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∗ University of Wales Swansea, Singleton Park, SA2 8PP, U.K.,

a.garai@swansea.ac.uk∗∗ Strojnícka fakulta STU, Nám. slobody 17, Bratislava, Slovenko,
elesztos@sjf.stuba.sk

Received: Oct. 15, 1999

Abstract

This work addresses the computational aspect of a model for ductile damage at finite strains. Elasto-
visco-plastic model including non-linear (time dependent) isotropic and kinematic hardening is ex-
tended with isotropic damage. The constitutive equations are numerically integrated using algorithm
based on operator split methodology (elastic predictor visco-plastic corrector). The Newton–Raphson
method is used to solve the discretized evolution equations in the visco-plastic corrector stage. The
finite element method is used in the approximation of the incremental equilibrium problem and the
resulting equations are solved by the standard Newton–Raphson procedure.
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1. Introduction

During the past thirty years, issues concerning the linearization of continuum models
for the description of general non-linear behaviour of solids have become subjects
of intensive research in the computational mechanics.

To describe the gradual internal deterioration within the framework of con-
tinuum mechanics several continuum damage models, either phenomeno-logical or
micro-mechanically based, have been developed. KACHANOV [1] was the first to
introduce theeffective stress concept to model creep rupture.

Isotropic damage formulations are extensively employed in the literature be-
cause of their simplicity, efficiency and adequacy for many practical applications.
In this paper the constitutive equations introduced by LEMAITRE [2] for ductile
plastic damage are incorporated.

In following we present the numerical integration of the constitutive equa-
tions. The used algorithm is based on an operator-split methodology. In the plastic
corrector stage the N–R method is used to solve the system of discrete evolution
equations. To stabilise the N–R method the trial stress is replaced by the solution
obtained through a sub-incrementation of the original evolution equation [3].
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2. Kinematics of Finite Strain Elasto-plasticity

The main hypothesis underlying the present approach to finite strain elasto-visco-
plastic damage is the multiplicative split of deformation gradientF into elastic and
plastic parts [3], [4]:

F = FeFp. (1)

This assumption, firstly introduced by LEE[4], admits the existence of an unstressed
intermediate configuration obtained from the current configuration by a purely elas-
tic unloading of the neighbourhood of a material point. The polar decomposition
of the elastic deformation gradient leads to:

Fe = VeRe, (2)

whereVe is the elastic left stretch tensor andRe is the elastic rotation. We note
that the plastic flow is assumed to be isochoric, i.e., detFp = 1. The Eulerian
logarithmic elastic strain is defined by:

εe := ln
[
Ve
] = 1

2
ln
[
Be
]
, (3)

where ln[·] above denotes the tensor logarithm of(·) andBe = FeFeT = Ve2 is the
elastic left Cauchy–Green strain tensor. The rotationally invariant stress measure,
τ , is the Kirchhoff stress tensor [3].

3. Constitutive Relations of Elasto-visco-plastic Model Fully Coupled to a
Ductile Damage

The constitutive equations for elasto-plasticity coupled with damage adopted here
have been originally proposed for small strains by LEMAITRE [2]. For conciseness,
only the essential relations are reviewed in this section. The yield functionf is
defined, according to the principle of strain equivalence, by:

f
(
τ, r, X, D

) = J2

(
τ

1 − D
− X

)
− R(r) − τyo, (4)

whereτyo is the uniaxial yield stress of the virgin material andR is the isotropic
hardening function. The spatial quantityX is the rotation of the backstress tensor
X to the spatial configurationX = ReXReT . The normal to yield surface in the
stress space is defined by

N = ∂ f

∂τ̃
= − ∂ f

∂X
= 3

2

(̃
τ D − X

)
J2
(̃
τ − X

) , (5)
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whereτ̃ D is the deviatoric effective stress tensor. The tensorX is also deviatoric.
According to hypothesis of normality of the evolution of the plastic flow, the spatial
modified plastic stretching tensor [4],D̃p, is assumed to be governed by the equation:

D̃p = λ̇
∂ f

∂τ
= λ̇

1 − D

∂ f

∂τ̃
= 1

η

〈(
J2
(̃
τ − X

)
R(r) + τyo

)N

− 1

〉
N, (6)

whereη is the viscosity parameter (which is the relaxation time of mechanical
disturbanceTm) andN is a material parameter. For the isotropic hardening variable,
the simple equatioṅr = λ̇ is adopted. The evolution of the kinematic hardening
tensor (backstress tensor) is assumed to be given:

Ẋ = λ̇ReT

(
K1

∂ f

∂X
− K2X

)
Re = λ̇ReT

(
K1N − K2X

)
Re, (7)

whereK1 andK2 are material constants. The continuum damage variable is assumed
to be governed by the evolution law

Ḋ = λ̇

1 − D

(
Y

S0

)s1

, (8)

whereS0 ands1 are material parameters andY = 1
2ε

e : De : εe (see [2]).

4. Numerical Integration of Constitutive Equations

The algorithm summarised in Box 1, corresponds to the standardelastic predictor
visco-plastic corrector (employed for plasticity by BENALLAL et al. [6]) in the
small strain context. The evolution equations forr , X andD have been discretized
by one stepbackward Euler scheme. The standard N–R method is used in the
solution of the system of equations of the plastic corrector phase. The operations,
on the kinematical level, resulting to integration of the constitutive equations at
finite strain are summarised in Box 2.

Box 1. Stress updating procedure

(i) Elastic predictor
τ trial

n+1 = (1 − D)De : εtrial
n+1

(ii) Check plastic consistency condition

IF f trial = J2

(
τ trial

n+1
1−D − X

)
− R(r) − τyo ≤ 0 THEN

Set(•)n+1 = (•)trial
n+1 and RETURN

ELSE go to (iii)
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(iii) Plastic corrector (solve the system forτn+1, Xn+1, Dn+1 and
λ)
J2

(
τn+1

1−Dn+1
− Xn+1

)
− R (rn + 
λ) − τyo − τvp

τn+1 − (1 − Dn+1) De : εe trial
n+1 + 
λDe : Nn+1

Xn+1 − Xn − 
λ
(
K1Nn+1 − K2Xn

)
Dn+1 − Dn − 
λ

1−Dn+1

(
Yn+1

S0

)s1

 =


0
0
0
0


where

τvp = (
R (rn + 
λ) + τyo

)(η
λ̇n+1

(1 − Dn+1)
+ 1

) 1
N

− 1

 ,

Nn+1 = 3

2

τ D
n+1

(1 − Dn+1)
− Xn+1

J2

(
τn+1

1 − Dn+1
− Xn+1

)
and

Xn = Re
n+1XnReT

n+1

(iv) Updater , εe andXn+1

rn+1 = rn + 
λ, εe
n+1 = εe trial

n+1 − 
λNn+1,

Xn+1 = ReT
n+1Xn+1Re

n+1

(v) RETURN

5. Numerical Examples

The applicability of the present model is illustrated by loading of a thin plate (in
plane stress state) with a geometrical imperfection subjected to stretching along
its longitudinal axis with constant velocityv = 1 × 10−4 m/s. The geometry and
boundary condition are shown inFig. 1. A thickness heterogeneity is introduced
according to

x1 = l

(
1 + a

(
tanh

m (x2 − y0)
2

L2
− 1

))
, (9)

whereL = 2 × 10−3m, l = 1 × 10−3m, a = 0.002,m = 25 andy0 = 2 × 10−3m.
The calculations have been made with following material parameters:E = 2.1 ·
105 MPa, ν = 0.3, τyo = 102 MPa,ρ = 7850 kg/m3, R(r) = Q

(
1 − e−br

)
,

Q = 100 MPa,b = 100, K1 = 6.12 · 104 MPa, K2 = 800, η = 3.5(17.5) s,
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N = 3.5 for 200, 800 and 1800 eight nodes (nine integration points) elements.
The reaction force obtained on the restrained edge during the loading process is
compared with the results of elasto-plastic damageable model without viscosity in
Fig. 5. The influence of viscosity in the global behaviour of the structure is clearly
shown inFigs 3–5.

Fig. 1. Boundary and loading conditions

Box 2. Algorithm for integration of constitutive equations

(i) For given increment of displacement
µ, at configurationϕn, evaluate incre-
mental and total deformation gradient

Fu := 1 + gradϕn

[

µn+1

]
, Fn+1 := FuFn

(ii) Compute elastic trial state

Be trial
n+1 := FuBe

nFT
n

Fe trial
n+1 := Fn+1

(
Fp

n

)−1

Re
n+1 := Re trial

n+1 = (
Ve trial

n+1

)−1
Fe trial

n+1

εe trial
n+1 = ln

[
Ve trial

n+1

] = 1

2
ln
[
Be trial

n+1

]
(iii) Perform stress updating procedure for small strain – go to Box 1



36 A. GARAI and P. ÉLESZT̋OS

Fig. 2. Mesh dependence of the load-displacement curves for damageable material without
viscosity

(iv) Update Cauchy stress and internal variable

σn+1 := det
[
Fn+1

]−1
τn+1

Ve
n+1 := exp

[
εe

n+1

]
, Be

n+1 := (
Ve

n+1

)2
Fp

n+1 := (
Re

n+1

)T (
Ve

n+1

)−1
Fn+1

6. Conclusion

In the presented model due to the use of an elastic potential in terms of logarithmic
stretches along with an exponential map in the approximation of the plastic flow
rule, the finite strain extension effectively appears on the kinematic level only,
independently of the characteristics of the material model. Therefore the form
of small strain integration algorithm is preserved, resulting in a straightforward
computational implementation.

The progressive softening during the loading process reflects the effect of in-
ternal deterioration on the material response. Its has also been shown, that viscosity
might be used as a regularisation method for damage induced softening.
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Fig. 3. Simulation of shear bands with a coarse and a fine mesh

Fig. 4. Growth of a damage (also a shear band) withη = 0 (left) andη = 3.5 (right)
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Fig. 5. Mesh dependence of the load-displacement curves for several values of a viscosity
parameter (η ∈ {0; 3.5; 17.5})
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