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Abstract

A new technique for determining the stability conditions of delayed differential equations with time-
periodic coefficient is presented. The method is based on a special kind of approximation of the
delayed term. As a practical application, the stability of the milling process with respect to the
technological parameters is analysed, and an unstable zone in the domain of high cutting speed is
shown.
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1. Introduction

Even nowadays, one of the most popular manufacturing processes is the cutting
process. Vibrations arising during the cutting process have a great effect on the
accuracy of the work-piece. In order to increase the efficiency and precision of
manufacturing, we should get know the properties of the arising vibrations. Machine
tool chatter is one of the most complicated dynamical processes, several models
appeared in the specialist literature to explain and to predict the vibrations (TOBIAS,
1965, TLUSTY et al., 1962).

The 1 degree of freedom (DOF) mechanical model of the turning process
leads to a retarded differential equation. The presence of the time delay results an
infinite phase space in mathematical sense, and the stability investigation needs a
lot of complicated calculations, but it can be done in analytic way (see STÉPÁN,
1989). The stability chart in function of the technological parameters can be given.

The 1 DOF mechanical model of the milling process leads to a retarded
differential equation with a time-periodic coefficient due to the time-varying number
of working teeth of the tool. The stability criteria of this kind of system cannot be
given in a closed form. A method is used, which approximates the delayed part
with an integral expression with respect to the past. This results a finite dimensional
approximation of the infinite dimensional problem, so the stability map of the
milling process as a function of the technological parameters can approximately be
determined.
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2. Stability of Turning Processes

The 1 DOF mechanical model of the regenerative machine tool vibration of the
turning process can be seen inFig. 1.

Fig. 1. Mechanical model of turning

The equation of motion is the following:

ẍ + 2κα ẋ + α2x = 1

m
�Fx , (1)

whereα = √
s/m is the natural angular frequency of the undamped free oscillating

system, andκ = k/(2mα) is the a relative damping factor. The calculation of thex
component of the cutting force variation�Fx requires an expression of the cutting
force as a function of the technological parameters, primarily as a function of the
chip thicknessf :

Fx( f ) = Kw f xF , (2)
where the parameterK depends on further technological parameters,w is the chip
width, andxF is the exponent of chip thickness (a generally used value isxF = 0.75).

Fig. 2. Cutting force variation

The linearization of expression (2) around the prescribed chip thicknessf0 yields:

�Fx = k1� f, (3)
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where the so-called cutting force coefficientk1 is linearly proportional to the chip
widthw:

k1 = ∂Fx

∂ f

∣∣∣∣
f = f0

= ∂(Kw f xF )

∂ f

∣∣∣∣
f = f0

= xF Kw f xF −1
0 .

The chip thickness variation� f can be expressed as the difference of the delayed
tool edge positionx(t − τ) and the present onex(t):

� f = x(t − τ)− x(t), (4)

where the delayτ is the time of one revolution of work-piece. Putting (3) and (4)
into (1), we get the linearized equation of motion:

ẍ(t)+ 2κα ẋ(t)+ α2x(t) = 1

m
k1(x(t − τ)− x(t)). (5)

Although the analysis of this retarded differential equation leads to an infinite eigen-
value problem (HALE, 1977) and needs a lot of calculation, there exists a closed
form stability criterion (see e.g. STÉPÁN, 1998) which results the stability chart
shown inFig. 3. The axes on the chart are related to the technological parameters,
to the number of revolutions of the workpiece� = 60/τ and the cutting force
coefficientk1 which depends linearly on the depth of the cut. In case ofFig. 3, the
fixed parameters arem = 50 [kg], κ = 0.05 andα = 775 [rad/s].

Fig. 3. Stability chart of turning

3. Mechanical Model of Milling

The 1 DOF mechanical model of the milling process can be seen inFig. 4. The
number of the working tool teeth varies in time. The equation of motion is the same
as at the case of turning process:

ẍ + 2κα ẋ + α2x = 1

m
�Fx , (6)
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The calculation of thex component of the cutting force variation�Fx is more
complicated than in the case of turning.

Fig. 4. Mechanical model of milling

Let the number of the tool edges bez each marked withj = 0,1, . . . , z − 1.
The angular position of the tooth markedj can be given in the following way:

ϕ j = �t + jϑ, (7)

where� is the angular velocity of the tool, andϑ is the angle between two edges.
The edge markedj works only if its angular position fulfils the condition:

ϕs ≤ ϕ j ≤ ϕ f ,

where anglesϕs andϕ f depend on the geometrical parameters of the manufacturing:

cosϕs = B + 2e

D
, cosϕ f = B − 2e

D
,

whereB is the width of the work-piece,e is the distance between the centre lines
of the tool and the work-piece, andD is the diameter of the tool.

Thex component of the force acting on toothj assumes the form (see BALI ,
1988):

Fx j = Fv j cosϕ j + F f j sinϕ j , (8)

whereFv j andFf j are the tangential and axial component of the cutting force acting
on tooth j , respectively (seeFig. 5).
The tangential component of the cutting force acting on toothj reads:

Fv j =
{

Kw f xF
j if ϕs ≤ ϕ j ≤ ϕ f

0 otherwise
. (9)
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Fig. 5. Cutting force components

To compose (9) in a mathematical form, we should introduce the screen function
of Laczik (LACZIK , 1986):

g j (ϕ) = 1

2
(1 + sgn(sin(ϕ j − ψ)− p)) =

{
1 if ϕs ≤ ϕ j ≤ ϕ f
0 otherwise , (10)

where

tanψ = sinϕs − sinϕ f

cosϕs − cosϕ f
, p = sin(ϕs − ψ).

So the cutting force acting at the toothj is the following:

Fv j = Kw f xF
j g j (ϕ). (11)

The axial component of cutting force acting on toothj can be expressed in the
following way (seeFig. 5):

Ff j = Fv j tanγ, (12)

whereγ ≈ 15◦ in general. From (11) and (12) we get thex component of the force
acting on edgej :

Fx j = Fv j (cosϕ j + sinϕ j tanγ ) = Kw f xF
j g j (ϕ)(cosϕ j + sinϕ j tanγ ). (13)

Thex component of the force acting on the tool is the sum of (13) viaj :

Fx =
z−1∑
j=0

Kw f xF
j g j (ϕ)(cosϕ j + sinϕ j tanγ ). (14)
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Fig. 6. Geometry of milling tool edge

Because of the vibrations of the tool, the feeds per tooth has a deviation from
the prescribed values0 in the following way:

s = s0 + x(t) − x(t − τ),

so the chip thickness cut by the toothj can be written:

f j = (s0 + x(t)− x(t − τ)) sinϕ j sinκr , (15)

whereκr is the tool cutting edge angle. The ideal chip thickness reads:

f j0 = s0 sinϕ j sinκr .

The difference between the ideal and real chip thickness assumes the form:

� f j = (x(t)− x(t − τ)) sinϕ j sinκr .

Substituting (15) into (14) we get the value ofFx in the function of the two positions
of the toolx(t) andx(t − τ):

Fx =
z−1∑
j=0

Kw(s0 + x(t) − x(t − τ))xF

×(sinϕ j sinκr)
xF g j (ϕ)(cosϕ j + sinϕ j tanγ ). (16)

The linearization of expression (16) around the prescribed feeds0 per tooth yields:

�Fx =
z−1∑
j=0

KwxF sxF −1
0 (sinϕ j sinκr)

xF

×g j (ϕ)(cosϕ j + sinϕ j tanγ )(x(t)− x(t − τ)). (17)
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The substitution of (7) and (10) into (17) gives

�Fx =
z−1∑
j=0

1

2
KwxF sxF −1

0 (sin(�t + jϑ) sinκr )
xF

×(1 + sgn(sin(�t + jϑ − ψ)− p)) (18)
× cos(�t + jϑ)+ sin(�t + jϑ) tanγ )(x(t)− x(t − τ)).

(18) can be written in a simpler form:

�Fx = k1(t)(x(t)− x(t − τ)), (19)

wherek1(t) is now a time dependent cutting force coefficient:

k1(t) =
z−1∑
j=0

1

2
KwxF sxF −1

0 (sin(�t + jϑ) sinκr)
xF

×(1 + sgn(sin(�t + jϑ − ψ)− p))
× cos(�t + jϑ)+ sin(�t + jϑ) tanγ ).

Using the expression (19), the equation of motion (6) gets the following form:

ẍ(t)+ 2κα ẋ(t)+ α2x(t) = 1

m
k1(t)(x(t)− x(t − τ)). (20)

With the fixed parametersD = 100 [mm], B = 30 [mm], e = 30 [mm], z = 12,
� = 150 [1/s],γ = 15◦, κr = 75◦, xF = 0.78, K = 2000 [N/mm1+xF ], s0 =
0.4 [mm],w = 1.035 [mm], we get the functionk1(t) shown inFig. 7.

Fig. 7. Cutting coefficient variation

The time period of the functionk1(t) is T = (60)/(z�) = 0.00349 [s]
which is equal to the time delayτ in case of milling. This function can well be
approximated with a piecewise constant function in the following way:

k1(t) =
{

k1δ − k1ε if 0 ≤ t ≤ t1
k1δ + k1ε if t1 < t ≤ t1 + t2 = T , (21)
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wherek1δ is the approximated mean value,k1ε is the approximated amplitude of
function k1(t), andk1ε = 0.289k1δ . The lengths of the time intervals aret1 =
0.444T andt2 = 0.556T .

4. Stability of Time Periodic Cutting

The stability of equation (20) cannot be determined in a closed form, approximations
should be applied. The delayed termx(t − τ) can be approximated in the following
way (see FARGUE, 1973):

x(t − τ) ≈
∫ 0

−∞
x(t + ϑ) · wn(ϑ)dϑ, (22)

since:

x(t − τ) = lim
n→∞

∫ 0

−∞
x(t + ϑ) · wn(ϑ)dϑ,

wherewn(ϑ) is a special weight function series coming from the product of a
polynomial and an exponential expression:

wn(ϑ) = (−1)n
nn

τ nn!ϑ
ne

n·ϑ
eτ .

The functionwn(ϑ) satisfies the following properties:∫ 0

−∞
wn(ϑ)dϑ = 1, lim

n→∞wn(ϑ) = δ−τ (ϑ),

whereδ−τ (ϑ) is the Dirac distribution:

δ−τ (ϑ) =
{ ∞ if ϑ = −τ

0 if ϑ �= −τ ,

∫ ∞

−∞
δ−τ (ϑ)dϑ = 1.

Fig. 8 shows the weight function with parametersn = 2,10,50,120 andτ = 1. It
can be seen that the greatern, the more correct the approximation is.

The approximation (22) can be applied in (20). A long calculation (derivations
and partial integration) yields a finite dimensional system of differential equations
with a time periodic coefficient matrix (see further details in INSPERGER, 1999):

d

dt
y(t) = A(t)y(t), (23)

where

y(t) =




y1(t)
y2(t)
...

yn+3(t)


 ,
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Fig. 8. Weight function

A(t) =




0 1 0 0 0 . . . 0 0

−
(
α2 + k1(t)

m

)
−2κα

k1(t)

m
0 0 . . . 0 0

0 0 −n

τ
−1 0 . . . 0 0

0 0 0 −n

τ
−1 . . . 0 0

0 0 0 0 −n

τ
. . . 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . −n

τ
−1

(−1)n
nn+1

τ n+1
0 0 0 0 . . . 0 −n

τ




.

In the case of the turning process the precision of the method can be checked by
applying the approximation for the autonomous equation (5). This yields also the
system (23) with the constant value of the parameterk1(t) ≡ k1, so the coefficient
matrix is constant. The necessary and sufficient condition of the asymptotic stability
is that all eigenvalues of the coefficient matrix have negative real parts. The stability
chart with approximationn = 120 can be seen inFig. 9. The dashed curves are
the correct stability limits (seeFig. 3). It can be seen that for high cutting speed
(z� > 10000 [r.p.m.]) the approximation is already good.

In the case of milling,k1(t) is given by formula (21) which yields a time
dependent coefficient matrix in (23). The bases of the stability analysis for linear
periodic systems are given by the Floquet theory (see FARKAS, 1994), and there
are existing methods (INSPERGERand HORVÁTH, 1999) to calculate the stability
chart, as it is shown inFig. 10. This is an approximation of the stability chart of the
time periodic retarded equation (20). Similarly to the constantk1, the approximate
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Fig. 9. Approximate stability chart of turning

mean valuek1δ is linearly proportional to the chip widthw (or to the depth of cut).
This mean value makes it possible to compare the cases of turning and milling. The
stability chart inFig. 10 has a qualitative difference from the chart inFig. 9. In
milling processes, a new unstable domain arises in case of high speed cutting which
can also be the reason of a new kind of machine tool chatter in milling processes
related to the time periodicity of the milling.

Fig. 10. Approximate stability chart of milling

5. Conclusions

Machine tool chatter is one of the most complicated dynamical phenomena since
the corresponding mathematical model, a retarded differential equation has an in-
finite dimensional phase space. In the case of milling, parametric excitation arises
due to the time-varying number of working teeth. Via an approximation of the
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delayed term, the stability chart in the plane of the technological parameters can
be determined. The analysis resulted a new unstable domain in case of high speed
cutting.
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