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Abstract

The paper deals with the interdisciplinary problem of coupled diffusion and convention of cross-
coupled heat and moisture. After a summary on the well-known and often used cases, the general
governing equations are given with examples.
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1. Introduction

The problem of heat and moisture transfer has two basic roots. One of them is
very practical. Namely, in case of hygroscopic materials, e.g. composites, one
has to handle the moisture problems, because of the well-known reason, i.e. the
hygroscopic property similarly to the temperature sensitivity may cause degradation
and finally may lead to failure.

The other reason why to generalize the heat and moisture transfer problems
is a very theoretical one. Namely, the most often used couplings of mechanics are
between the displacement, temperature and moisture fields according to modified
equation of Duhamel–Neumann, to Gough–Joule, Soret and Dufour effects.

The possibility of symbiosis is obvious: the theory needs the experimental,
practical verification, the practice requires theoretical support.

On the other side, we are going to extend the well-known coupling, let us
call it crosscoupling, among the objects of transfer (displacement, heat, moisture)
to the modes of transfer (diffusion, convection). In this paper the radiation effects
are excluded.

The reason is doublefold: according to our knowledge there is no sense to
speak about moisture radiation. On the other hand, even though the moisture dif-
fusion through the heat conduction influences the heat radiation, the consideration
would be more philosophical than mathematical.

A good example for mode-coupling are the heat-exchangers, e.g. [1], where
heat conduction and convection are applied. Another example for both the object



162 A. SZEKERES and J. ENGELBRECHT

coupling (heat and moisture) and mode coupling (conduction, convection and ra-
diation) is the case of repairing buildings by fiber reinforced composite materials
[2].
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Our intention in this study covered by the following pages is summarized on
theFig. 1. TheTable 1 contains the needed comments. In the boxes marked by 1 to
8 the wellknown, or at least known expressions and equations are collected in a brief
form. The goal of our current investigations is to analyse the boxes 9 and 10, e.g.
analysing the coupled diffusion and convection of moisture and coupled diffusion
and convection of crosscoupled heat and moisture. The nonframed boxes are in
connection to radiation; we are not going to deal with these cases, as mentioned
before.
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Table 1.

Case Law, equation, expression Reference
1 Heat conduction Fourier’s law For our
2 Heat convection Newton’s expression purpose see,
3 Heat radiation Stefan-Boltzmann’s

law
e.g. [3]

4 Moisture diffusion Fick’s law E.g. Fick’s
orig.publ.: [4]

5 Moisture convection KLaRa-1 [5]
6 Coupled conduction and

convection of heat
Theory of heat-exchangersE.g. [1]

7 Crosscoupled heat and
moisture diffusion

See the reference [6]

8 Crosscoupled heat and
moisture convection

KLaRa-2,-3 [5]

9 Coupled diffusion and
convection of moisture

?

10 Coupled diffusion and
convection of crosscoupled
heat and moisture

?

2. Brief Summary of Well-known Cases

According to Fourier’s law ofheat conduction the heat fluxq (Wm−2) can be
calculated,

q = −k∇T, (1)

wherek (Wm−1 K−1) is the conductivity,∇T (Km−1) is the temperature gradient
and for further use we have also to define the diffusivityDT (m2 s−1)

DT = k

ρcp
, (2)

whereρ (kg m−3) is the density andcp (J kg−1 K−1) is the heat capacity.
Theheat convection can be calculated by Newton’s expression,

q = h (Ts − Tl) , (3)

whereh (Wm−2 K−1) is the coefficient of heat transfer,Ts andTl are temperature
of solid surface and of liquid, resp.

Theheat radiation is described by the Stefan–Boltzmann’s law.
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According to Fick’s law of moisture diffusion the moisture flux f
(kg m−2 s−1) can be calculated,

f = −Dm∇m, (4)

whereDm (m2 s−1) is the moisture diffusivity,∇m (kg m−4) is the moisture con-
centration gradient.

Themoisture convection can be described by

f = hm (ms − ml) , (5)

wherehm (ms−1) is the coefficient of moisture transfer,ms (kg m−3) andml are
moisture concentration on the surface of the porous material and in the bounding
gas or liquid, resp. For further details see [5].

The problem ofcoupled conduction and convection of heat is well elaborated
because of the theory of heat-exchangers. We refer only to the literature, e.g. [1]
and recall the expression of coupled coefficient of heat transportH (Wm−2 K−1)
in case of a plane wall,

q = H (T1 − T2) , H = 1
δ

k
+ 1

h1
+ 1

h2

. (6)

Fig. 2 explains all the notations. Thecrosscoupled heat and moisture diffusion is
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Fig. 2.

discussed in [6]. We recall only the constitutive law of the problem containing the
second sound phenomenon, too.

F + τ Ḟ = −D∇, (7)
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where

F =
[

f
q

]
, τ =

[
τm τT m
τmT τT

]
, D =

[
Dm DT m

DmT DT

]
, ∇ =

[ ∇m
∇T

]
(8)

are the flux matrix, the relaxation time matrix, the diffusivity matrix and the gradient
matrix, resp. The elementsτT m , τmT and DT m, DmT express the crosscoupling
between heat and moisture.

Thecrosscoupled heat and moisture convection has been analyzed in [3]; [5].
The constitutive law in this case is the following:

F = H
h
	, (9)

where

H
h

=
[

hm hT m
hmT h

]
, 	 =

[
	m
	T

]
(10)

are the transfer matrix and difference matrix, resp. Here againhT m andhmT express
crosscoupling.

It has to be mentioned, that due to the Onsager’s reciprocity relations the
following expressions are held:

τ̂T m = τ̂mT , D̂T m = D̂mT , ĥT m = ĥmT . (11)

In Eq. (11) the∧ indicates, that the reciprocity relations are valid only after dimen-
sional fitting of the coefficients.

3. Coupled Diffusion and Convection of Moisture

The considerations are based on the same case of heat, e.g. on the theory of heat-
exchangers and also the results are in analogy. Starting with the notations shown in
Fig. 3, the derivation gives the following expressions for the moisture fluxf driven
by the moisture concentrationsm1 andm2 on the two sides of a porous plane wall:

f = Hm (m1 − m2) , (12)

whereHm

(
ms−1

)
is the coupling coefficient of moisture transport for a plane wall:

Hm = 1
δ

Dm
+ 1

h1
m

+ 1

h2
m

. (13)

Even the analogy to the same case of heat is obvious (c.f.Eqs (12, 13 and 6)), there
are basic differences. First of all it is worth to mention, that while heat transfer
is related to the microstructure of material, the moisture transfer is characterized
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by the macrostructure. Consequently, the question of inertia arises, which gives
a velocity limit of the process. There is another kind of limit, too, especially the
temperature limits of phase change: freezing and evaporation. In both cases the
moisture transfer problem disappears: either no pores exist, or there is no moisture
any more. To make the practical application of the results easier, we refer to the
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Fig. 3.

notion of moisture potential or normalized moisture concentration introduced earlier
(see [5]). By this, instead ofEq. (12)

f p = Hm

(
m p

1 − m p
2

)
(14)

applies. In case of a liquid, e.g.mp
1 = 1 and in case of a humid gas, e.g.mp

2 is
equal to the relative humidity.

4. Coupled Diffusion and Convection of Crosscoupled Heat and Moisture

As it is apparent looking at theFig. 1, this is the synthesis of the previous cases, as
marked by 6, 7, 8, 9 on the figure and either referred to (6, 7, 8 ), or discussed (9)
in details.

Based on theFig. 4 we are able to express the crosscoupled moisture and
heat fluxes driven by the moisture and heat differences(m1 − m2) and(T1 − T2)
through the plane wall with thicknessδ. The final results are as follows:

F = H ∗ D∗, (15)



COUPLING OF GENERALIZED HEAT 167

f
q

δ

m2, T2
moisture
convection
h2

m , h2
T m

moisture flux
heat flux

heat
convection
h2

T , h2
mT

heat
conduction
DT , DmT
(k)

m1, T1
moisture
convection
h1

m , h1
T m

heat
convection
h1

T , h1
mT

moisture
diffusion
Dm , DT m

Fig. 4.

where

H∗ =
[

Hm HT m
HmT H

]
, D∗ =

[
m1 − m2
T1 − T2

]
, (16)

HT m = 1
δ

DT m
+ 1

h1
T m

+ 1

h2
T m

, (17)

HmT = 1
δ

DmT
+ 1

h1
mT

+ 1

h2
mT

. (18)

Egs. (15 – 18) contain all the subcases mentioned before.

5. Example: Why Does an Amphora Keep the Water Cool?

In this section, as an application of the previous results, we try to explain what, e.g.
the ancient Greek, European peasants, American Indians and Arab fellahs have
known, or at least applied for centuries.

Let us start according to theFig. 5 and as a first approximation of the problem
we neglect the curvature and model the wall of amphora as a plane one, even
supposing thick walls. It is not a bad approximation compared to the gain in
calculations.

We make the first model by pure physical considerations.
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a. There is amoisture transport between the inner (i) content (water) and outer
(o) air through the porous wall of amphora. The moisture fluxf is driven
by the(m1 − m2) moisture concentration difference and, of course, by the
(T1 − T2) temperature difference. The direction off is i → o (Fig. 5).

b. There is aheat transport between the outer environment of amphora and
its inner content through the wall. The heat fluxq is driven by the already
mentioned temperature and moisture concentration difference. The direction
of q is o → i (Fig. 5).

c. There is anevaporation process on the outer surface that consumes heat. At
this first approach: if this heat is bigger thanq, then no heat gets in, by other
words, the water inside the amphora won’t be warmed up.
In other words, this is nothing else, but the moisture convection on the outer
surface, leaving aside the possible phase change.



COUPLING OF GENERALIZED HEAT 169

d. The material properties, technology of manufacturing and usage regimes –
all these define theefficiency of amphora and are collected inTable 2.

e. Theproper geometry from a physical viewpoint requires small ratio of surface
to volume. This is obvious because of the least heat loss. In addition, the
wall should be thick because of better isolation.

Table 2.

Requirement Property Practical hint
1 Good porosity big Dm

small DT m

Made of clay, faster
burning→ bigger pores

2 Good moisture convection∗
on the inner surface

big h1
m

big h1
T m

Rough inner surface

3 Good moisture convection on
the outer surface

big h2
m

big h2
T m

Motion improves it, that is
why it is handled more
often than needed for
drinking.

4 Pure heat conductivity small DT (k)
big DmT

Made of clay with bigger
pores

5 Pure heat convection on the
outer surface

smallh2
T

smallh2
mT

Smooth outer
surface

6 Pure heat convection∗
on the inner surface

smallh1
T

smallh1
mT

Marked by∗ are in
contradiction, it needs
compromise.

7 Even the radiation is
excluded of our investigations
we mention that amphora
should be kept in shade

Keep in shade

8 Proper geometry small A/V
thick wall

Close to sphere with
thick wall

The second approach is based onmathematical modelling. Based on the
Eqs. (15 – 18), (13) and (6), using the parameters given inFig. 5, the heat fluxq
can be calculated. If

q ∼= 0, (19)

the amphora keeps the temperature. If it is bigger than zero(q ≥ 0), the warming
up is only the question of time.

Let us collect again the requirements of the good working amphora.

– Material: good moisture diffusion, pure heat conduction.
– Geometry: sphere with thick wall.
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– Manufacturing: fast burning (bigger pores), smooth outer, rough inner walls.
– Using: often shaken (to break the boundary layer), kept in shade (to prevent

radiation).
– Summing up: sphere with thick wall, made of fast burnt clay, when using

keep in shade and shake often.

Even we haven’t mentioned yet, there are, of course, artistic requirements,
too and these make the amphora an unforgettable treasure of the human culture.

6. Summary

Based on the previous results we extended the problem of heat and moisture transfer
in both directions: coupling of modes, as diffusion and convection and crosscou-
pling of objects as heat and moisture. Finally, the coupled diffusion and convection
of crosscoupled heat and moisture were formulated. The equations describing this
extended process contain all subcases.

As an example an amphora was described as a container, that keeps the content
cool.

Concerning the future of this investigation we have to mention the following
possibilities. For numerical calculation, the approximation by spherical wall could
be better compared with the plane wall. Taking into account the second sound
phenomenon in the constitutive laws makes the result applicable to high-rate pro-
cesses in special hygroscopic composite materials, e.g. in aircraft technology. The
extension of the theory of similarity for this case may give a further opportunity to
verify the theory by experiments.

To perform the numerical calculations, several new coefficients of material
properties are needed, first of all the crosscoupling coefficients. Using the Onsager’s
reciprocity relations (see the expressions (11)), the number of coefficients to be
determined is smaller, they can be obtained easier, but the dimensional fitting of
coefficients in this case is needed.
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