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Abstract

In this paper the dynamic behaviour of a continuum inextensible pipe containing fluid flow is inves-
tigated. The fluid is considered to be incompressible, frictionless and its velocity relative to the pipe
has the same but time-periodic magnitude along the pipe at a certain time instant.

The equations of motion are derived via Lagrangian equations and Hamilton’s principle. The
system is non-conservative, and the amount of energy carried in and out by the flow appears in
the model. It is well-known, that intricate stability problems arise when the flow pulsates and the
corresponding mathematical model, a system of ordinary or partial differential equations, becomes
time-periodic.

The method which constructs the state transition matrix used in Floquet theory in terms of
Chebyshev polynomials is especially effective for stability analysis of systems with multi-degree-
of-freedom. The implementation of this method using computer algebra enables us to obtain the
boundary curves of the stable domains semi-analytically. The bifurcation analysis was performed
with respect to three important parameters: the forcing frequendhe perturbation amplitude
and the average flow velocity.
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1. Introduction

The equation of motion of a simply supported continuum pipe derived Hamil-

ton’s principle was already discussed byOdsSNER [4] in connection with the
vibrations of the Trans-Arabian pipeline. However, the correct usadgtanfilto-

nian action-functiorwas shown by BNJAMIN [1] deriving the equation of motion

of articulated pipes. ®VLER and RAiDoOuUssIs [10] have given an overview of

the applicability of some numerical approaches in parametric resonances of can-
tilevered pipes. Several different cases of elastic pipes carrying fluid were analyzed
as well (see [2], [12] and [7]).
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Fig. 1. Sketch of an elastic pipe with clamped-free ends

2. Description of the Model

In the following we consider a continuum elastic pipe showkign 1. One of its

ends is attached to the wall while the other end can move freely. The motions are
considered in the horizontaly-plane. The masses per unit length of the pipe and
the fluid areM andm, respectively. The upstream mass-flow(t) is generally a
periodic function of the time in the following manner:

ut) =U@+ vsinwt). (N
The length of the pipe i& and its axis is inextensible (i.e. the cross-sectional area
of the pipe remains constant):
X/2 + y/2 =1 (2)

when the position vector of the pipe axigis= col [x(X, t), y(X,t)]and denotes
a/dX. Hence,

X
X(X, 1) = fﬂ— VP& D) e, 3
0

whereX is the identifier coordinate (i.e. the arc-length) along the pipe.
Let o be the angle between the pipe and the axi$hen

1
cosa =X = —— =/1-Yy?,
/1_|_ y/Z

wherey(x,t) = y(X(x),t) is the graph of the axis in an orthogonal coordinate
systemy = y'/x’, and one can prove th§t = y”/(x")* follows from the inexten-

sibility of the pipe § andy” denote% and%, respectively). Thus, the curvature
« of the pipe axis is
-y -y _ Y 4)

K = = =

(1+y2)F X Vi-y?
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2.1. Equations of Motion

According toHamilton’s principle

t t

5/{u—7} dt =/5Wdt, (5)
1 t1
whereld, T and§WW are the energy of strain, the whole kinetic energy and the
virtual work, respectively.

The bending moment of the beam-like pipe is alinear function of the curvature:
M, = «|,E. The energy of strain of a beam is

L
I,E JLE [
U= / /y2 1+y?) (6)
0 0

2

where the fourth degree approximation takes into account that we are investigating
the stability of the trivial equilibrial shapei(X,t) = y(X,t) = 0.

Neglecting the terms of rotation (containify, we get a simple expression
for the kinetic energy of the pipe and the fluid:

L
T = /( Mi2 + — r+u(t)r/)2> dX, (7)
0

where- (‘dot’) denotesd/at.
The external forces changing the momentum of the flow between upstream
and downstream at the ends of the pipe are

L
F:—/mu(f+ur/)/dXE—mu[f+ur/]gEFL+F0. (8)
0

Thus, the virtual work of these forcesd®V = F 6r + Fodrop.
Putting the expressions of, 7 ands)V in Eq. (5) we get

to L

// {lZE (y//(sy// (1+ y/2) + y//2y/5y/) _ (M + m) r8r
1 0
ta

“mu(r'st +tsr)} dX dt = —/[mu(r’ +urysrlbd (9)

5]
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After integrating by parts (excluding the term BE) and eliminatingdx one can
obtain

t2

- y/2
/] : 2 (v'oy"(1+2) + 2oy +ay(0y0x 0) (14 % )yox.v))
0

t1

L

3y/2 B
: )y /g<x(§,t))d§ dX dt =0, (10)

X

+ 8y<1+

where
G(z(X, 1)) = (M +m) Z+ 2muZ + muZ + mPz".

FromEg. (3) one can express the derivativesxdas the function of the derivatives

of y. Thus, we can eliminate all the derivativesxdfom Eq.(10). After neglecting

the fifth and higher order terms we obtain the equation of motion in dimensionless
form which corresponds to the results in [9] presented byISER et al.:

T 2

/ / : (v'y" (1+y2) +y2ysy) + by (37 + 200y (1+y?))
E ~

+ 8y (%Dz(r)y” (1+y2)+ 3y’/ (7Y +y?) dn + g—: -5y (1 + :—;y’z))
0

n
1da
—5y>///( / VY +y? dﬁ+20y/y/+§d—y + Gzy”y/)dn}dgdzzq

0
(11)
where
n= 3m ) 042=|2EL, G(r):U(1+vsinwr),L~J=iU,
M4+ m ml4 al
w L X 5 1 T
w:;T:O(t, IIE, EII— and y(f,f)—l—y(él,a>

but the ‘tilde’ was dropped iiq.(11).
The boundary conditions are as follows:
clampedend & =0: y(0) =Yy(0) =
free end at=2: y2=y"12=0
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2.2. Discretizing the Equation of Motion

We useGalerkin’s methodor discretizingEqg. (11). Assuming

yE ) =) y%i@®e @), (12)

i=1

wheregy; (&) is the appropriate base function that satisfies the boundary conditions
andn is the number of modes approximated by base functions. Substituting the
form (12) ofy(&, t) in Eq.(11) the integral form will be

17
. _ N
/5yi{50ij yi + 3M;ij §j + 20(0)Kjj ) + ;UZ(T)Slij yi +

1

di(z
U( ) (231” Sij ) Yj

+Sijk ¥i YW + 3 (Maija — Mygijia ) ¥ Yyt + 3 (Myijia — Mugijia ) 3 %W
(i . 1.
200 (Kiij = Kagi) Y Yt + ;uz (Suiik — Staiiia ) Vi YiH
1dd
54 (6Syijki — 3Suijki — Kigijki ) Yj YiWh }d‘c =0, (13)

where the) _-s were dropped according to Einstein’s convention. Furthermore,

2 2
M;; =/<ﬂi<ﬂj dg , Kj =/WP] dé ,
0 0

2 2

Si =/<p{/<p}/d§, Siij =/<p.<p, dt
0 0
2
Syj = /Sfpifﬂf/dé, Suijk =/(<P| 9i + 9lo]) ool d&
0 0

2 2
Kiijk = /rpirpjw((rp( d¢, Siiju = /fﬂi @i el dé
0 0

2
1ljk| = /Sfplfpj/(l)éfpf 1IJk /‘Pl‘/ﬁ /¢}¢Ldn d¢ ,
0
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Fig. 2. Base functions from Krylov functions (left) and Chebyshev polynomials (right)

n 2 2

2 2
Mygijki = /wi%”//%(ﬂ((dﬁdﬂ d&,  Kyijk = /‘PHP(/‘P}‘P&d?? d¢ ,
0 & &

0 0
2 2
Suijkl = /ww(’/w]’w&dn dé .
0 5

The integral is zero for arbitrar§y. Hence, its coefficient (i.e. the expression in
the braces ifEq. (13)) must be zero.
However,y; is also in the nonlinear terms:

3(M + (M1k| - Mlokl) ykyl) Y,

where for sake of brevity we write the coefficients partially in matrix representation
(instead of the indices j) and keeping Einstein’s convention in the third and fourth
indices K, I).

If we multiply the term ofy with | — (M imn— M 10mn) M~tymy, we get My
where the terms of order fifth and higher were neglected.

Applying this matrix-multiplication on the other terms it yields

3MY + 20(0)KY + (So n %uz(f)si + d‘é(:)sz) y

+3(M i — M) YYYi + 20 (Klm — Kkt — |~le) YYiVi

3 1. i
+ (Smm — 1S+ ;Uz (Sllm — Sk — lu Sl)) YYkYi
1dd -
+54 (6511k| —3S,k — Kok — 2l 52) YYYi =0, (14)

where y=[yj]. Tu=(Mu—Mg)M™?, S=2S —Sy.
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Fig. 3. Stability charts of a cantilevered pipéer = 4.3031 (4 Chebyshev modes)

2.3. Base Functions

Two types of base functions were used:

« at first they were searched as linear combinatioRayleigh—Krylov func-

tions

» however, the computational difficulties in obtaining the fourth-order coef-
ficient matrices of the nonlinear part inspired the applicatioCloébyshev
polynomials

The first 6 base functions of these two types can be seEiyir.

Table 1 Critical values of the flow velocity) atu = 1

Rayleigh—Krylov functions Chebyshev polynomials
ni (Bn) Ue | Poincaré—Liapunov| U | Poincaré—Liapunoy
constant constant
1] 0.9375| — 00 —
2 || 2.3470| 3.3419 —0.0805 3.3336 -0.351
3 || 3.9274 | 4.2904 —-0.2752
4 || 5.4978| 4.2716 -0.5367 4.3031 -2.307
5 || 7.0686 | 4.2408 4.2614 —2.256
6 || 8.6394| 4.2411 4.2354 -2.221
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2.3.1. Rayleigh—Krylov Functions

The following set of functions satisfies the boundary conditions of the analyzed
model:

S(26)
i(6) =U(Bi§) — ———=V(Bi§),
%i (&) (Bié) T28) (Bi&)
where S(x), T(x), U(x) andV (x) are theKrylov functionsand § is the root of
cosh X cos X = —1 (seeTable J.

2.3.2. Chebyshev Polynomials

Now the base functions were constructed as follows:

i+3

i) =T - D+ GTE -1,
k=i

whereTo(x) = 1, Ta(X) = X, To(X) = 2x> — 1, ..., T11(X) = 2XT(X) —
T,_1(x) are theChebyshev polynomiabndg,-s are determined by the boundary
conditions.

3. Stability Analysis
3.1. Autonomous Case

If the perturbation amplitude of the flow velocity is zero=£ 0) Eq. (14) will be a
system of autonomous differential equatiofigr) =U andd(r) = 0).

Using only the first base functiofn = 1) the system appears to be always
stable. However, in case of > 1 a critical value of) appears above which the
system loses its asymptotically stable behaviour and becomes unstable.

At this critical valueU, a pair of pure imaginary roots cross the imaginary
axis, i.e.Hopf bifurcationoccurs.

In Table lthe critical values dff are listed w.r.t. the number of base functions
and their types. In each case the system is stable below these valaes U, ).

Because of the symmetric nonlinearities (there isn’t any second order term) the
plane of the critical eigenvectors approximates the centre manifold in second order.
Hence, the centre manifold reduction can be done easily. The bifurcation analysis
results negativ@oincaré—Liapunov constantse. super-critical Hopf bifurcation
takes place in these cases that was verified by simulations.
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3.2. Non-autonomous Case
3.2.1. Linear Analysis

The discretized equation of motion (14) can be written as a first order system of
ordinary differential equations:

X = A(T)X + [ M ,1fo(r’ % ] . (15)

It is well-known from Floquet theory(see e.g. [3]) that the stability of a system
like (15), where the linear part is periodid(r + T) = A(z), T = 2rw™l),

is determined by the characteristic multipliers (i.e. the eigenvalues dflttpiet
Transition MatrixC = ®(T), where®(7) is theState Transition Matrix® = A®

and ®(0) = | is the identity matrix). 8HA and WU [11] have developed a
numerical method for stability analysis in any general case basd&thehbyshev
polynomials If we present the solution vector as an expansion of these polynomials
we obtain a set of linear algebraic equations from the differential equations. The
solution of this system gives the coefficients of the Chebyshev expansion. In this
way we obtain an approximation of thdoquet Transition MatrixC and we can
analyze the characteristic multipliekgC) at particular system parameters. The
linear system is asymptotically stable iff all the multipliers are located in the open
unit disk of the complex plane. Fixing the parameters of our mechanical structures
and choosingj, v and w for bifurcation parameters, Sinha’s humerical method
provides the stability domains of the system.

Figs. 3and4 show slices of the three dimensiorial (v, v) theoretical stability
domain around the critical valug,, determined in Section 3.The dotted region
represents the stable domain of the analyzed space. The symbols on the boundary
show the type of stability loss, i.e. the way where the characteristic multipliers leave
the unit disk while crossing the stability boundary.

It is worth noticing that the stability charts Fig. 4 have more complicated
structure for low values of/w. Thus, one should consider applying more base
functions in this region to describe the exact behaviour of the model.

3.2.2. Nonlinear Analysis

In orderto be able to perform the stability investigations of the nonlinear system (15)
we follow the procedure described in [8]. Let us define tligp2riodicLiapunov—
Floquet transformation

P(r) = ®(r)e "k,
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Fig. 4. Stability charts of a cantilevered pipé¢s = 4.2354 (6 Chebyshev modes)

where® (1) is the State Transition Matrixand exg2TR) = C2. Substitution of
x = P(r)Tzin Eqg. (15) results a constant coefficient matrix in the linear term:

z=T RTz+ TP 1v) [ M —1f (f,op(r)Tz) ] ‘ (16)

If T is the matrix of eigenvectors & then the coefficient matrix of the linear term
is in Jordan formwhere the stable and unstable manifolds can be separated. As
P(t) is a periodic function ofr with principal period 7, it can be expanded in
Fourier series Substituting this expansion in the nonlinear term and doing some
trigonometrical simplifications we can easily separate the constants and the time-
dependent terms. Because of the symmetric nonlinearities the center manifold
reduction is trivial and we have to follow the same procedure described at the end
of Section 3.1. )

The bifurcation analysis was performed at some typical points in plage
4.31 where linev = 0.15 crosses the curves of the stability boundary. The results
of the analysis are summarizedTable 2

One can notice thdtip (N = 1, 2,9, 10) andfold (N = 5, 6) bifurcations
bounded unstable regions alternate each other Mapf bifurcation bounded re-
gions N = 3,4,7, 8) in between. On the right-most boundafy & 11) and at
the bottom N = 12) Hopf bifurcation can be observed. The bifurcation anal-
ysis yielded negativ®oincaré—Liapunov constanthat meanssuper-critical bi-
furcations occur. However, at points 2,6 and 10 the centre manifold has pos-
itive coefficient in the nonlinear term, i.subcritical flip and fold bifurcations
take place at these points, respectivelig. 5 shows a bifurcation diagram at
(U, v) = (4.31, 0.15) changing the value af ! from 0.024 to 0.028 by 1d. On
the vertical axis are the values §{t) acquired with the frequency corresponding
to the principal period AT. At the beginning, thdlip bifurcation can be seen
(2T periodic solution), and aftew—! = 0.0251 it goes through Blopf bifurca-
tion with period something greater thanTLOThe period of the solution decreases
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Table 2 Overview of some critical points (at = 1 andU = 4.31)

N v wT her bif. P-L
(@?+p2=1) | type || constant

1 0.15 | 0.0238963 -1 flip —236.9
2 0.15 | 0.0331140 -1 flip 82.14
3 0.15 | 0.0428920 atip Hopf || —9.320
4 0.15 | 0.0505600 atip Hopf || —0.058
5 0.15 | 0.0565510 1 fold —44.82
6 0.15 | 0.0602135 1 fold 31.69
7 0.15 | 0.0733880 atip Hopf || —1.981
8 0.15 | 0.0757590 atip Hopf || —1.839
9 0.15 | 0.0974200 -1 flip -8.125
10 || 0.15 | 0.1620620 -1 flip 2.673
11 0.15 | 0.1976700 axip Hopf —2.390
12 || 0.033 0.1 atip Hopf | —3.915

U=431.v=015

U=431,v=015

003 . . L . .
0.024 0.0245 0.025 0.027 0.026 0.0265 0.027 0.0275
Relative frequency, w™! = a/w

Fig. 5. Bifurcation and waterfall diagrams

slightly, and when it equals I0a sequence of period doubling follows (before
w~! = 0.027). And finally the chaotic behaviour appears.

All of these can be observed on the waterfall diagram on the right side of
Fig. 5. the peak in spectrum dt = 0.5, the other peak arounfl = 0.1 that refers
to theHopf bifurcation and the “noise” of chaotic solution whes* > 0.027.

4. Conclusions
Equations of motion of a cantilevered pipe were derivedo@grangian equations

and Hamilton’s principle Nonlinear stability analyses were performed both in
autonomous and time-periodic case. The stability charts show that the harmonic
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perturbation of the fluid velocity with certain valuesiwoéndw can destabilize the

equilibrium of the pipe even fdd < U, as also pointed out byARDOUSSIS in
[5] and [6]. On the other hand, the fact that appropriate harmonic perturbation can
stabilize otherwise unstable equilibria, it may be very useful when great fluid mass
has to be transported in thin elastic pipes.

The numerical method based on theebyshev polynomiais very powerful
in the case of the analysis of continuum pipe models. Discretizatidfqofl11)
results finite system with many degrees of freedom. The numerical calculations
show different stability charts depending on the number of modes sensitively.

The bifurcation analysis shows that stafifleand 2I' periodic solutions are
on the left side of the unstable regions boundeddigt andflip bifurcations re-
spectively. In case dflopf bifurcationsthe solutions converge to a stable torus. An
unstable region bounded by flip bifurcations was scrutinized by numerical simu-
lations and its bifurcation and waterfall diagrams were created. This investigation
shows the presence of chaotic solutions. Further simulations should be carried out
to get more information about the nonlinear behaviour of solutions in the other
unstable regions.
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