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Abstract

The behaviour of free-standing structures modelled by a mechanical system consisting of two rigid
blocks put on each other and subjected to forcing at its supports has been studied. In case of the
presence of support motion, the blocks may slide and/or rotate (lift up) on each other and/or on the
support. The possible types of initial motion and the contact forces for the structure subjected to
inertial force caused by support excitation have been calculated by using the basic law of dynamics.
As an application example for calculations and the related computer program the analysis of a standard
crane of bridge-like structure under earthquake excitation is presented. The risk of overturning of
the upper block on the steady lower one is investigated by applying an analytical approach and a
formulation of the upper body as inverted pendulum under horizontal base excitation. Furthermore,
the lowest natural frequency related to the vertical vibration is calculated for different configurations.

Keywords: earthquake excitation, stacked rigid blocks, initial rocking and toppling motion.

1. Introduction

For any structure subjected to a certain foundation shaking, an understanding of
the response behaviour of these objects is of great importance for safe operations,
protection of existing structures, and the design of new equipment. They may be
subjected to support excitation due to nearby machine vibrations or earthquake
ground motion. In recent years, the seismic safety of nuclear reactors has become
a particularly important topic.

The formulation assumes rigid bodies, rigid horizontal foundation, Coulomb
friction, planar motion in both vertical planes. The free-standing man-made struc-
tures are modelled by rigid non-prismatic blocks. Assemblies consisting of two
stacked blocks are considered. The model is applicable to pieces of machinery, land
vehicles, water and oil tanks, crane structures, petroleum cracking towers, prefabri-
cated buildings, power transformers, concrete shields around radiation equipment,
nuclear heat-exchange boiler, nuclear reactor core made from graphite blocks and
other free-standing equipment including even furniture.

The ground excitation is modelled by the acceleration components of the rigid
support in both horizontal and the vertical directions. The effect of the support
accelerations on the structure is taken into account by the inertial forces reduced in
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the centres of gravity of the corresponding bodies. These forces are proportional to
the accelerations induced by the support motion.

Fig. 1. The two-block model in they − z plane

The response of the structure to support shaking is given at the initial moment
of the motion in terms of the instantaneous state of acceleration of the rigid bodies.
The contact forces between the blocks, and between the lower block and the sup-
porting surface are also calculated. The formulation is based on classical dynamics
applied to rigid bodies.

An application of the formulation to a crane is presented. The model consists
of two rigid blocks stacked on each other. The risk of overturning of the upper
block on the steady lower one is also investigated using the classical approach
and formulation of HOUSNER [1]. Housner determined the minimum horizontal
acceleration required to overturn a block with a single acceleration pulse. This work
was reconsidered in the light of modern dynamical systems theory. The rocking
block problem turned out to possess extremely complicated nonlinear dynamics
(see for example the paper of HOGAN [2]). However, this is not in the scope of this
investigation, only the instantaneous state of motion is determined as a response of
the structure.

The purpose of this investigation is to give a first assessment of free-standing
structures for rocking and toppling behaviour in the simplest possible manner, in
order to be able to judge whether further detailed analysis is required.
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Fig. 2. The two-block model in thex − z plane

2. Description of the Two-Block-System Model

The rigid body model of a composed free standing structure consists of two parts
which may move relative to each other and to the supporting surface in the following
way: the lower block (BLOCK1) is free to move in they − z plane (Fig. 1) while
the upper block (BLOCK2) in thex − z plane (Fig. 2). The term ‘free to move’
includes the five possible types of planar motion: rest, slide, rock, slide-rock and
free-flight. The blocks are supported by a horizontal rigid base along their edges.
The blocks do not need to be homogeneous so that the centers of gravityS1 and
S2 do not coincide with the geometric centers.Figs. 1 and2 show the sketches of
the structure in they − z and thex − z planes with the geometric dimensions and
the notation of the edges. The masses of the bodies are denoted bym1 andm2, the
mass moments of inertia in they − z plane are�S1x and�S2x , the ones in thex − z
plane are�S1y and�S2y, respectively.

The motion of the supporting surface is modelled via the effect of inertial
forces acting on the rigid bodies. These forces are proportional to the accelerations
induced by the forcing at the supports of the structure. The effects of the acceleration
components on the rigid structure are taken into account by the inertial forces
reduced to the centres of gravity of the corresponding bodies. These accelerations
are considered in both horizontal directions (x, y), ahor, in both senses (left:−x,−y,
and right: +x,+y) together with the vertical acceleration componentaver. In
the vertical direction (z), however, the acceleration is considered with negative
sense only, when it shows downwards (−z), and the corresponding inertial force
(showing upwards) will decrease the weight of the structure. The acceleration
upwards increases the stability of the structure and it may not cause sliding or
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uplifting which would not occur already with the acceleration showing downwards.
The horizontal and vertical components of the acceleration of the supporting

surface,ahor and aver, can be expressed relative to the gravitational acceleration
g = 9.81 [m/s2] by the factorskx = ky andkz, ahor = ky · g, aver = kz · g.

3. Analysis of the Initial Motion and the Contact Forces

The basic law of dynamics (or statics) is used to analyse the possible motions (or
equilibria) of the structure relative to the supports in all the possible critical cases.
By solving the equations of motion (or equilibrium) the acceleration components
of the centres of gravity of both blocks, the angular accelerations and the contact
forces between BLOCK1 and BLOCK2, and between the support and BLOCK1
are obtained at the very first moment after the supporting surface acceleration has
occurred.

3.1. Analysis in the y − z Plane

The two blocks are supported at their corners so that BLOCK1 may execute general
plane motion (sliding and/or uplifting about the rear edge), while for BLOCK2 only
uplifting may occur.

The free-body-diagram is shown inFig. 3.
The forces acting on BLOCK2 are as follows:

F2 inertial force, opposite to the acceleration of the supporting
surfaceF2 = m2 · ahor = m2 · ky · g

G2 weight reduced by the inertial force in the vertical direction
G2 = m2 · aver = m2 · g · (1 − kz)

Cy horizontal component of the contact force between
BLOCK1 and BLOCK2 at the front corner and the contact
point C

Dy horizontal component of the contact force between
BLOCK1 and BLOCK2 at the rear corner at the contact
point D

Cz vertical component of the contact force between BLOCK1
and BLOCK2 at the front corner at the contact pointC

Dz vertical component of the contact force between BLOCK1
and BLOCK2 at the rear corner at the contact pointD

The forces acting on BLOCK1 are as follows:



RIGID BLOCK ASSEMBLIES 89

F1 inertial force, opposite to the acceleration of the supporting
surfaceF1 = m1 · ahor = m1 · ky · g

G1 weight reduced by the inertial force in the vertical direction
G1 = m1 · aver = m1 · g · (1 − kz)

C Dy = Cy + Dy sum of the horizontal components of the contact forces be-
tween BLOCK1 and BLOCK2 at the contact pointsC and
D

Cz, Dz vertical components of the contact forces between BLOCK1
and BLOCK2 at the contact pointsC andD

Gy horizontal component of the contact force between
BLOCK1 and the supporting surface at the front corner

Hy horizontal component of the contact force between
BLOCK1 and the supporting surface at the rear corner

Gz vertical component of the contact force between BLOCK1
and the supporting surface at the front corner

Hz vertical component of the contact force between BLOCK1
and the supporting surface at the rear corner

3.1.1. Analysis of BLOCK2

First we assume that BLOCK1 is in equilibrium. Then for BLOCK2, there are two
possibilities:

3.1.1.1 If Cz > 0 then BLOCK2 is in equilibrium Cz can be determined solving
the equilibrium equations:

m2ky g − (Cy + Dy) = 0, (1)
Dz + Cz − m2g(1 − kz) = 0, (2)

Czc − Dzd + (Cy + Dy)p2 = 0. (3)

3.1.1.2 If Cz < 0 then BLOCK2 begins to rotate about the rear edge (about the
axis through D) The initial acceleration of the centre of gravity (aS2y horizontal
component,aS2z vertical component), the angular accelerationε, and the contact
force componentsDy, Dz can be calculated from the two force equations, the
moment equation, and the kinematical relation between the acceleration of the
centre of gravity and the angular acceleration:

m2kyg − Dy = m2aS2y, (1)
−(1 − kz)m2g + Dz = m2aS2z, (2)

−Dzd + Dy p2 = θS2ε, (3)
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Fig. 3. Free body diagram in they − z plane

εp2 = aS2y, (4)
εd = aS2z. (5)

3.1.2. Analysis of BLOCK1

3.1.2.1 If Gz > 0 then BLOCK1 may be in equilibrium The equilibrium equations
are:

Cy + Dy − (Gy + Hy) + m1ky g = 0, (1)
Gz + Hz − Cz − Dz − m1g(1 − kz) = 0, (2)

Gzg − Hzh + G Hy p1 + C Dy p3 − Cz(g − r) + Dz(h − q) = 0. (3)

Solving the above system of equilibrium equations, ifGz > 0, the assumption of
equilibrium must be verified:
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a. If G Hy ≤ µ0(Gz + Hz) then BLOCK1 is in equilibrium.
b. If G Hy > µ0(Gz + Hz) then BLOCK1 slips.

For the case of sliding, the initial accelerationaS1y of the centre of gravity, and
the contact force componentsG Hy , Gz, Hz can be calculated from the two force
equations, the moment equation aboutS1 and the relation between the sliding friction
force and the normal force:

m1kyg + C Dy − G Hy = m1aS1y, (1)
Gz + Hz − Cz − Dz − m1g(1 − kz) = 0, (2)

Gzg − Hzh + G Hy p1 + C Dy p3+
+Dz(h − q) − Cz(g − r) = 0, (3)

G Hy = µ(Gz + Hz). (4)

3.1.2.2 If Gz < 0 then general plane motion occurs:

c. uplifting aboutH
d. uplifting with sliding

Supposing the uplifting, the initial acceleration of the centre of gravity (aS1y
horizontal component,aS1z vertical component), the angular accelerationε and the
contact force componentsHy, Hz can be calculated from the two force equations,
the moment equation and the kinematical relations between the acceleration of the
centre of gravity and the angular acceleration:

m1kyg + C Dy − Hy = m1aS1y, (1)
−m1g(1 − kz) + Hz − Cz − Dz = m1aS1z, (2)

m1ky gp1 − m1g(1 − kz)h+
+C Dy(p1 + p3) − Dzq − Cz(g + h − r) = θHε, (3)

εp1 = aS1y, (4)
εh = aS1z. (5)

Verification of the assumption uplifting:

c. If Hy ≤ µ0Hz then the initial motion of BLOCK1 is uplifting.
d. If Hy > µ0Hz then uplifting with sliding occurs.

In the latter case, the equations for the general plane motion for the six unknowns
are:

m1ky g + C Dy − Hy = m1aS1y, (1)
−m1g(1 − kz) + Hz − Cz − Dz = m1aS1z, (2)

C Dy p3 + Dz(h − q) − Cz(g − r)+
+Hy p1 − Hzh = θS1ε, (3)

εp1 + aH = aS1y, (4)
εh = aS1z, (5)
Hy = µHz. (6)
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In the case of a negativeaS1y, there is no uplifting with the sliding, only sliding
occurs.

3.1.2.3 If BLOCK1 is not in equilibrium, then the analysis for BLOCK2 must be
modified, because it was performed with the condition that BLOCK1 is in equilib-
rium. Since the worst case for BLOCK1 is translational sliding, the system of equa-
tions to solve will be composed from the three dynamical equations of BLOCK2,
from those of BLOCK1, and from the sliding friction condition for BLOCK1:

m2ky g − C Dy = m2a12, (1)
−m2g(1 − kz) + Cz + Dz = 0, (2)

Czc − Dzd + (Cy + Dy)p2 = 0, (3)
m1ky g + C Dy − G Hy = m1a12, (4)

Gz + Hz − Cz − Dz − m1g(1 − kz) = 0, (5)
Gzg − Hzh + G Hy p1 + C Dy p3+

+Dz(h − q) − Cz(g − r) = 0, (6)
G Hy = µ(Gz + Hz). (7)

In Eqs. (1) and (4)a12 is the common translational acceleration of both blocks. The
first three equations have been formed with the assumption that BLOCK2 does not
move on BLOCK1. It is true ifCz results to be positive. IfCz < 0, then BLOCK2
will uplift on BLOCK1. For the latter case, the system of equations can be written
as follows:

m2kyg − C Dy = m2aS2y, (1)
−m2g(1 − kz) + Dz = m2aS2z, (2)

−Dzd + (Cy + Dy)p2 = θS2ε, (3)
m1ky g + C Dy − G Hy = m1a12, (4)

Gz + Hz − Dz − m1g(1 − kz) = 0, (5)
Gzg − Hzh + G Hy p1 + C Dy p3 + Dz(h − q) = 0, (6)

G Hy = µ(Gz + Hz), (7)
Cz = 0, (8)

aS2y = a12 + εp2, (9)
aS2z = εd. (10)

Because of the non-symmetric nature of the structure, the analysis must be repeated
with the opposite sense of the supporting surface acceleration.

3.2. Analysis in the x − z Plane

Now, for BLOCK1 only uplifting is possible, while BLOCK2 may execute a gen-
eral plane motion. However, the analysis is performed with the assumption that



RIGID BLOCK ASSEMBLIES 93

BLOCK2 on BLOCK1 is in one of its extreme positions, so that there is no sliding
outwards for BLOCK2.

The algorithm is analogous with that of the foregoing analysis. Now, the
contact points between BLOCK1 and BLOCK2 are denoted by A and B, while
E and F denote the contact points between BLOCK1 and the supporting surface.
The notation of the forces are to be changed accordingly, as well as the geometric
dimensions.

4. Application Example: Seismic Assessment of a Crane Structure

The assembly of a realistic crane structure consists of three main parts which may
move relative to each other. These are the bridge, the cart and a vertical actuator bar.
The bridge may roll on its wheels in the horizontal directiony on the rails attached
to the building structure. The cart may roll on its wheels in the horizontal direction
x on the rails attached to the bridge. The actuator bar may move vertically relative
to the cart, but this motion is not modelled, and the bar is simply considered in its
highest position only, having a rigid connection to the cart.

The crane is modelled as a structure consisting of two rigid blocks shown in
Figs. 1 and2. The corresponding data are given inTable 1. Under regular working
conditions, these blocks either stand steadily when the brakes are applied on the
wheels, or they may roll on each other and on the platform. In case of the presence
of seismic forces, they may slide and/or rotate (lift up) on each other.

During calculations, we consider that the brakes are applied on the wheels,
i.e. the wheels cannot rotate, they can slide only, according to the two-block model
supported on the edges. This sliding motion may be obstructed when the cart is in
one of the farmost positions on the left or on the right. In these cases the cart may
slide inwards only.

The rails supporting the bridge are considered to be fixed rigidly to the building
structure.

Figs. 4 and5 present some typical seismic spectra for the acceleration com-
ponents in horizontal (ahor) and vertical (aver) directions. These acceleration values
give the acceleration amplitudes of the vibrations of the corresponding one degree-
of-freedom systems having the natural frequencies and the damping value presented
in the diagrams.

When the crane is modelled as a rigid structure, the corresponding natural
frequency tends to infinity, and the corresponding asymptotic values of the spectra
are used to identify the maximum acceleration amplitudes. These values are inde-
pendent, of course, from the damping value (which are not defined for rigid bodies).
Thus, the corresponding horizontal acceleration is obtained fromFig. 4:

az = −aver = −2.35 [m/s2]
and the vertical acceleration is obtained fromFig. 5:

|ax | = |ay | = ahor = 2.70 [m/s2].
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Table 1. Data of the two-block-system model of the crane

Y − Z plane Bridge Cart with actuator bar
(BLOCK1) (BLOCK2)

Mass m1 = 16 600 kg m2 = 25 600 kg
Mass moment of inertia �S1x = 49 400 kgm2 �S2x = 151 600 kgm2

w.r.t. x axis through
centre of gravity
Mass moment of inertia �G = 115 600 kgm2 �C = 422 300 kgm2

w.r.t. x axis through
lower left corner
Mass moment of inertia �H = 165 750 kgm2 �D = 422 300 kgm2

w.r.t. x axis through
lower right corner
Geometrical data p1 = 0.98 m p2 = 2.83 m

p3 = 0.22 m
g = 1.74 m c = 1.6 m
h = 2.46 m d = 1.6 m

r = 0.5 m
q = 0.5 m

X − Z plane Bridge Cart with actuator
(BLOCK1) (BLOCK2)

Mass m1 = 16 600 kg m2 = 25 600 kg
Mass moment of inertia �S1y = 256 650 kgm2 �S2y = 124 100 kgm2

w.r.t. y axis through
centre of gravity
Mass moment of inertia �E = 849 600 kgm2 �A = 374 250 kgm2

w.r.t. y axis through
lower left corner
Mass moment of inertia �F = 524 750 kgm2 �B = 374 250 kgm2

w.r.t. y axis through
lower right corner
Geometrical data p1 = 0.98 m p2 = 2.83 m

p3 = 0.22 m
e = 5.9 m a = 1.33 m
f = 3.9 m b = 1.33 m

s = 5.14 m (0)∗
t = 2 m (7.15 m)∗

∗ Data in parentheses when the cart is in the leftmost position on the
bridge

A conservative estimate is considered for the case when the crane structure is not
rigid. It is supposed that the structure has no natural frequency below 20 [Hz]
with a vertical vibration mode, but it is supposed to have a vibration mode in
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Fig. 4. Typical seismic spectrum for the horizontal acceleration component

horizontal direction with a corresponding natural frequency below 20 [Hz]. If the
modal analysis of the crane is not available, the worst case is considered: the whole
structure may oscillate horizontally with the most dangerous natural frequency at
2.5 [Hz]. Then assuming a realistic damping value 0.05 for the steel structure, a
conservative estimate for the horizontal accelerations come fromFig. 5:

|ax | = |ay | = ahor = 10.31 [m/s2],
while the vertical acceleration is the same as above.

When the brakes are applied on the wheels of the crane, the dry friction force
is modelled between the steel wheels and the corresponding steel rails. Using some
standard estimates, the static coefficient of friction between the steady surfaces is
considered byµ0 = 0.25, while the dynamic coefficient of friction between the
sliding surfaces is considered byµ = 0.20.

4.1. Results for the Fully Rigid Structure

The results for the accelerations of the centres of gravity and for the angular accel-
erations are presented inTable 2 for the seismic accelerations given for the fully
rigid structure. The table presents the six extreme geometrical cases which may be
one of the most dangerous. The contact forces acting on the two blocks are shown
in Table 3.

4.2. Results for the Horizontally Elastic Structure

The algorithm of the calculation is the same like that of the fully rigid structure, but
the value of the horizontal acceleration component will be different, as described
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Fig. 5. Typical seismic spectrum for the vertical acceleration component

Table 2. Initial state of acceleration and types of motion of the rigid structure

Plane of Direction Cart position Body Angular C of G horizontal Type of
motion of iner- farmost to acceleration acceleration motion

tial force [1/s2] [m/s2]

yz +y – cart 0 1.2 bridge slides
bridge 0 1.2 with cart

yz −y – cart 0 −1.2 bridge slides
bridge 0 −1.2 with cart

xz +x right cart 0 0 both in
bridge 0 0 equilibrium

xz +x left cart 0 1.2 cart slides
bridge 0 0 only

xz −x right cart 0 −1.2 cart slides
bridge 0 0 only

xz −x left cart 0 0 both in
bridge 0 0 equilibrium

in the foregoing section.

The results for the accelerations of the centres of gravity and for the angular
accelerations are presented inTable 4 for the seismic accelerations given for the
elastic structure. The constraining forces acting on the two boxes are presented in
Table 5.
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Table 3. Contact forces for the rigid structure

Plane of Direction Cart position Body Vertical, left Vertical, right Horizontal
motion of iner- farmost to [N] [N] (sum)

tial force [N]
yz +y – cart Cz = 61661 Dz = 129203 C Dy = 38173

bridge Gz = 125342 Hz = 189091 G Hy = 62886
yz −y – cart Dz = 129203 Cz = 61661 C Dy = 38173

bridge Hz = 104158 Gz = 210274 G Hy = 62886
xz +x right cart Az = 21652 Bz = 169211 ABx = 69062

bridge Ez = 81161 Fz = 233271 E Fx = 113775
xz +x left cart Az = 54652 Bz = 136212 ABx = 38173

bridge Ez = 194027 Fz = 120405 E Fx = 82885
xz −x right cart Bz = 54652 Az = 136212 ABx = 38173

bridge Fz = 180138 Ez = 134294 E Fx = 82885
xz −x left cart Bz = 21652 Az = 169211 ABx = 69062

bridge Fz = 67272 Ez = 247161 E Fx = 113775

Table 4. Initial state of acceleration and types of motion for the horizontally elastic structure

Plane of Direction Cart position Body Angular C of G horizontal Type of
motion of iner- farmost to acceleration acceleration motion

tial force [1/s2] [m/s2]

yz +y – cart 0 8.8 bridge slides
bridge 0 8.8 with cart

yz −y – cart 0 −8.8 bridge slides
bridge 0 −8.8 with cart

xz +x right cart −1.3 3.7 cart lifts
bridge 0 0 up

xz +x left cart 0 8.8 cart slides
bridge 0 0 only

xz −x right cart 0 −8.8 cart slides
bridge 0 0 only

xz −x left cart 1.3 −3.7 cart lifts
bridge 0 0 up

4.3. Conclusions

In case the crane structure has no natural frequency below 20 [Hz], it may happen
that the cart and the bridge slide together with a moderate acceleration of about
1.2 [m/s2] in the y − z plane, or the cart may slide on the bridge with the same
acceleration in thex − z plane.
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Table 5. Contact forces for the horizontally elastic structure

Plane of Direction Cart position Body Vertical, left Vertical, right Horizontal
motion of iner- farmost to [N] [N] (sum)

tial force [N]
yz +y – cart Cz = 61661 Dz = 129203 C Dy = 38173

bridge Gz = 125342 Hz = 189091 G Hy = 62886
yz −y – cart Dz = 129203 Cz = 61661 C Dy = 38173

bridge Hz = 104158 Gz = 210274 G Hy = 62886
xz +x right cart Az = 0 Bz = 235670 ABx = 168210

bridge Ez = 59640 Fz = 299599 E Fx = 339094
xz +x left cart Az = 54652 Bz = 136212 ABx = 38173

bridge Ez = 181372 Fz = 133061 E Fx = 209056
xz −x right cart Bz = 54652 Az = 136212 ABx = 38173

bridge Fz = 167482 Ez = 149950 E Fx = 209056
xz −x left cart Bz = 0 Az = 235668 ABx = 168210

bridge Fz = 36570 Ez = 322669 E Fx = 339094

In case the crane structure has a natural frequency below 20 [Hz] with a
horizontal vibration mode, it cannot be excluded in the worst case that the cart lifts
up on the steady bridge when it is parked at one of the farmost positions, or the cart
slides with a considerable acceleration of about 8.8 [m/s2] on the bridge, or they
slide together with this acceleration in they − z plane.

5. Checking the Risk of Overturning of the Upper Block

In the preceding analysis, the possible types of initial motion for a crane structure
subjected to inertial force caused by earthquake have been investigated. It was
shown that the inner (say right) edge of the cart might lift up on the steady bridge
during a horizontal outward excitation (directed to the left) when it is parked at one
(leftmost) side on the bridge.

The goal of the present study is to find out whether the uplifting cart will turn
over or not at this (say leftmost) position on the bridge. The calculations are carried
out by applying the classical analytical approach and formulation of HOUSNER[1].

Two different models of earthquake motion are used. The first kind of exci-
tation is a single pulse of constant acceleration lasting for a finite timet1. Based on
the formula of HOUSNER[1], Fig. 6 gives a relation between the duration (t1) of
the pulse and the magnitude of the constant acceleration pulse (a1). This relation
presents the limit between overturning and tilting only.

For the crane cart model, the value of the constant horizontal acceleration
pulse isa1 = 10.31 [m/s2]. It is seen from the graph of this relation (Fig. 6), that
the cart will not turn over if the duration of the constant acceleration pulse is less
than 0.37 [sec].
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Fig. 6. Ground acceleration model: Single pulse of constant acceleration

Under the same conditions as above, but with the use of a horizontal half
sine-wave acceleration pulse with amplitude of 10.31 [m/s2], the maximum duration
required for having no overturning is 0.99 [sec] (seeFig. 7) which means that the
minimal frequency of the pulse must be 0.5 [Hz].

Fig. 8 shows again the graph of the relation between the peak value and the
frequency of the sinusoidal acceleration pulse. Considering the usual relative damp-
ing of 5 [%], the seismic spectrum for the horizontal acceleration (Fig. 4) has been
transformed into the diagram of the limit of overturning inFig. 7. The transformed
spectrum falls within this limit (Fig. 8). However, the physical interpretation of this
result is limited, since it means that there is no overturning if the cart is subjected to
a half sine-wave acceleration having the same frequency as the horizontal natural
frequency of the cart.

5.1. Discussion of the Results

The single pulse of constant acceleration model is very unrealistic for earthquake
motion. With the use of the half sinusoidal pulse acceleration, the calculations
carried out for the data for the crane result in the statement that the cart will not
overturn on the bridge if the frequency of the pulse is greater than 0.5 [Hz]. As
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Fig. 7. Ground acceleration model: Single pulse of sinusoidal acceleration

Fig. 8 shows, the corresponding seismic spectrum does not contain small frequency
oscillations with accelerations great enough for overturning.

6. Effect of the Cart Position on the Vertical Natural Frequency of the Bridge

The relation between the cart parking position on the bridge and the lowest natural
frequency related to the vertical vibration mode in the simplified mechanical model
of the crane structure is presented here. The aim of this analysis is to examine if
it is possible to prevent the cart from uplifting, or actually, from jumping up, by
choosing its position properly.

The crane structure consists of two main parts as described above. The bridge
may roll in the horizontaly direction on rails attached to the building structure. The
cart with the actuator bar, considered as a rigid body, may roll in the transverse
directionx on rails attached to the bridge (Fig. 2).

The bridge is modelled as a simply supported pin-pin beam of lengthl =
9.8 [m] with uniform cross section. The area moment of inertia of the cross section
with respect to the axis of bending through the centre isIy = 0.014 [m4]. The
modulus of elasticity isE = 2.1∗1011 [N/m2]. The mass of the bridge ism1 =
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Fig. 8. Single pulse of sinusoidal acceleration – seismic spectrum

16600 [kg], and the cart is modelled by a lumped massm2 = 25600 [kg]. It may
park at any positiond in thex direction on the bridge.

The beam may exhibit bending vibration in the verticalx − z plane.

To determine the first natural frequency of the above oscillatory system,
Dunkerley’s method is used. The system is considered as the superposition of
two sub-systems, an infinite degree-of-freedom (DOF) one and a single DOF one.
Then the first natural frequencyα can be expressed in the following form:

1

α2
∼= 1

α2
1

+ 1

α2
2

, (1)

whereα1 is the lowest natural frequency of the bending vibrations of the beam
as a continuous medium, andα2 is the natural frequency of the lumped massm2
vibrating on an elastic beam of negligible mass.

The solution of the frequency equation is:

αi = i2 · π2 ·
√

Iy · E

m1 · l3
. (2)

This yieldsα1 = 21.6 [Hz] for i = 1.
The spring constantk of the elastic beam of negligible mass is:

k = d2 · (l − d)2

3 · Iy · E · l
. (3)
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Fig. 9. First natural frecquency in funtion of the cart position on the bridge

The natural frequencyα2 depends on the position of the massm2 on the bridge via
k:

α2 = 1√
m2 · k

. (4)

Substituting (2), (3) and (4) into (1), we obtain the first natural frequency of the
whole system (α) as function of the positiond of the cart on the bridge.

The graph of the functionα − d is shown inFig. 9.

6.1. Discussion of the Results

It is seen from the graph inFig. 9, that the lowest natural frequency of the structure
vibrating in thex − z plane varies between 10.6 [Hz] and 21.6 [Hz] depending on
the cart position. The first value belongs to the cart middle positiond = l/2, while
the second to the extreme positionsd = 0 andd = l. It can be seen that the massm2
has no effect on the natural frequency of the structure at the two extreme positions.

Taking into account the dimension of the cart in thex direction, its centre
of gravity is placed at 1.33 [m] from the support in the outmost position. Thus,
1.33 [m] < d < l − 1.33 [m], and it is not possible to park the cart in a position in
which the lowest natural frequency of the structure would be greater than 18 [Hz],
i.e.

10.6 [Hz] < α < 18 [Hz].
As the seismic spectrum ofFig. 5 shows, the acceleration amplitude in vertical
direction may reach the gravitational accelerationg in the range 8–12 [Hz] of the
natural frequency of the structure in the presence of 5% relative damping. Since the
structure is probably more elastic than it was estimated in the above calculation, and
the neglected mass moment of inertia of the cart decreases the calculated natural
frequencies even further, it cannot be excluded that the cart will jump up on the
bridge and fully lose contact with the bridge.



RIGID BLOCK ASSEMBLIES 103

7. Summary and Conclusions

The analysis described in this paper concerns the response of free-standing man-
made rigid structures to support motion. By use of the classical rigid body dynamics
formulation, a preliminary assessment can be given for the initial behaviour of
structures modelled by a multibody system consisting of two stacked rigid blocks.

The supporting surface motion has been modelled by the acceleration com-
ponents in both horizontal and the vertical directions. The initial motion of the
structure just after the shaking has been formulated in terms of the possible types of
two-dimensional motions in both vertical planes. The calculation of instantaneous
state of acceleration of the two-block system caused by the inertial forces due to the
ground acceleration and the calculation of the contact forces at the same moment
has been presented.

The supporting surface shaking may be caused by nearby machine vibrations
or earthquake excitation.

To demonstrate the method, the screening analysis of a crane structure has
been presented. The assembly has been simplified to a system consisting of two rigid
blocks allowed to move relative to each other and to the floor in both horizontal
and the vertical directions. By a conservative estimation the horizontally elastic
behaviour has been also taken into account.

The result of the analysis has proved that the upper block, the model of the cart,
may uplift on the steady bridge. To investigate the rocking or toppling behaviour
of the cart, the classical analytical approach and formulation of HOUSNER[1] has
been applied. Housner developed a method based on the inverted pendulum model
to check the risk of overturning of slender rigid blocks during earthquakes modelled
by different types of horizontal ground motion.

According to the calculations based on this formulation, it is more likely that
the cart will not overturn after it lifts up at a farmost position on the bridge. The
risk of overturning would be minimised if the cart is parked in the mid of the bridge
because of possible sliding before uplifting. The estimation of the vertical natural
frequency, however, indicates that the cart may lose contact with the rails on the
bridge when parking in the mid.

The limits of this model are obvious: earthquake-induced base excitations are
much more complex. However, the model presented in this paper may be useful to
give a preliminary qualification concerning the possible response to be expected of
the structure to the support motion.
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