t1

2 I1
t2↙ ↘ ↙ ↘

3 steps: 3 I1
t1t1

3 I1
t1t2

3 I1
t1t1

3 I1
t1t2

And so on . . . . . .

Using simple considerations we get that

A1 =
∞∑
0

nsn = I1 + A1 + S

t1
+ A1 + S

t2
= I1

(t1t2)2

(t1t2 − t1 − t2)2
,

thus

N1 = A1

S
= I1

(t1t2)2

I0(t1t2 − t1 − t2)2 + I1t1t2(t1t2 − t1 − t2)
.

Unfortunately N1 differs considerably from the result of simulations, therefore we
tried to apply a better approximation. See Fig. 5.

As it can be seen in the figure, there are two breakpoints on the sections on
both sides: Fb, the bigger fix point, and M , the point on the other branch, which
has the same Mn+1 coordinate as Fb has.

Let us denote the tangent of Fs M by t1, the tangent of M P by t2, the absolute
value of the tangent of P Fb by t3, and the absolute value of the tangent of Fb Kb
by t4!

The S = ∑∞
0 sn sum can also be calculated with considerations based on a

tree-structure:

1 step: I1
↙ ↘

2 steps: I1
t2

I1
t3↙ ↘ ↙ ↘

3 steps: I1
t2t1

I1
t2t4

I1
t3t1

I1
t3t4

And so on . . . . . .
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This tree is more complicated than in the former case; after rather long cal-
culations we get:

S =
∞∑
0

sn = I0 + I1t4
(t1 − 1)(t2t3 + t2 + t3) + t2 + t3
(t1 − 1)(t2t3t4 − t2 − t3) − t2 − t3

and

A2 =
∞∑
0

nsn = I1(1 + (2 + 3
t1−1 )( 1

t2
+ 1

t3
)) + S−I0

t4
( 1

t2
+ 1

t3
)(2 + 3

t1−1 )

Z ∗ S
+

+ K ( 1
t1−1 + t2

t3(t1−1)
)

Z ∗ S
,

where

Z = t4 − ( 1
t2

+ 1
t3
) t1

t1−1

t4
,

K = I1t4 + S − I0

t2t4(t1 − 1)
.
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These formulae are rather messy, therefore we verified them by simulation of the
piecewise linear map. The results were very close to the calculated values.

In Fig. 6 the results of the two approximations (N1 and N2 = A2
S ) and an

extended simulation work are represented. Here the mean kickout numbers can be
seen as functions of the parameter ρ.
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Fig. 6. Kickout numbers in the Lorenz model

As it can be seen, the second approximation provided much better results than
the first one, but unfortunately at larger ρ parameters the curve which belongs to the
simulations moves away from the curves constructed using the above introduced
method.

3.3. Possibilities to Improve the Method

– During the simulations 8000 trajectories were investigated, starting with
uniform probability density from a circle around the z axis, whose z coordinate was
a bit less than ρ −1 – so it was below the � plane –, and its radius was 2

√
β(ρ − 1).

In the approximation methods we assumed that the initial points were distributed
uniformly below the graph. Probably the results would be better, if we could find
what kind of set of initial conditions corresponds to this assumption.

– The most obvious way to improve the efficiency of the method is to increase
the number of the approximating sections. Unfortunately, it is very likely that the
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appropriate formulae are hard to obtain, but it also can happen that choosing the
endpoints properly, the difficulties disappear, and we can trace the equations back
to the above obtained ones.

– Probably approximating of the curve in Fig. 3 with quadratic or other func-
tions, the estimation method would provide better results, but in this case it also
seems to be hard to obtain the appropriate formulae.

Our future goal is to apply the above mentioned possibilities.
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