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Abstract

A new technigue for determining the stability conditions of delayed differential equations with time-
periodic coefficient is presented. The method is based on a special kind of approximation of the
delayed term. As a practical application, the stability of the milling process with respect to the
technological parameters is analysed, and an unstable zone in the domain of high cutting speed is
shown.
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1. Introduction

Even nowadays, one of the most popular manufacturing processes is the cutting
process. Vibrations arising during the cutting process have a great effect on the
accuracy of the work-piece. In order to increase the efficiency and precision of
manufacturing, we should getknow the properties of the arising vibrations. Machine
tool chatter is one of the most complicated dynamical processes, several models
appeared in the specialist literature to explain and to predict the vibratiames AT,

1965, TLUSTY et al., 1962).

The 1 degree of freedom (DOF) mechanical model of the turning process
leads to a retarded differential equation. The presence of the time delay results an
infinite phase space in mathematical sense, and the stability investigation needs a
lot of complicated calculations, but it can be done in analytic way (SeP/&\,

1989). The stability chart in function of the technological parameters can be given.

The 1 DOF mechanical model of the milling process leads to a retarded
differential equation with a time-periodic coefficient due to the time-varying number
of working teeth of the tool. The stability criteria of this kind of system cannot be
given in a closed form. A method is used, which approximates the delayed part
with an integral expression with respect to the past. This results a finite dimensional
approximation of the infinite dimensional problem, so the stability map of the
milling process as a function of the technological parameters can approximately be
determined.
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2. Stability of Turning Processes

The 1 DOF mechanical model of the regenerative machine tool vibration of the
turning process can be seerfig. 1.
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Fig. 1. Mechanical model of turning

The equation of motion is the following:
1
X+ 2icaX + X = EAFX, 1)

wherex = ./s/mis the natural angular frequency of the undamped free oscillating
system, and = k/(2ma) is the a relative damping factor. The calculation ofthe
component of the cutting force variatiaxF; requires an expression of the cutting
force as a function of the technological parameters, primarily as a function of the
chip thicknessf:

Fe(f) = Kwf*F, 2
where the parametdt depends on further technological parameterss the chip
width, andxg isthe exponent of chip thickness (a generally used valbgedis 0.75).

Fig. 2. Cutting force variation

The linearization of expression (2) around the prescribed chip thickipgidds:
AFy = ki AT, 3)
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where the so-called cutting force coefficidqis linearly proportional to the chip

width w:
Ry B A(Kwf*F)

1_
of fi_s, of f=fo

The chip thickness variation f can be expressed as the difference of the delayed
tool edge positiorx(t — 7) and the present ongt):

= X wac;(':_l.

Af = X(t — 1) — X(1), (4)

where the delay is the time of one revolution of work-piece. Putting (3) and (4)
into (1), we get the linearized equation of motion:

R(t) + 2caX(t) + a?X(t) = %kl(x(t — 1) — X(1). (5)

Although the analysis of this retarded differential equation leads to an infinite eigen-
value problem (KLE, 1977) and needs a lot of calculation, there exists a closed
form stability criterion (see e.g. T&PAN, 1998) which results the stability chart
shown inFig. 3. The axes on the chart are related to the technological parameters,
to the number of revolutions of the workpie€e = 60/t and the cutting force
coefficientk; which depends linearly on the depth of the cut. In cadeéi@f3, the

fixed parameters ama = 50 [kg], « = 0.05 andx = 775 [rad/s].
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Fig. 3. Stability chart of turning

3. Mechanical Model of Milling

The 1 DOF mechanical model of the milling process can be se&igit. The
number of the working tool teeth varies in time. The equation of motion is the same
as at the case of turning process:

1
X + 2caX + X = aAFX, (6)
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The calculation of thex component of the cutting force variatiohF, is more
complicated than in the case of turning.

Fig. 4. Mechanical model of milling

Let the number of the tool edges beach marked with =0, 1,...,z— 1.
The angular position of the tooth mark@¢aan be given in the following way:

g = Qt+ jo, (7)

whereg2 is the angular velocity of the tool, antlis the angle between two edges.
The edge marked works only if its angular position fulfils the condition:

where anglegs andg; depend on the geometrical parameters of the manufacturing:

B + 2e oS _B—2e
D k] (Pf— D k]

COSps =

whereB is the width of the work-pieceg is the distance between the centre lines
of the tool and the work-piece, aridlis the diameter of the tool.
Thex component of the force acting on tootlassumes the form (seexBi,
1988):
Fx, = Fy; cosg; + Fy, singj, (8)
whereF,, andFy; are the tangential and axial component of the cutting force acting

on toothj, respectively (se€ig. 5).
The tangential component of the cutting force acting on tgatbads:

Kwf® if o5 < i < of
— j =¥ =
Fy = { 0 otherwise ©)



MILLING PROCESS 51

i3

-

Fig. 5. Cutting force components

To compose (9) in a mathematical form, we should introduce the screen function
of Laczik (LAczIK, 1986):

1 . 1 if -
gj<<p>=§<1+sgn<sm<w,~—w>—p>>={ o o= f . (10)

where _ _
Sings — Sing;

tany = ———,
COSps — COSY+

p = sin(gs — ).
So the cutting force acting at the tooghs the following:
Fo, = KwfFgj(). (11)

The axial component of cutting force acting on togtltan be expressed in the
following way (seeFig. 5):

Ff, = F,, tany, (12)

wherey ~ 15 in general. From (11) and (12) we get theomponent of the force
acting on edgg:

Fx, = Fy; (cosg; + sing; tany) = wajXng (p)(cosp; + sing; tany). (13)

Thex component of the force acting on the tool is the sum of (13)jvia

[y

zZ—

Fy Kwfgj(p)(cosg; + sing; tany). (14)

Il
o
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Fig. 6. Geometry of milling tool edge
Because of the vibrations of the tool, the fesgaer tooth has a deviation from
the prescribed valug in the following way:
S =% + X(t) — X(t — 1),
so the chip thickness cut by the togtltan be written:
fi = (s + X(t) — X(t — 7)) sing; Sink;, (15)
wherex;, is the tool cutting edge angle. The ideal chip thickness reads:
fj, = Sosing; sink;.
The difference between the ideal and real chip thickness assumes the form:
Afj = (X(t) — X(t — 1)) sing; sink;.
Substituting (15) into (14) we get the valuekgfin the function of the two positions

of the toolx(t) andx(t — 7):

z—1
Fo =) Kuw(so+ X(t) — x(t — 1))
j=0

x (Sing;j sink; ) gj () (Cosy; + Sing; tany). (16)
The linearization of expression (16) around the prescribed $gest tooth yields:
z-1
AFy = Z wapsg‘F’l(singoj sink; )*F
j=0
xgj (@) (cospj + sing; tany ) (X(t) — x(t — 1)). a7



MILLING PROCESS 53

The substitution of (7) and (10) into (17) gives

z—-1 1
AFc = Y E|<wxpscx,F*1(sin(szt + j©) sinig )
=0
x (14 sgn(sin(Qt + j& — ) — p)) (18)

x COgQt + j¥) + sin(Qt + j&#) tany) (X(t) — X(t — 1)).
(18) can be written in a simpler form:
AF =Kk () (X(t) — x(t — 1)), (19)

wherek, (t) is now a time dependent cutting force coefficient:

z—-1
1

ki) = ZEwaFs(’)‘F’l(sin(Qt+jz?)sin/q)xF
j=0

x(1+sgn(sin(Qt + j¥ — ) — p))
x COSQt + j¥) + sin(Qt + j¥) tany).

Using the expression (19), the equation of motion (6) gets the following form:
1
K(t) + 2cax(t) + a?X(t) = Ekl(t)(x(t) —X(t — 1)). (20)
With the fixed parameter® = 100 [mm],B = 30 [mm],e = 30 [mm],z = 12,

Q = 150 [1/s],y = 17, k; = 75, xg = 0.78, K = 2000 [N/mm*¥F], 5 =
0.4 [mm], w = 1.035 [mm], we get the functiok, (t) shown inFig. 7.

k() [M/mm] g T
4 ]
P00 ky =089 kg
ky,
1000 4 fymOdad T h=04% T ki
o 0001 0002 000 0004 00 0006 ¢[5]

Fig. 7. Cutting coefficient variation

The time period of the functiof (t) is T = (60)/(z2) = 0.00349 [s]
which is equal to the time delay in case of milling. This function can well be
approximated with a piecewise constant function in the following way:

Kis — ki if Oo<t<t

kl(t)z{ ki +kp 0f h<t<ttt=T (1)
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whereky;s is the approximated mean valug, is the approximated amplitude of
function ki (t), andk,, = 0.28%;5. The lengths of the time intervals ate=
0.444T andt, = 0.556T .

4. Stability of Time Periodic Cutting

The stability of equation (20) cannot be determined in a closed form, approximations
should be applied. The delayed texigt — t) can be approximated in the following
way (see BRGUE, 1973):

0
Xt—1) ~ / X(t + 9) - wn(P) dv, (22)
since: .
X(t—1) = nlim/ X(t + 9) - wn () do,

where wn(¥) is a special weight function series coming from the product of a
polynomial and an exponential expression:

n n-
Pee .

n N
wn(®) = (="

The functionw, (%) satisfies the following properties:

0
/ wn() d = 1, lim wn(®) =5_.(9).
wheres_, (1) is the Dirac distribution:

oo if 9=-1 ©
St(z?)_{ 0 if 9#—1 /Ooét(z?)dz‘}_l.
Fig. 8 shows the weight function with parameters= 2, 10, 50, 120 andr = 1. It
can be seen that the greatetthe more correct the approximation is.
The approximation (22) can be appliedin (20). Along calculation (derivations
and partial integration) yields a finite dimensional system of differential equations
with a time periodic coefficient matrix (see further detailsNsPERGER 1999):

d
ay(t) =AMy(t), (23)
where

Yo (t
yty=| %

Ynsa(t)
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In the case of the turning process the precision of the method can be checked by
applying the approximation for the autonomous equation (5). This yields also the
system (23) with the constant value of the paramki@y = k;, so the coefficient
matrix is constant. The necessary and sufficient condition of the asymptotic stability
is that all eigenvalues of the coefficient matrix have negative real parts. The stability
chart with approximatiom = 120 can be seen iRig. 9. The dashed curves are
the correct stability limits (seEig. 3). It can be seen that for high cutting speed
(z2 > 10000 [r.p.m.]) the approximation is already good.

In the case of millingk,(t) is given by formula (21) which yields a time
dependent coefficient matrix in (23). The bases of the stability analysis for linear
periodic systems are given by the Floquet theory (seexiAs, 1994), and there
are existing methods §lSPERGERand HORVATH, 1999) to calculate the stability
chart, as itis shown ifig. 10. This is an approximation of the stability chart of the
time periodic retarded equation (20). Similarly to the conskgrihe approximate
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Fig. 9. Approximate stability chart of turning

mean valueky; is linearly proportional to the chip widttr (or to the depth of cut).

This mean value makes it possible to compare the cases of turning and milling. The
stability chart inFig. 10 has a qualitative difference from the chartRig. 9. In

milling processes, a new unstable domain arises in case of high speed cutting which
can also be the reason of a new kind of machine tool chatter in milling processes
related to the time periodicity of the milling.
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Fig. 10. Approximate stability chart of milling

5. Conclusions

Machine tool chatter is one of the most complicated dynamical phenomena since
the corresponding mathematical model, a retarded differential equation has an in-
finite dimensional phase space. In the case of milling, parametric excitation arises
due to the time-varying number of working teeth. Via an approximation of the
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delayed term, the stability chart in the plane of the technological parameters can
be determined. The analysis resulted a new unstable domain in case of high speed
cutting.
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