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Abstract

This paper presents the shape memory phenomena, and their crystallographical background. Fur-
thermore a new model which is able to reproduce the basic responses of shape memory materials on
both micro- and macrostructural aspects is also presented. The model is based on a local finite strain
continuum description. A multiplicative decomposition of the total deformation gradient is used
which involves elastic, plastic and phase transitional parts. The latter is given from microstructural
measurement. For the elastic behavior of the material a coupled hyper-hypoelastic model and an
objective logarithmic rate developed recently are used. Finally a constitutive equation is presented
which consists of the kinetics of phase change process given by thermodynamical basis.
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1. Introduction

In the recent years there has been active research work in the field of shape memory
alloys (SMA). A good review of the work in this area up to 1997 can be found in
the paper by BIRMAN [3]. These types of materials show unusual but ‘intelligent’
material behaviour which is required by the new developing technologies.

Behind the shape memory effects (SME) there is a crystallographical reason,
namely the martensitic phase transition. The research that focussed directly on the
investigation and measurement of the transition itself carries out more and more
results, which grounds the basis of the theoretical modelling.

This modelling has started in both micro- and macroscopical way: based on
micromechanics (E. PATOOR, 1987; M. BERVEILLER, A. EBERHARDT, 1994), on
statistical mechanics and kinetical methods (I. MÜLLER, 1980; M. ACHENBACH,
1980), and on nonequilibrium thermostatics (J.S. CORY, 1985; J.L. MCNICHOLS,
1987). The development of the numerical methods, like finite element method,
induced to improve constitutive models based on continuum descriptions and often
use internal variables: models based on the free energy of phases (L.D. LANDAU,
M. FRÉMOND, 1989; F. FALK , 1983; P. COLLI , M. NIEZGÓDKA, K.-H. HOFF-
MANN, 1990), and models using martensite volume fraction as internal variable
(K. TANAKA , 1990; C. LIANG and C.A. ROGERS, 1991; L.C. BRINSON, 1993),
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or models based on macroscopical similarities of plastic flow (A. BERTRAM, 1982
[2]; F. TROCHUand Y.-Y. QIAN, 1997 [17]; J. LUBLINER and F. AURICCHIO, 1996
[8]). The latest developments are based on a finite strain description (V.I. LEVITAS,
1996 [6], 1998 [7], MASUD et al., 1997 [9]). (Citations which are not given here
can be found in [3].)

Most of the models mentioned above are restricted to one dimension, since
the generalization for two or three dimensions yields great difficulties.

The object of the present study is to develop a more general constitutive model
for the shape memory materials, based on micro-macro description.

The paper is organized as follows. In Section 2 the three types of shape
memory effect will be introduced. The phenomena will be explained by a crystal-
lographic way in Section 3. The model based on a continuum description, using
some micromechanical properties will be shown in Section 4.

Throughout this paper the following notation will be used. Tensors are de-
noted by bold-face characters. Ifa andb are second-order tensors andH is a fourth-
order tensor then(ab)i j = aikbkj , a : b = aij bi j , (a⊗b)i j kl = aij bkl , (a⊗̄b)i j kl =
aik b jl, ‖a‖ = √

a : a, (H : a)i j = Hijkl akl , (a : H)i j = akl Hkli j . The su-
perposed dot denotes the material time derivative. The superscriptsT and −1
denote transverse and inverse, the subscriptss and a denote symmetric and an-
tisymmetric parts. δ = δi j is the second-order unit tensor (Kronecker delta),
I = Ii jkl = 1/2(δikδ j l + δilδ j k) is the fourth-order unit tensor.

2. Shape Memory Phenomena

There are three groups of shape memory effects [13]. All of them have one com-
mon speciality, namely at least one shape (macroscopic state) of the material is
recoverable.

In the case ofone-way effect the material gets a permanent deformation by
applying mechanical load in a relative cool temperature (ϑ < ϑA f ). But this
deformation can disappear by heating aboveϑA f and it remains unchanged during
the cooling to the start temperature (Fig. 1.a).

When the start temperature is aboveϑA f , mechanical load can cause defor-
mation, but it disappears during unload. It seems like an elastic behaviour, but the
deformation can be unusually great. This effect is thepseudoelasticity, which does
not concern only shape memory properties (Fig. 1.b).

The third effect is thetwo-way effect that requires only thermal load to change
between two stable shapes. One of the shapes is stable aboveϑA f and the other one
is stable below a different temperatureϑM f < ϑA f . It has to be mentioned that this
effect can be produced only after a special treatment (Fig. 1.c).

It’s important to know that the deformations which take place in the effects
can be finite, and the temperature distance (ϑA f − ϑM f ) is usually very narrow
(< 50 ◦K).
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Fig. 1. Shape memory phenomena: a, one-way effect; b, pseudoelasticity; c, two-way
effect

3. Crystallographical Background of Shape Memory Effects

Behind these effects there is a crystallographic transformation, namely the marten-
sitic phase transition. The main properties of this phase change are as follows:

• non-equilibrium, diffusionless transition (the latter induces that the process
is very quick),

• reversible in crystal structure, but not in general (in energetical respect, due
to dissipation, see Fig. 2),

• it has a habit plane, which is invariant during the process,
• there is direct correspondence between the parent (austenit) and result (mar-

tensit) phases,
• the properties of transition depend strongly on the amount of alloying mate-

rials.

As it can be seen from the phenomena, the phase transitions can be induced by
mechanical and thermal load. Fig. 2 shows the effects in a stress-strain-temperature
space. The forward (austenit to martensit, A → M) and backward (martensit to
austenit, M → A) transitions and their temperatures are also illustrated. It is im-
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Fig. 2. Shape memory phenomena in stress-strain-temperature space: a, one-way effect;
b, pseudoelasticity; c, two-way effect

portant to mention that twinning in the martensit phase and slip in both phases can
occur beside the martensitic transition.
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4. Theoretical Description and Constitutive Model

On the basis of the statements of the former sections, an elastoplastic model seems
to be useful to extend for the description of the shape memory effects.

The new model has the following general features:

• local description,
• complex material behavior: elastic, plastic, phase transformational parts,
• finite strain description,
• direct connection between hypo- and hyperelasticity.

4.1. Kinematics

There is a lot of multiplicative decomposition of the total deformation gradient
in the case of elastoplastic material. When phase transition can also occur in the
material, a new part has to appear in the decomposition. The general extension
is based on classical decomposition [5][18] and assumes that plastic flow occurs
before or together with phase change [9][6][7]:

F = FeFp −→ F = FeFtFp . (1)

The problem with the classic elastoplastic decomposition is that it is not a unique
decomposition. But we can choose a different decomposition [18][1] which elim-
inates this problem, collecting the rotating part together [10][11]. This can be
extended by taking a phase transitional part between the pure plastic deformation
(Up) and the rotating tensor (Q):

F = VeQUp −→ F = VeQ︸︷︷︸
F̄e

FtUp . (2)

Here Ve is the elastic left stretch tensor, Up is the plastic right stretch tensor and
Q = ReRp, where Re is the elastic, Rp is the plastic rotation tensor, which can be got
from the left and right polar decompositions of the elastic and plastic deformation
gradient:

Fe = VeRe , Fp = RpUp . (3)

From the phenomenological theory of martensitic transformations, it is known
[16][12] that the martensitic transformation always consists of a lattice deformation
(Bain distortion, B), a lattice invariant shear (S), and a lattice rotation (R):

Ft = R B S . (4)

According to Section 3, the main requirement for Ft is to be an invariant plane
transformation. This can be realized in a different way by considering a simple
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shear along the habit plane (S̄) and a pure deformation orthogonal to habit planeB̄:

Ft = B̄ S̄ = I + k ⊗ n , (5)

where n is the outward unit normal vector of the habit plane and k is the displacement
vector due to transformation [12].These vectors are known for a given material from
experimental data. For the phase transformation process, we have to introduce a
dimensionless internal (friction like) variable ξ , which varies between 0 and 1,
indicating the state of transformation: for ξ = 0 there is no transformation and for
ξ = 1 the transformation has finished [6][7]. This variable can be interpreted as a
volume fraction of martensite phase in an infinitesimal volume. Using this variable,
the transformational deformation gradient gets the form:

Ft = I + ξ k ⊗ n . (6)

From experimental observations it is known that a given material, with a given
crystal structure has more than one habit plane (maximal value is 24). To choose
the realizable one additional methods are needed, for example extremum principles
[7] or direct microstructural calculations [15]. Fig. 3 shows the decomposition

Up Ft
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*

Fig. 3. Kinematics of the elastic-transformational-plastic deformation

(2) graphically. n0 is the initial unit normal vector to one slip plane and s0 is the
initial unit vector in one slip direction in this slip plane. Under plastic stretching
the crystal lattice retains its shape and orientations, so these vectors don’ t change
with respect to the crystal structure. Martensitic transformation takes place along
the habit plane, which is usually different from the slip plane. The nt and st are the
mentioned vectors after the phase change, while n∗

t and s∗
t are the same vectors after

the rigid body rotation. Vectors in the current state are n and s, which are finally
deformed by an elastic stretching.

The additive decomposition of the velocity gradient, based on (2) forms

L = ḞF−1 = ˙̄FeF̄e−1 + F̄eḞtFt −1F̄e−1 + F̄eFtU̇pUp−1Ft −1F̄e−1
, (7)

L = Le + Lt + Lp . (8)
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The rates of deformation and material spins defined by the symmetric and antisym-
metric parts of the elastic, transformational and plastic velocity gradients respec-
tively, are:

de = (Le)s , we = (Le)a , (9)

dt = (Lt)s , wt = (Lt)a , (10)

dp = (Lp)s , wp = (Lp)a . (11)

This gives also an additive decomposition of the deformation rate and material spin:

d = de + dt + dp , w = we + wt + wp . (12)

Using (6), (7) and Sherman-Morrison’s inverse formulation, (10) can be expressed by

dt = ξ̇

1 + ξ n k

(
F̄e(k ⊗ n)F̄e−1

)
s

= ξ̇ d̄t , (13)

wt = ξ̇

1 + ξ n k

(
F̄e(k ⊗ n)F̄e−1

)
a

= ξ̇ w̄t . (14)

It can be mentioned now, that the advantage of the chosen decomposition (2) is that
wp can be explained as the function of dp [14]:

wp = H : dp , (15)

in which

H = µ
p
1 (Ū

p⊗̄δ−δ⊗̄Ūp) + µ
p
2 (Ū

p2⊗̄δ−δ⊗̄Ūp2
)+µp

3 (Ū
p2⊗̄Ūp−Ūp⊗̄Ūp2

), (16)

where Ūp = F̄eFtUpFt T F̄eT and the coefficients are the functions of the first, second
and third scalar invariants of Ūp

µ
p
1 = I p2

I p I I p − I I I p
, µ

p
2 = − I p

I p I I p − I I I p
, µ

p
3 = 1

I p I I p − I I I p
. (17)

4.2. Objective Rates

For the description of the elastic behavior of the material a logarithmic strain ln Ve

was chosen because it was proved that the logarithmic strain is the only strain mea-
sure whose corotational rate can give the deformation rate [19]. Two corotational
objective derivatives are used for the description of rate type equations. The first
is the recently developed logarithmic rate [19][20], the second is its modification
namely the elastic logarithmic rate [14]. The logarithmic derivative of the Kirchhoff
stress tensor can be expressed by:

◦
τ log = .

τ + τ�log − �logτ , (18)
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where the logarithmic spin tensor

�log = w + A : d (19)

with

A = ν1(V⊗̄δ − δ⊗̄V)+ ν2(V2⊗̄δ − δ⊗̄V2)+ ν3(V2⊗̄V − V⊗̄V2), (20)

and the coefficients νi are given with the eigenvalues (λi,i=1..3) of the left stretch
tensor V:

ν1 = ν2 = ν3 = 0 } if λ1 = λ2 = λ3

ν1 = 1

λ1 − λ2
h

(
λ1

λ2

)
, ν2 = ν3 = 0

}
if λ1 �= λ2 = λ3

νk = (−1)k



3∑
i=1

λ3−k
i h (εi ) , k = 1, 2, 3

 = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1),

ε1 = λ2

λ3
, ε2 = λ3

λ1
, ε3 = λ1

λ2
,




if λ1 �= λ2 �= λ3 �= λ1

(21)

where h is the logarithmic spin function:

h(z) = 1 + z2

1 − z2
+ 1

ln z
. (22)

The elastic logarithmic rate has the same form with change of d,w,V, λi to de,we,Ve, λe
i :

◦
τ log-e = .

τ + τ�log-e − �log-eτ , (23)

�log-e = we + Ae : de , (24)

Ae = νe
1(V

e⊗̄δ − δ⊗̄Ve) + νe
2(V

e2⊗̄δ − δ⊗̄Ve2
)

+ νe
3(V

e2⊗̄Ve − Ve⊗̄Ve2
). (25)

The advantage of these rates is that applying them for the total and elastic logarithmic
strains they can only give the total and elastic rates of deformation [19] [14]:

◦
(ln V)log = d −→

◦
(ln Ve)log-e = de . (26)

By means of these properties a direct connection between the hyper and hypoelastic
equations can be established.
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4.3. Thermodynamics

The second law of thermodynamics in the form of the local Planck inequality is as
follows [4]:

ρ0D = τ : d − ρ0ψ̇ − ρ0sϑ̇ ≥ 0 , (27)

where ρ0 is the mass density in the reference configuration, D is the rate of dissipa-
tion per unit mass, τ is the Kirchhoff stress tensor, ψ is the specific Helmholtz free
energy per unit mass, s is the entropy and ϑ is the temperature. It is assumed that

ψ = ψ
(
ln Ve, ϑ, ξ

)
. (28)

Inserting the total derivative of (28) to (27), then using (12) and (26), the rate of
dissipation leads to:

D =
(

1

ρ0
τ − ∂ψ

∂(ln Ve)

)
:

◦
(ln Ve)log-e −

(
∂ψ

∂ϑ
+ s

)
ϑ̇ (29)

+ 1

ρ0
τ : dp + 1

ρ0
τ : dt − ∂ψ

∂ξ
ξ̇ ≥ 0 .

In elastic processes there is no dissipation and ϑ̇ can be both positive and negative
due to heating or cooling. This gives the hyperelasticity law and the expression for
entropy:

τ = ρ0
∂ψ

∂(ln Ve)
, (30)

s = − ∂ψ

∂ϑ
. (31)

The rest of the dissipation rate consists of the plastic and phase transformational
parts:

D = 1

ρ0
τ : dp + X ξ ξ̇ ≥ 0 , (32)

where X ξ is the dissipative force conjugated to ξ̇ . Using (13) for the relation of dt

and d̄t ,

X ξ = 1

ρ0
τ : d̄t − ∂ψ

∂ξ
. (33)

One simple assumption that each rate depends on its conjugate force and the internal
variable leads to evolution equations [7]

dp = f p(τ , ξ ) , ξ̇ = f ξ (X ξ , ξ ) , (34)

which are known as flow rule and kinetic equation of phase transition.
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4.4. Phase Kinetics

It can be seen that the conjugated force Xξ drives the phase transformation process.
In the dissipation free case the threshold value is 0 for both the forward and reverse
transition and no hysteresis has appeared. But from the mentioned phenomena
it is known that there is dissipation in the shape memory effects. So the phase
transformation criteria can be expressed by

if X ξ ≥ kA→M > 0 and Ẋ ξ > 0 and ξ < 1 then ξ̇ > 0,
if X ξ ≤ kM→A < 0 and Ẋ ξ < 0 and ξ > 0 then ξ̇ < 0,

else ξ̇ = 0.
(35)

Here kA→M and kM→A are the threshold values of force Xξ , which is experimentally
determined and can depend on some parameters, for example on ϑ and Fp. The
simplest assumption for ξ̇ is the linear dependence on Xξ . Then the phase kinetic
equation consisting of the conditions gets the following form

ξ̇ = H(Ẋ ξ ) H(1 − ξ)
(
1 − H(kA→M − X ξ )

)
CA→M X ξ (36)

+ H(−Ẋ ξ ) H(ξ)
(
1 − H(X ξ − kM→A)

)
CM→A X ξ ,

where CA→M and CM→A are positive constants and H(.) is the Heaviside function:
H(x) = 1 if x > 0 and H(x) = 0 if x ≤ 0.

It’s important to mention that the chosen phase kinetic equation (36) always
satisfies the non-negative restriction for the rate of dissipation given by (32).

4.5. Constitutive Equation

Let us consider the Helmholtz free energy as

ψ(ln Ve, ϑ, ξ) = (ln Ve) : De : (ln Ve)

2ρ
+ ψϑ(ϑ, ξ) , (37)

then the hyperelastic law (30) becomes the following form

τ = De : ln Ve . (38)

Here De is the fourth order elastic stiffness tensor, which is assumed not depending
on ξ . Applying the elastic logarithmic rate for (38), it changes to the hypoelastic law:

◦
τ log-e = De : de . (39)

The connection between the logarithmic and elastic logarithmic rates comes out
from its definitions

◦
τ log = ◦

τ log-e − τ�log-e + �log-eτ + τ�log − �logτ . (40)
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By applying (39) and (24) for (40), we have

◦
τ log = De : de − τ (we + Ae : de) + (we + Ae : de)τ

+ τ (w + A : d) − (w + A : d)τ , (41)

then by considering the additive decomposition of deformation rate and spin of (12)
we can obtain

◦
τ log = De : (d − dt − dp)+ τ

[
wt + wp + (A − Ae) : d + Ae : (dt + dp)

]
− [

wt + wp + (A − Ae) : d + Ae : (dt + dp)
]
τ . (42)

Finally by using equation (15) for plastic material spin, (13) and (14) for phase
transformational parts yield

◦
τ log = (De + B) : d − (De − C) : dp − e ξ̇ , (43)

where B, C and e are given in the following way:

Bijkl = τin(Anjkl − Ae
njkl )− (Aimkl − Ae

imkl )τmj , (44)

Cijkl = τin(Hnjkl + Ae
njkl )− (Himkl + Ae

imkl )τmj , (45)

e = De : d̄t − τ (w̄t + Ae : d̄t)+ (w̄t + Ae : d̄t)τ . (46)

Let assume isotrop hardening with non-associated flow law. Then the yield function
and the plastic potential depend on the Kirchhoff stress tensor τ , on the hardening
parameter κ and on the internal variable ξ

F(τ , κ, ξ) ≤ 0 , (47)
f (τ , κ, ξ) . (48)

The consistency condition, applying the equivalence between the corotational rate
and the material time rate of F , takes the form

Ḟ = ◦
F log = ∂F

∂τ
: ◦
τ log + ∂F

∂κ
κ̇ + ∂F

∂ξ
ξ̇ = 0 . (49)

The flow rule (34) in a direct form can be expressed by

dp = λQ , (50)

where λ is the plastic multiplier and Q is the unit gradient of plastic potential. The
rate of the hardening parameter is in general form:

κ̇ = λa . (51)
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With the use of (43), (49), (50) and (51), the plastic multiplier can be expressed
by which applying it in (43), the final form of the constitutive equation (39) can
be found

◦
τ log =

[
De + B − (De − C) : Q ⊗ P : (De + B)

H + P : (De − C) : Q

]
: d (52)

−
[

P : e + L

H + P : (De − C) : Q
(De − C) : Q + e

]
ξ̇ .

Here P is the unit gradient of yield surface while the plastic hardening modulus H
and L are given by

H = − 1

‖∂F

∂τ
‖
∂F

∂κ
a , L = 1

‖∂F

∂τ
‖
∂F

∂ξ
. (53)

The constitutive equation (52) together with the phase kinetical equation (36) can
be used in any numerical solution, for example in a modified finite element method,
to solve a boundary-value problem. The numerical solution leads generally to a
Newton–Raphson iteration process based on the tangent constitutive operator. The
present paper aimed to extend the elastic-plastic constitutive operator to the case
of shape memory phase transformations, based on finite strains. This process also
can solve the following reorientation problem. The material point is in martensitic
phase and the direction of the applied load changes that another martensit variant
reaches the realizable position. The possibility to change variants makes the model
more realistic in description of the shape deformation of the material.

5. Concluding Remarks

The presented model extends a finite strain elasto-plastic description to phase tran-
sition case. It can be used for the parallel appearance of plastic and phase transfor-
mational processes. The first thing in every calculation step is to choose the most
favorable martensite variant in every point, to determine the kinematic parameters.
In the final constitutive operator a new part has appeared, which is used for the
description of phase transition. The model can be applied for the forward and re-
verse martensitic transformation and for the reorientation and martensit twinning
process.

Beside these good properties, the model has some missing parts. It is unable
to describe that the phase transition can occur only in a finite volume whose size is
a critical nucleus size. Furthermore it does not consider the interface propagation.
The next step is to develop the model for these microstructural processes, and to
make some analytical calculations with the model.
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