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Abstract

In this work, we derive a stress algorithm for a non-linear kinematic hardening model. The algorithm
is implemented in a FEM code. On a simple shear test, we compare the numerical results with the
analytical ones.
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1. Introduction

For the description of the Bauschinger effect, non-linear kinematic hardening is
preferable, which is introduced by ARMSTRONG – FREDERICK [1] and further
developed e.g. by CHABOCHE [4] and DOWELL [5].

In the finite element method, thermoelastoplastic processes are commonly
studied, but there exist only few stress computation algorithms based on tempera-
ture independent non-linear hardening developed by AUFAURE [2], HARTMANN –
HAUPT [6] and others. In this work, we present a stress integration algorithm for a
temperature dependent, non-linear kinematic hardening model.

Thus, the paper is set out as follows. After the introduction of the constitutive
relations, the boundary value problem is outlined. Then we introduce the stress
computation algorithm and calculate the consistent stiffness. Last, a simple example
is presented.

2. Constitutive Relations

The linearised strain tensorε is decomposed to elasticεe, thermal expansionεθ and
plastic partsεp:

ε = εe + εθ + ε p. (1)

The stressσ is defined by an isotropic function and follows the Hooke’s law

σ = 2µ

[
εe + ν

1 − 2ν
tr (εe) 1

]
, (2)
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whereµ denotes the shear modulus,ν is the Poisson’s ratio and1 represents the
second order identity tensor. The thermal expansion is given by the relation

εθ = α (θ − θ0) 1, (3)

whereα means the linear thermal expansion coefficient.θ is the temperature field
andθ0 denotes the reference temperature. If we introduce the thermoelastic strain

εeθ = εe + εθ , (4)

the Duhamel–Neumann law results from theEqs (2)–(3):

σ = 2µ

[
εeθ + ν

1 − 2ν
tr (εeθ ) 1

]
− 3κα (θ − θ0) 1, (5)

whereκ = 2µ(1+ν)

3(1−2ν)
denotes the bulk modulus. The thermoelastic domain is defined

by a von Mises yield functionF in the stress space:

F = 1

2
||dev(σ − x)||2 − 1

3
k2, (6)

wherek represents the plastic yielding parameter for isotropic hardening and de-
pends on the accumulated inelastic strain and the temperature

k = k(s, θ). (7)

The accumulated inelastic strains is defined in rate form as

ṡ =
√

2

3
||ε̇ p||. (8)

An associative flow rule is assumed

ε̇p =
{

λN for F = 0 and loading in the plastic range,
0, for all other cases, (9)

where the normal to the yield surfaceN is

N = dev(σ − x)

||dev(σ − x)|| . (10)

Loading occurs in the plastic range, if

Ḟ
∣∣
ε̇ p=0 > 0. (11)

The proportionality factorλ is determined by the consistency conditionḞ = 0.
The above system of the plastic deformation must be completed by an evolution
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equation for the stress type kinematic hardening tensorx. In this work, we choose
the relation as

ẋ = cε̇ p − bṡx + 1

c

∂c

∂θ
θ̇x, (12)

with the temperature dependent linear and non-linear hardening parametersc(θ)
andb(θ), respectively [4], [13]. This relation corresponds to the ARMSTRONG –
FREDERICK[1] evolution equation of the back-stressẋ = cε̇p −bṡx, if the material
parameter does not depend on the temperature.

3. Linearization of the Principle of the Virtual Displacement

In the case of uncoupled thermoelastoplasticity, the equations for the calculation of
the temperature field and the boundary value problem of the temperature dependent
mechanical process can be separated.

In the coupled thermoelastoplasticity, the operator split method allows us to
separate the stress and temperature computation procedures in a load step, therefore,
the developed algorithm can be used in coupled thermoelastoplasticity without
modifications. In this work, we do not detail the heat conduction.

The formulation of the boundary value problem starts from the principle of
the virtual displacement [3]∫

V

σ : δεdV =
∫
V

ρbηdV +
∫
A

tηdA, (13)

whereη denotes the virtual displacement field andδε = sym(gradη). ρ, b andt
represent the density, the body force and the surface traction, respectively. On the
unknown(n +1)th configuration, the principle of the virtual displacement becomes

�
(

n+1u, η
) =

∫
V

n+1σ : δεdV −
∫
V

n+1bηρdV +
∫
A

n+1tηdA, (14)

which is a non-linear problem for the unknown displacement fieldn+1u. To solve
the equation the Newton–Raphson method is applied. This requires a linearization
with respect to the displacement field

�
(

i+1u, η
) = �

(
i u, η

) + D�
(

iu, η
) [

��i u
] = 0, (15)

with the displacement increment��i u = i+1u − iu. HereD denotes the Gateaux
derivative. The total displacement increment is calculated as

�i+1u =
i∑

j=1

�� j u. (16)
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With the introduction of the strain increments

��iε = sym
(
grad

(
i+1u − iu

))
, (17)

�i+1ε =
i∑

j=1

��iε, (18)

the Gateaux derivative of the stressiσ can be expressed as

Diσ
(
�iε

) [
��iu

] = Diσ
(
�iε

) [
D��iε

[
��i u

]]
= diσ

d�iε
: ��iε = i Cep : ��iε. (19)

Finally, for the linearized principle of the virtual displacement yields∫
V

��iε : iCep : δεdV =

∫
V

n+1bηρdV +
∫
A

n+1tηdA −
∫
V

iσ : δεdV . (20)

In this equation, the unknown measures are the stressiσ and the consistent tangent
operatori Cep. We show the calculation of the necessary quantities in the next two
sections.

4. Stress Computation Algorithm

The stress computation algorithm is based on the works by HARTMANN , LÜHRS
and HAUPT [6] – [10], who developed stress computation procedures for temper-
ature independent plasticity and viscoplasticity with non-linear kinematic harden-
ing. In our method, the temperature dependent isotropic and kinematic hardening
properties are also considered. If the material parameters do not depend on the
temperature, our algorithm reduces to the one of HARTMANN [6], [7]. A return
mapping algorithm is chosen, which is based on a backward-Euler step.

The initial conditionsnσ , nx, ns andnθ are known from the last equilibrium
state. We will calculate the measuresiσ , i x and i s at the updated state from the
strain increment�iε and from the temperaturen+1θ .

First, the thermoelastic predictor, the trial stresstσ is obtained from the strain
and temperature increments

tσ = nσ + Ce : �ε − 3κα�θ1, (21)
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where�θ = n+1θ − nθ . Then the trial back-stress is evaluated

tx =
[

1 − �θ

c
(

n+1θ
) ∂c

∂θ

∣∣∣∣∣
n+1θ

]−1

nx. (22)

The next step is to check the yield condition. In this step, if

1

2
||dev

(
tσ

) − tx|| − 1

3
k

(
ns, n+1θ

)
< 0, (23)

then the deformation is thermoelastic and the variables of thei th state are simply
updated as

iσ = tσ , i x = tx i s = ns. (24)

Otherwise, the plastic corrector is applied as follows. The flow rule is approximated
by

�iεi = �iλiN, (25)

where the normal to the yield surface is calculated as

iN = dev
(

iσ
) −i x

||dev
(

iσ
) −i x|| . (26)

With Eq. (25), the elasticity relation, the back-stress and the accumulated inelastic
strain are given as

iσ = nσ + Ce : [
�ε − �iεi

] − 3κα�θ1 = tσ − 2µ�iλiN, (27)

ix = nx + c
(

n+1θ
)
�iλiN − b

(
n+1θ

)√
2

3
�iλix

+ �iθ

c
(

n+1θ
) ∂c

∂θ

∣∣∣∣
i

n+1θ

x, (28)

i s = ns +
√

2

3
�iλ. (29)

It is convenient to write the yield condition in the form

||dev
(

iσ
) − ix|| −

√
2

3
k

(
i s, n+1θ

) = 0. (30)

Now, we solveEqs (25) – (30). The back-stress tensorix is expressed fromEq. (27):

i x = iβ
(

nx + c
(

n+1θ
)
�iλiN

)
, (31)

with

iβ =
[

1 + b
(

n+1θ
) √

2

3
�iλ − �θ

c
(

n+1θ
) ∂c

∂θ

∣∣∣∣
n+1θ

]−1

. (32)
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Following an idea of SIMO – TAYLOR [12], the difference tensor between the
deviatoric part of the elasticity relation (27) and the back-stress tensor (31) is derived.
UsingEq. (25) yields

dev
(

iσ
) − ix = dev

(
tσ

) − iβnx − 2µ + iβc
(

n+1θ
)

||dev
(

iσ
) − ix||

(
dev

(
iσ

) − i x
)
. (33)

After rearranging the expression results

dev
(

iσ
) − i x = dev

(
tσ

) − iβnx

1 + �iλ
2µ + iβc

(
n+1θ

)
||dev

(
iσ

) − ix||
. (34)

We introduce for the norm in the above equation the function

iγ = ||dev
(

iσ
) − ix|| =

√
2

3
k

(
i s, n+1θ

)
, (35)

furthermore
iω = 1 + �iλ

2µ + iβc
(

n+1θ
)

iγ
. (36)

With the definition
i� = dev

(
tσ

) − iβnx, (37)

Eq. (34) can be rewritten as

dev
(

iσ
) − ix = 1

iω

i�. (38)

Finally, the yield condition (30) becomes

φ = 1
iω

||i�|| − iγ = 0. (39)

This remaining equation represents one non-linear scalar equation to calculate the
unknown plastic multipliers�iλ. To solve the equation a numerical method is
necessary, a local Newton–Raphson procedure was applied.

The stress computation algorithm is summarized as follows:

1. Given:nσ ,�iε, nx, ns, nθ, n+1θ → �θ = n+1θ − nθ

2. Thermoelastic predictor:
tσ = nσ + Ce : �iε − 3κα�θ1

3. Calculate the trial back-stress:
tx =

[
1 − �θ

c(n+1θ)
∂c
∂θ

∣∣∣
n+1θ

]−1
nx
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4. Check the yield condition:

If ||tσ − t x|| −
√

2
3k

(
ns, n+1θ

)
< 0

then: iσ = tσ , ix = t x, i s = ns
exit

5. otherwise:
Find�iλ by local iteration, that is solveφ

(
�iλ

) = 0 for �iλ.
6. Calculate the variables

iN = 1
iγ i ω

i
�, iσ = tσ − 2µ�iλi N

i s = ns +
√

2
3�

iλ ix = iβ
(

nx + c
(

n+1θ
)
�iλiN

)
exit

5. Calculation of the Consistent Stiffness

In the FEM calculations, the quadratic convergence rate needs the consistent lin-
earization of the constitutive relation. The consistent tangent operator is the deriva-
tive of the stress, coming out from the stress calculation algorithm, with respect to
the current strain

iCep = diσ

diε
= diσ

d�iε
. (40)

After some calculations, the consistent stiffness leads to

iCep = κ1 ⊗ 1 + δ1

[
I − 1

3
1 ⊗ 1

]
− δ2

iN ⊗ iN − δ3
ix ⊗ iN (41)

with

δ1 = 2µ

[
1 − 2µ�iλ

iωiγ

]
, (42)

δ2 = 4µ2

iω

(
dφ

d�iλ

)−1 [
−1 + �iλ

(
1

iω

diω

d�iλ
+ 1

iγ

diγ

d�iλ

)]
, (43)

δ3 = 4µ2�iλ

iω2iγ

d�iβ

diλ

(
dφ

d�iλ

)−1

. (44)

Because of the last term in (41), the resulting tangential stiffness matrix is non-
symmetric. The non-symmetry results from the non-linear kinematic hardening and
from the temperature dependent linear kinematic hardening variablec. The tangent
operator becomes symmetric in the following cases:

– the plastic multiplier tends to zero
(
�iλ → 0

)
,

– the non-linear kinematic hardening parameterb = 0 and the linear kinematic

hardening parameterc does not depend on the temperature
(

dc
dθ

= 0
)
,

– for radial processes (i.e.iN andi x are parallel).
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Fig. 1. Shear stress versus shear strain
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Fig. 2. Back-stress versus shear strain
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6. Example

The stress algorithm was implemented in the FEM System MARC [11] as the user
subroutinehypela2.f. We compared the numerical results with the analytical
ones. In the numerical example, we show the reliability of our algorithm on a simple
shear test for one cycle. For this simple problem, the analytical solution can easily
be derived.

The material parameters are taken as

µ = 23077 MPa, ν = 0.3, α = 0,
c = 100000− 500θ MPa, b = 1500− θ, k = 200− 0.3θ MPa. (45)

The calculations were performed with displacement control, where the time depen-
dent functions of the shear strainγ and the temperatureθ are

γ = 0.02 sin(2.5π t), θ = 100t◦C, (46)

where in the quasi-static analysis the time parametert varies between 0 and 1. The
load was applied in 50 uniform time steps.

Figs 1 and2 show the non-vanishing parts of the stressσ12 and the back-stress
x12, respectively, and compare the analytical and numerical solutions.
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