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Abstract

The present report gives a review on the formulation of the mechanical/mathematical models of the
stability of asymmetrically built and loaded rectangular multi-layered sandwich-type plates with (con-
structionally) orthotropic hard and transversally isotropic soft layers. The corresponding governing
equations, boundary conditions and method of numerical (FEM) solution are given. The report shows
the stability and post-buckling behaviour of asymmetrically compressed five-layered rectangular plate
with Navier-type boundary conditions.
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1. Introduction, Formulation of the Task

In the theory of structures with combined materials the sandwich-type ones play
special role because of their good and predictable physical characteristics. Theories
of classical three and regularly multi-layered sandwich plates and shells are done
well in the literature. From the point of view of practical applications irregularly
built multi-layered plate and shell structures are also very important. Our investiga-
tions are dealing with such structures, closely the aim of them are the comparative
study of the analytical, experimental and numerical solution of the stability for
asymmetrically built and loaded multi-sandwich rectangular plates with (construc-
tionally) orthotropic hard and transversally isotropic soft layers, using the common
suppositions in the theory of sandwich and sandwich-type structures (HOFF(1950),
BOLOTIN (1965), SUN et al. (1968)).

According to these suppositions for the transversally isotropic soft layers not
only the transverse shear strains and stresses but the normal ones are also constant
across these layers and taken into account. Following the formalism of BOLOTIN
(1965) and neglecting the second order terms the strainenergy densities of hard and
transversally soft layers are respectively:
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u = 1

2

(
σ xεx + σ yεy + τ xyγ xy

)
,

ũ = 1

2

(
τ̃xzγ̃xz + τ̃yz γ̃yz + σ̃z ε̃z

)
.

Here the term̃σz ε̃z corresponds to the effect of anti-plane tension /compression of
the transversally soft layer. If this term is negligibly small compared with others,
then the layer is as usualsoft. More sophisticated analysis of the characters of the
layers is given by BOLOTIN (1965), POMÁZI and MOSKALENKO (1967).

Our former investigations for the stability of regularly multi-layered (POMÁ-
ZI (1974 and 1992)) and asymmetrically built and loaded three-layered plates with
constructionally orthotropic hard layers (POMÁZI (1980, 1985 and 1990)) give the
basic methods, formulas and governing equations of the problem. The mechanical-
mathematical model of a multi-layered plate withn hard layers is based on the
displacement field of the plate, which could be described by 3n displacement func-
tions (as Lagrangean coordinates) in the coordinate directionsuα(x, y), vα(x, y),
wα(x, y) of the points belonging to the basic surfaces of the hard layers. The dis-
placements in the hard layers are determined by the Kirchhoff–Love law; in the
soft layers – based on the suppositions – they are linear functions of local normal
coordinates and can be expressed by the displacements of adjacent hard layers. So,
using this linearity of displacement functions and the corresponding constitutive
equations the strain and stress fields of the hard and soft layers can be obtained
(POMÁZI (1980 and 1992)). With the integration of the deformation energy den-
sities (1) for unit surface and using the generalized constitutive equations thetotal
potential energy of the system for the state of small disturbances – I 〈uα, vα,wα〉 –
can be written. For the mathematical formulation of the stability problem the Tre-
fftz variational principleδ(δ2∗U0) = 0 can be used, where in this caseδ2∗ · U0 = I ,
i.e. the second special variation of the total potential energy of the system for the
disturbance-less state is equal to the total potential energy of the system for the
state of small disturbances. So, the governing equations and natural boundary con-
ditions have been derived as Euler–Lagrange equations and boundary conditions to
theδ I 〈Uα, vα,wα〉 = 0 variational principle.

For the stability of multi-layered plate withn hard layers system of govern-
ing equations consists of 3n difference-differential equations, expressing that the
mechanical-mathematical model of the problem is continuous by the in-plane coor-
dinatesx, y and discrete by the coordinatez, perpendicular to the plate, expressed
by label: α. (The difference
α depends on the place of the[x, y] plane of co-
ordinates and usually
α = 1, i.e. the label of the layers begins from the first
one and 1≤ α ≤ n, but if the plate is symmetric to the middle hard layer, then

α = 2 and−m ≤ α ≤ m wherem = n − 1 (POMÁZI (1974)). These equations
and boundary conditions with the solution of them for the regularly multi-layered
rectangular plate are given by POMÁZI (1992).

The natural boundary conditions atx = const. are:
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1. [C11εx + C12εy + K11κx + K12κy]α = Nα
x = 0,

2. Cα
66γα + 2K α

66χα = Nα
xy = 0,

3. −r ′
ατ̃

α
xz − Nα

x wα,x − Nα
xywα,y + Mα

x,x + Mα
xy,y = 0,

4. −[K11εx + K12εy + D11κx + D12κy]α = Mα
x = 0,

5. −[K66γ + 2D66χ]α = Mα
xy = 0.

The last condition expresses vanishing of the twist moment on the boundary, how-
ever, according to Kirchhoff this does not mean a new condition, but the derivative
of it gives an additional shearing force in the 3rd condition. So, in spite of the fact,
that in case ofKik 
= 0 order of the governing equations by the in-plane coordinates
increases to 3+ 3 + 4 = 10, the number of condition in a certain point of the
boundary remains 4 and not 5 as it could be supposed. Proving of this in detail is
given by POMÁZI (1996).

2. About the Analytical Solution of the Governing Equations at Navier-Type
Boundary Conditions

The Navier-type boundary conditions mean that the normal displacements and bend-
ing moments are equal to zero at the boundary of each hard layer (they are quasi
simple supported on the edges). This condition can be physically modelled by
fixing the hard layer edges to a membrane in the plane of the boundary, absolutely
rigid at in-plane, but absolutely soft by out of plane deformation. According to
the loading of the plate it is supposed, that the hard layers could be loaded with
constant normal to the boundary membrane forcesNα

x , Nα
y and at least one of the

hard layers is loaded, but the shearing membrane forces –Nα
xy – are equal to zero.

The sum of these normal forces gives the total loading of the plate:Nx = ∑
(α) Nα

x ,
Ny = ∑

(α) Nα
y and their values are proportional to the stiffness of the loaded hard

layers (the total side-loads are distributed to the loaded layers according to the stiff-
ness of each). In this case these boundary conditions will be satisfied if – using the
Fourier method – the unknown displacement functions are taken in double Fourier
series:

uα =
∑

p1

∑

p2

Uα cosk1x sink2y,

vα =
∑

p1

∑

p2

Vα sink1x cosk2y,

wα =
∑

p1

∑

p2

Wα sink1x sink2y,

whereUα, Vα, Wα are amplitude functions,k1 = p1π/a = πλx , k2 = p2π/b =
π/λy are the wave numbers,p1, p2 are whole numbers,a, b are the side lengths
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of the plate,λx, λy are the half wave lengths at bending of the plate. As usual,
substituting the trial solution functions into the governing equations, from the con-
ditions of existence for a non-trivial solution to the amplitude functions we get the
characteristic equation of the problem in the form:

det(A − Nα(I3 − I2)) = 0, (1)

whereA is the coefficient matrix of the eigenvalue problem,I3, I2, are the 3×3 and
2×2 idem matrices andNα = k2

1 Nα
x +k2

2Nα
y is the ‘loading parameter’. The matrix

A is diagonal strip matrix consisting of 3×3 submatrices. The minimal eigenvalue
of the characteristic equation gives the critical value of the loading parameter:
min Nα

∗= Nα
crit . Before the solution to the governing equation the asymmetry of

structure and loading of the plate have to be examined, to determine the conditions
of the correct formulation of the stability problem.

In the case of constructionally anisotropic asymmetric hard layers (Kik 
= 0)
at an optional chosen basic surface there is a coupling between the stretching and
bending, so the in-plane deformation of the plate before buckling can be achieved
with assuring some special loading circumstances only. Such ‘bendingless’ state
of the plate could be achieved by choosing new basic surfaces for the hard layers
from the condition that the curvatures of these new surfaces should be equal to
zero: κik = 0. The corresponding formulas are given by POMÁZI (1990). In the
case of very different anisotropy inx, y directions, theκik = 0 condition cannot be
satisfied by a common new basic surface in both directions, but in this case it could
be taken by the ratios of the stiffness characteristics at unidirectional tension in the
x andy directions: Aα

11/Aα
22.

The detailed analytical solution of the governing equations with Navier-type
boundary conditions for case of asymmetrical building and loading condition is
given by POMÁZI (1996).

3. Formulation of the FEM Model

The mechanical and mathematical model of the stability investigations in the pre-
vious section is based on the shell/plate theory: hard layers are regarded as thin
Kirchhoff–Love plates. The mechanical state in the soft layers is supposed to be
determined by the deformation of the adjacent hard layers. As a special consider-
ation, the out off plane normal stress and strain are taken into account in the soft
layers. This way the governing equations and the boundary conditions are based
on the shell theory.

The finite element method gives excellent opportunities to overtake some
simplifying considerations of the analytical model. First of all, the shell/plate
theory is not considered, that is in the FEM model the soft and hard layers are three
dimensional objects meshed by the help of solid elements. Additionally, the FEM
model does not apply more coupling effect between the hard and soft layers than
only one: the perfect adhesion of contacted soft and hard surfaces is supposed.
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Fig. 1. Asymmetrically built and loaded multi-sandwich plate

According to these considerations, the FEM model of the 5-layer sandwich plate
consists of 5 volume domains (each for one layer), that are meshed by 8-node
solid elements. COSMOS/M 1.75 Explorer software was applied for the buckling
analysis. The kinematic boundary conditions represent pin-type constraints along
the long faces of the hard layers, that is the eligible displacement coordinates are
supported to be zero along those edges. The axial load was given as surface pressure
acting on the facesx = a of the hard layers (Fig. 2). A buckling analysis using
Lanczos algorithm was applied to determine the first eigenvalue and eigenmode.
The number of elements was 21 alongx andy directions and transversally 1 element
was applied for each layer. In the Explorer version the number of elements is limited
to 3000.

The finite element method also gives opportunities to study the post-buckling
behavior of the 5-layer sandwich plate. The post-buckling FEM model was the
same as for buckling analysis, but the number of elements was reduced to spare the
analysis time. In post-buckling analysis the axial compressive load was controlled
by a load-time curve (Fig. 3). The compressive load was chosen to exceed the
first buckling load by 20%. At the same time, two transversal point loads with
separate load-time curve were also applied to ensure the disturbed deformation of
the sandwich plate. These two transversal point loads generate a deflected shape
close to the first buckling mode shape. Non-linear analysis was applied for post-
buckling analysis, force control technique and Total Lagrange formulation was
chosen. 50 time steps were applied for the total load process.
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Fig. 2. Volume domains and boundary conditions for the FEM analysis of buckling

4. Numerical Investigations

Using the elaborated FEM model the stability of asymmetrically built and loaded
rectangular sandwich plate with 5 hard layers was investigated. The calculation
was executed by using the COSMOS’M FEM program. The main aim of the
investigations was to give basic data to the comparative study of analytical, ex-
perimental and FEM-based investigations, as it was mentioned. Therefore, the
calculations basically were made for the structure and measurements data of the
experiments specimens (Table 1). Material characteristics of these specimens are
for the hard layers: Fe (Steel):E = 2.0 104 kN/cm2, ν = 0.3; Al (Aluminum):
E = 0.68 104 kN/cm2, ν = 0.3; and for the transversally soft layers (matrix): PUR
foam: Ez = Ez = 0.18 kN/cm2, ν = 0.125.

Table 1. Structure and measurement data (in mm) of the specimens

No. 1. No. 2. No. 3. No. 4C. No. 5.
s1 10 10 10 10 10
s2 15 15 25 25 25
h1 1.2 Al 1.0 Al 1.0 Al 0.8 Fe 1.5 Al
h2 1.0 Fe 1.0 Fe 0.8 Fe 1.5 Al 1.0 Al
h3 1.2 Al 1.2 Al 1.0 Al 1.0 Al 1.0 Al

In Table 2 the results for the specimen 4C, based on the analytical model are
given for the case of unidirectional in-plane loading of the hard layers, i.e. when
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Fig. 3. Axial and transversal loads in the post-buckling analysis with the load-time curves

Fig. 4. 1-st buckling mode of the plate

Ny/Nx = 0. In this Table the number 4C is related to the specimen investigated in
detail and the row-vectors (as ‘code’) in column 2 give themode of loading i.e. in
order 1,2,3 of hard layer show if the layer is loaded (1) or not (0). It was a little-bit
surprising that for the different mode of loading – at the given material data – the
character and critical values of the first buckling mode were very similar in spite
of the strong asymmetry of the structure and loading of the plate. Going out of
these circumstances in the following our calculations will be shown for the case of
loading (1,1,1), when all the three hard layers are loaded.

The linear stability investigations for the 1-st buckling mode gave that the
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Fig. 5. Normal to the plateUz displacement field in the post-buckling state

Fig. 6. TheUz displacements of the normal to they-axis middle cross section

half-wave lengths of the instability correspond top1 = 2, p2 = 1 wave numbers,
i.e. in the direction of loading two half waves occur (Fig. 4). This means that the
instability of the plate has ‘local’ character. It was found that this character is valid
for all the load ‘codes’. The reason of this is that the normal-to-the-plate stiffness
of the soft layers is very small, but big enough to keep together the hard layers for
the similar deformation.
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Table 2. Critical loads (kN/cm) of five-layered sandwich-type plate (E z = 0.18 kN/cm2)

Code of
specimen

Code of
loading

∑
Nx N1

x N2
x N3

x
Method of
solution

1 1 1 0.5233 0.2537 0.1617 0.1078
1 1 0 0.5136 0.3136 0.2000 0
1 0 1 0.5179 0.3634 0 0.1545
0 1 1 0.5254 0 0.3152 0.2102 Analytical
1 0 0 0.4982 0.4982 0 0
0 1 0 0.5187 0 0.5187 0
0 0 1 0.4877 0 0 0.4877

4C
1 1 1 0.544 0.264 0.168 0.112
1 1 0 0.533 0.326 0.207 0
1 0 1 0.537 0.377 0 0.160

FEM
0 1 1 0.550 0 0.330 0.220

COSMOS’M
1 0 0 0.514 0.514 0 0
0 1 0 0.543 0 0.543 0
0 0 1 0.526 0 0 0.526

The initial post-buckling state of the plates was investigated in ‘nonlinear’
sense up to the value of overloading parameterNx/Nx (crit) = 1.2. The character-
istic picture of the normal displacement field and the deformed shape of the normal
to they-axis middle cross-section are shown on theFig. 5 andFig. 6. For all the load
‘codes’ the intensive normal deformation (like local ‘bending’) of the bottom range
was characteristic, but the shape of other parts of the plate was different according
to the modes of loading. During the nonlinear task the normal displacements of
the nodes at the place of disturbingFz forces (Fig. 3) and the nodes at the middle
points of loaded edges were monitored on the bottom (nodes 363, 367, 369) and on
the top (nodes 444, 448, 450) of the plate. These displacements are shown in the
Fig. 7, where positive values belong to theUz normal displacements of nodes 367,
448; negative values to same displacements of the nodes 363, 444, and the 2 middle
curves – in enlarged form in theFig. 8 – show theUx axial displacements of nodes
369, 450 of the loaded surface. These last ones are the shortening of the 1-st and
5-th hard layers. From these figures one can see that in spite of the very soft layers
the normal deformation (changing of the thickness) of the plate remains small.

Fig. 9 shows theUz normal displacement of node 363 and the axial one of
node 369 both belonging to the 1-st hard layer on the bottom surface of the plate
in the beginning range of loading (up to the half of the critical load). Comparing
these curves with the load – time curves in theFig. 3, it can be seen that up to
the timeT = 5 theFz disturbing forces cause small normal displacements, which
remain constant up to the timeT = 8, when this displacement begins to grow due
to the growing ofNx axial load. In the range of loading between the two time
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values mentioned above the plate is (more or less) in ‘bendingless’ state and the
‘instability’ at the timeT = 8 has begun when the load’s value is only about 60%
of the critical one. This is one of the consequences of the asymmetric building and
loading of the plate. This can also be seen in theFig. 10 , which shows the nonlinear
function of the overloading parameter on the plate’s shortening.

Fig. 7. Displacements – time curves of the given nodes

Fig. 8. The shortening (Ux ) – time curves of the 1-st and 5-th loaded hard layers
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Fig. 9. Uz andUx displacements at the beginning range of loading

Fig. 10. The load – shortening curve of the plate

5. Conclusions

Numerical results show good agreement with those got on the base of an analytical
model, but also show that because of strong asymmetry, these results are close to
each other in spite of the different structure of the plate. It is also shown that chang-
ing of the thickness (normal deformations) is small contrary to all expectations.
The form of instability has ‘local’ character, i.e. the critical half-wave length is less
than the side length of the plate (p2 > 1). In the frame of our research we found
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that by increasing of the soft layer’s Young modulus the critical half-wave length is
decreasing. For example, if in the case shown above the Young modulus increases
10 times to the value 1.8 kN/cm2, then p1 = 1, p2 = 4, i.e. the critical half-wave
length =Lx/4 = 10.5 cm. All these circumstances need more investigations and
the results will be published in the near future.
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