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Abstract

In this work, we derive a stress algorithm for a non-linear kinematic hardening model. The algorithm
is implemented in a FEM code. On a simple shear test, we compare the numerical results with the
analytical ones.
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1. Introduction

For the description of the Bauschinger effect, non-linear kinematic hardening is
preferable, which is introduced byRMSTRONG — FREDERICK [1] and further
developed e.g. by €ABOCHE [4] and DowELL [5].

In the finite element method, thermoelastoplastic processes are commonly
studied, but there exist only few stress computation algorithms based on tempera-
ture independent non-linear hardening developed byAYRE [2], HARTMANN —
HAUPT [6] and others. In this work, we present a stress integration algorithm for a
temperature dependent, non-linear kinematic hardening model.

Thus, the paper is set out as follows. After the introduction of the constitutive
relations, the boundary value problem is outlined. Then we introduce the stress
computation algorithm and calculate the consistent stiffness. Last, a simple example
is presented.

2. Constitutive Relations

The linearised strain tenseiis decomposed to elastg, thermal expansiog, and
plastic partse :
e =¢ec+ &+ &p. (1)

The stresw is defined by an isotropic function and follows the Hooke’s law

v
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whereu denotes the shear modulusijs the Poisson’s ratio antl represents the
second order identity tensor. The thermal expansion is given by the relation

eo = (0 —6p) 1, 3)

wherea means the linear thermal expansion coefficiénis the temperature field
andéfy denotes the reference temperature. If we introduce the thermoelastic strain

€y = Ec + &y, (4)
the Duhamel-Neumann law results from tgs (2)—(3):

vV

1—2v

o=2u [eeg + tr (ee) l} — 3k (6 — 6p) 1, 5)

wherex = %’(‘l(f;v”)) denotes the bulk modulus. The thermoelastic domain is defined

by a von Mises yield functiofir in the stress space:

1 1
F = >l/devis — X)||? — ékz, (6)

wherek represents the plastic yielding parameter for isotropic hardening and de-
pends on the accumulated inelastic strain and the temperature

k = k(s, 0). (7)

The accumulated inelastic stragns defined in rate form as

$=\/gllépll~ (8

An associative flow rule is assumed

.} AN for F = 0 and loading in the plastic range )
€p =) 0, forall other cases

where the normal to the yield surfabkis

devic — Xx)
= " 10
|[dev(e — X)|| .
Loading occurs in the plastic range, if
Fle, o> 0. (11)

The proportionality facton is determined by the consistency conditfon= 0.
The above system of the plastic deformation must be completed by an evolution
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equation for the stress type kinematic hardening tersam this work, we choose
the relation as

X = Cép — bs$x + 1 9oy (12)

- cog

with the temperature dependent linear and non-linear hardening param@ters
andb(®), respectively [4], [13]. This relation corresponds to theMSTRONG —
FREDERICK[1] evolution equation of the back-stress= cé, —bsx, if the material
parameter does not depend on the temperature.

3. Linearization of the Principle of the Virtual Displacement

In the case of uncoupled thermoelastoplasticity, the equations for the calculation of
the temperature field and the boundary value problem of the temperature dependent
mechanical process can be separated.

In the coupled thermoelastoplasticity, the operator split method allows us to
separate the stress and temperature computation procedures in aload step, therefore,
the developed algorithm can be used in coupled thermoelastoplasticity without
modifications. In this work, we do not detail the heat conduction.

The formulation of the boundary value problem starts from the principle of
the virtual displacement [3]

/or :dedV = /pbndV +/tndA, (13)

\% \% A

wheren denotes the virtual displacement field ated= sym(grad;). p, b andt
represent the density, the body force and the surface traction, respectively. On the
unknown(n+ 1)th configuration, the principle of the virtual displacement becomes

r (", n) = / "l . sedV — / "“hnoedV + / "lipdA, (14)
\% \% A

which is a non-linear problem for the unknown displacement fighd. To solve
the equation the Newton—Raphson method is applied. This requires a linearization
with respect to the displacement field

[ (*tu,n) =T (u,n) +Dr (u,n)[aAu] =0, (15)

with the displacement incrementA'u = '+1u — 'u. HereD denotes the Gateaux
derivative. The total displacement increment is calculated as

i
AMu =Y " AAlu. (16)
=t
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With the introduction of the strain increments
AA'e = sym(grad(u —'u)), (17)

|
Altle = Z AA'e, (18)
=1

the Gateaux derivative of the strésscan be expressed as

D'o (A'e) [AA'u] =D'o (A'e) [DAA'e[AAU]]
do
~ date

cAA'e = iCep : AA'e. (29)
Finally, for the linearized principle of the virtual displacement yields

/AAis : iCep s dedV =
v

/ "“hppdV + / "ltpdA — / "o : SedV. (20)
\ A \

In this equation, the unknown measures are the swremsd the consistent tangent
operator Ce,. We show the calculation of the necessary quantities in the next two
sections.

4. Stress Computation Algorithm

The stress computation algorithm is based on the works AyTiMANN, LUHRS

and HauPT [6] — [10], who developed stress computation procedures for temper-
ature independent plasticity and viscoplasticity with non-linear kinematic harden-
ing. In our method, the temperature dependent isotropic and kinematic hardening
properties are also considered. If the material parameters do not depend on the
temperature, our algorithm reduces to the one aRFMANN [6], [7]. A return
mapping algorithm is chosen, which is based on a backward-Euler step.

The initial conditions'a, "x, "s and"6 are known from the last equilibrium
state. We will calculate the measutes 'x and's at the updated state from the
strain increment\' e and from the temperatufes.

First, the thermoelastic predictor, the trial stfesis obtained from the strain
and temperature increments

'e ="0 + Ce: Ae — kA0, (21)
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whereA# = "t19 — "9, Then the trial back-stress is evaluated

-1
A6 dC
x=|1- 22 & ny. (22)
C(n+10) 80 n+1lg

The next step is to check the yield condition. In this step, if

%lldev(ta) — || — %k(”s, ") <0, (23)

then the deformation is thermoelastic and the variables offtthstate are simply
updated as

o ='o, 'x = x 's="s, (24)

Otherwise, the plastic corrector is applied as follows. The flow rule is approximated
by

A'gj = A'A'N, (25)
where the normal to the yield surface is calculated as
. dev('e) —' X
'N= —F——. (26)
l|dev(io) =1 x]|

With Eg. (25), the elasticity relation, the back-stress and the accumulated inelastic
strain are given as

'0 =" + Ce: [Ae — A'ei] — 3kaA01l ="0 — 2uA'AN, (27)
. o 2
'x ="x+c("10) A'A'N — b ("0) \/;A'A'X
Alg  acl
+ aA X’ 28
C("16) 9 | (8)

i n 2 i
s="s+ §A A (29)

It is convenient to write the yield condition in the form

. . 2
|ldev(‘a) — 'x]| —\/;k ('s,"19) = 0. (30)
Now, we solveEgs (25) — (30). The back-stress tenSois expressed frorég. (27):
'x =18 ("x+c (") ATA'N), (31)

- 2 . A6 ac
in __ n+1 SNy =™
p= [H b("%) \/;A * T () 06

with

-1
} . (32)
n+1lg
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Following an idea of 810 — TAYLOR [12], the difference tensor between the
deviatoric part of the elasticity relation (27) and the back-stresstensor (31) is derived.
UsingEg. (25) yields

2'“ + iﬂC (n+19)

i iy — dev(le) —i8Mx
dev('o) —'x = dev(‘s) —'B"x ldev(ie) = x|

(dev('e) —'x). (33)

After rearranging the expression results

dev(‘e) — "X

ZM + i,BC (n+19) :
||dev(io) —ix]|

dev(o) —'x = (34)

1+ Al

We introduce for the norm in the above equation the function

'y = ||dev('e) —'x|| = \/gk ('s,"0), (35)

furthermore . 1
, . 2u+"'Bc ("o
=1+ Al ’“”? (). (36)
14
With the definition _ _
'E =dev('s) —'8"x, (37)

Eq. (34) can be rewritten as

: : 1.
dev('s) —'x = —'E. (38)
w
Finally, the yield condition (30) becomes
1oic i
¢=—I'Ell-'y =0 (39)
w

This remaining equation represents one non-linear scalar equation to calculate the
unknown plastic multipliersA'A. To solve the equation a numerical method is
necessary, a local Newton—Raphson procedure was applied.

The stress computation algorithm is summarized as follows:

1. Given:"o, Ale,"x,"s, "9, "9 — AQ ="t1g —"g
2. Thermoelastic predictor:

g =g +Ceo: Ale — 3kaAO1
3. Calculate the trial back-stlress:

ty _ |1 _ a6 ac “n
X = [1 c(n+19) a0 n+19:| X
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4. Check the yield condition:
If |[to — tx|| — fk s, 19 < 0

then:'o =lo,ix =x,is="
exit
5. otherwise: ' '
Find A'A by local iteration, that is solvg (A'1) = 0 for A'x.
6. Calculate the variables

'N = VwI:’ o =to —2uATAN
's = ns+\/§m 'x =18 ("x + ¢ ("10) A'A'N)
exit

5. Calculation of the Consistent Stiffness

In the FEM calculations, the quadratic convergence rate needs the consistent lin-
earization of the constitutive relation. The consistent tangent operator is the deriva-
tive of the stress, coming out from the stress calculation algorithm, with respect to
the current strain d 4

i o o

Cop = de dAie’ (40)
After some calculations, the consistent stiffness leads to

. 1 . . . .
'cep=K1®1+al[l—§1®1}—82'N®'N—83'X®'N (41)

with
i
8 = 21 [1— ZuA k} , (42)
Ia)ly
_4,u2 dp \~ 1 dow 1 dy
52_?(@) [”M( aaz Tyaan)| @
2 A i -1
_ WTAMAATE ( dp (44)
|a)2|y dx dAi

Because ofthe lasttermin (41), the resulting tangential stiffness matrix is non-
symmetric. The non-symmetry results from the non-linear kinematic hardening and
from the temperature dependent linear kinematic hardening vadablee tangent
operator becomes symmetric in the following cases:

— the plastic multiplier tends to zefa' 1 — 0),
— the non-linear kinematic hardening paraméter 0 and the linear kinematic

hardening parameterdoes not depend on the tempera(ugé )
— for radial processes (i.e\ and' x are parallel).
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shear stress 012 [MPa]

back-stress X12 [MPa]
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Fig. 1. Shear stress versus shear strain
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Fig. 2. Back-stress versus shear strain
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6. Example

The stress algorithm was implemented in the FEM System MARC [11] as the user
subroutinehypel a2. f . We compared the numerical results with the analytical
ones. Inthe numerical example, we show the reliability of our algorithm on a simple
shear test for one cycle. For this simple problem, the analytical solution can easily
be derived.

The material parameters are taken as

w = 23077 MPa v=0.3, a=0, (45)
¢ = 100000— 50 MPa b = 1500— 6, k = 200— 0.30 MPa

The calculations were performed with displacement control, where the time depen-
dent functions of the shear strainand the temperatureare

y =0.02sin2.57t), 6 = 100°C, (46)

where in the quasi-static analysis the time parametaries between 0 and 1. The
load was applied in 50 uniform time steps.

Figs1and2 show the non-vanishing parts of the stregsand the back-stress
X1, respectively, and compare the analytical and numerical solutions.
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