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Abstract

This paper gives a detailed system theoretical treatment of the heat flux theory in the linear heat
conduction based on the Laplace transformation method. By restricting the investigations to the
simplest geometrical structures occurring in the practice, the authors prove the criteria guaranteeing
the existence of the convolutional representations of the heat flux depending on the known temperature.
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I. The System Theory of Heat Flux
I.1. Introduction

Let us consider the linear heat equation in one space varable

109(x,t)

Aﬂ(x,t):; ot t>0 xel, (N

wherel denotes afinite, ora semi-infinite interval, k denote the Laplace operator,
and the thermal diffusivity, respectively. We shall assume inthe sequel thatthe initial
condition equals zero

9 (x,0) =0, (2)

for every inner point of the interval. The unicity of the solution of] is guaranteed
by the initial condition Z) and the boundary conditions. However, from the view-
point of the theory and applications of the heat flux, the knowledge of the boundary
conditions is generally superfluous and uninteresting.

The main problems of the theory of the heat flux can be formulated as follows.
Letan arbitrary linear heat conduction process be given satistyin@), moreover
let X, Xg, X1, X2, (X1 # Xp) be arbitrary points of .

Problem |. What is the connection between the heat flux at the pairgnd the
temperature at the poing on the time interval O< t < oo, provided that the
temperature determines the heat flux uniquely.
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Problem I1. What is the connection between the heat flux at the poirnd the
temperatures at the pointg x,, on the time interval 6< t < oo, provided that the
temperatures determine the heat flux uniquely.

Problem I11. What is the connection between the heat flux at the pqiaind the
temperature and heat flux at the poimtsx,, respectively, on the time interval
0 <t < oo, provided that the latter determine the previous quantity uniquely.

We shall call Problem Il the pure problem and Problem Il the mixed problem
of the theory of heat flux, respectively.
The heat flux is by definition:

(X, 1)
ax (3)

whereK denotes the thermal conductivity. In the sequel we assume that the quan-
tities «, K are constants not depending on position, time and temperature.

By restricting ourselves to the simplest geometrical structures, we shall solve
the above problems by the application of the Laplace transformation method using
a system theoretical treatment. We assume that the functions under consideration
are Laplace transformable and that the time functions, which are obtained by the
inverse Laplace transformation, describe the concrete heat flux problem.

jx,t) ==K

[.2. The Solution of Problem |
By transforming {), and taking into accoung), we obtain
ABO(X,S) — E@(x, s) =0, 4)
where -
O(x,8) = fo 9 (x, t)e > dt. (5)

Let ®1(X, 5), ®>(X, s) be two linearly independent solutions 6j.( The general
solution is of the for

O(X,8) = a(s)0O1(X, 8) + B(5)O2(X, ), (6)

wherea(s), B(s) are arbitrary functions of the complex varialsle
We have by §)

®(X0s S) = Ol(s)@l(xo, S) + IB(S)®2(X0’ S)’ (7)
O'(x,8) = a(9)B)(X,9) + B(5)O%(Xo, S). (8)

. ..d . . .
(' denotes the derlvatlvg;). It is easily seen that the quanti®(x, s) does not
determine uniquely the value @¥(x, s) in general. In this paragraph we shall
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restrict ourselves to such structures, where only one of the linearly independent
solutions of §) should be considered. Let us denote this solutionf oy, s). So
we have

OK,s) = a(s)f(x,s),
O(X0,8) = a(s)f(xo,9), 9)
O'(x,s) = a(s)f'(x,s),

and
f’ (X, S)
/ — I v 1
®'(x, ) © (X0, 9) 6.5’ (10)
KO'(x,s) = —KO(Xg,S) 9 (11)
T " (%0.9)
By introducing the notations
f’ (X, s)
H (X, Xp,8) = —K Fx0.9) (12)
(11) can be written as
J(X, 8) = O (X0, S)H (X, Xo, S). (13)

The equationi3) describes a transmission system, the scheme of whichisiillustrated
in Fig. 1.

O(x0, 8) | H(x, x0,8) | Jx 8)

Fig. 1. Transmission system model of the heat flux

This scheme symbolises the connection between the input (temperature) and
the output (heat flux). The functioH (X, X, S) being the quotient of the Laplace
transforms of the output and input, is called the transfer function of the system. (see
FODOR[2], KAPLAN [3]).

It follows from the convolution theorem of the Laplace transformation that if
there exists the time functiam(x, %, t) having the Laplace transfortd (x, X, S)
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then by inverting 1), (6), the heat flux can be written in the form of the convolution
integral

t
j(x,t)=/ ¥ (Xo, t — T)N(X, X, 7) d, (14)
0

having a great practical importance.
If the transfer function has no inverse in the time domain, then, as we shall
see in special cases, the function

1
H (X, Xo, S)

will be invertable. Denoting its inverse By (X, Xo, t), (13) is equivalent to the
following convolution type integral equation of the first kind

t
/ j X, Th™X, X, t — ) dt = ¥ (X, 1). (15)
0

We cannot give the explicit form of the solution df5) in general, sincelf)
cannot be reduced to an integral equation of the second kind, the solution of which
is represented by Neumann series. However, in special cases we give the explicit
solution of (L5), but not in the form of a convolution type integral.

So the knowledge of the criteria deciding about the two cases above is very
important in the practice. We shall prove these simple criteria for the following
geometrical structures

The semi-infinite rod (or wall) = (0, c0).

The region bounded internally by a sphére- [a, c0), a > 0.

The spherd = (0,a),a > 0.

The region bounded internally by an infinite circular cylinde [a, c0),
a> 0.

The infinite circular cylindet = [0, a), a > 0.

[.2.1. The Semi-infinite Rod (or Wall)

f(x.s) = e VEX, (16)
(see ©DOR|[Z], DOETSCH[7]). We have by {2) that
H (X, X0, S) = K\/Ee‘ﬁ(x‘x") 17)

holds. Letx > xg. Then

K (X — Xg)? ]  xxp)?
h(x, X, t) = —1le & 18
X0 U= Tk [ 2kt (18)
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see for example (OKIN — PRUDNIKOV [14]). It follows from (14) that

(X — X)?

1
/KT |: 2kt

Letx < Xg. Then the inverse Laplace transform df) does not exist, since

. K t _(X*X())2 d
j(X,t):E/ ?(Xg,t — 1) —1|e & 7, (29)
0

Jim \/Ee\/f(xx‘” £0  (seep). (20)
. . 1 .
The inverse of the functior———— exists. We have by/]

X, Xo, S

2
h* (X, %o, t) = —f [ x— XO) ] 1)

and taking into accouni.p) the following integral equation will be obtained

exp[ (X — X0)2:|
/ j (X, T) Akt ) dr = K\/Zﬂ(xo,t). (22)
Jt—1 k

The kernel of §) and its derivatives of arbitrary high order vanish foe 0, if

X < Xg. S0 @2) cannot be reduced to an integral equation of the second kind and
the explicit solution ofZ2) cannot be given. (seeeRYO—STOLLE [5]) For x = X

we obtain from {3), (15):

J(Xo,8) = K\/E(“)(Xo, S) =

Let xo be an arbitrary inner point of the domalin Since® (%, t) is absolutely
continuous and (xg, 0) = 0, by inverting £3) we obtain

S). (23)

/ 819(X0, 7) 1
Jk it
The convolution occurring on the right-hand sideZ) (contains the derivative of

the temperature (not the temperature itself). So we rewrite this formula as follows.
LetO< e < t.

dr. (24)

j (X0, 1) =
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An integration by parts gives,

a9 (Xg, T) 209 (Xg, T)
t —— t—e ———————
— 9T gr = lim 0t 4
0o Jt—71 =0 Jo Jt—1

| 9o, t —#) 1/“8 ¥ (Xo, T)
= | = = _Z d
8@0[ Ve 2o (t-1)? T}

_ t—e
= lim |:LXO"( &) _ }ﬁ(xg,t)/ dr
2 0

e=0 V3 (t—1)32
L1 /t—s 9 (Xo, 1) —19gx0, 2
2 Jo (t—1)2 |
l?(Xo, t— 8) - l?(Xo, t) Z?(Xo, t)
= |
Jl},[ NE NG
L1 /t—s 9 (Xo, 1) —19gx0, 2
2 Jo t—1)2 |
¥ (Xo, t) 1/t ¥ (Xo, t) — ¥ (X0, T)
— 4= dr. 25
NG 2 Jo (t —1)3 ’ (@3)
Finally we have
. K |9t 1 /t ¥ (Xo, t) — ¥ (X, T)
) = — + = . dr |. 26
] (Xo, 1) W{ NG 2 ), o)} T} (26)
In other form )
_ K 929(x,t)
)= ——— t> 0. 27

Let nowxg = 0 and let# (0, t) be absolutely continuous. Then by inverting the
formula 3)

K /t 09(0,7) 1 dr + K (0, 0)
‘L" S
Ve Jo 9t -t Jkt

is obtained. Analogously to the previous case a simple calculation shows that
K (0, 0)

Vit

j@O. 1) =

(28)

falls out and

t _
[0 = {—ﬁ(o’t) + }/ 201 -390 df} . (29)
0

vre | Vb2 (t—1)3
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In other form

_ K 829(x, 1)
Xt)= ——>" {50 30
j(x, 1) AR > (30)

This formula can be found inHAM — SPANIER][6], the conditions of the validity
of the above formula, however, are not givendh [

[.2.2. The Region Bounded Internally by a Sphere

f(x,s) = (31)
(see []) and we obtain
KXO\/7 KX
H(X, X, 8) = ——e V00 . =22 ° e Vo, (32)
We get from J|] that
K Xo (X — X0)? xxg)?
h(x, Xg, t —1|le &t
X% U = o ix [ 2ict ]
KXo(X = Xo) [ (X — X0)2j|
———exp| —— |, X > Xo, 33
2tiemt P et -0 (33)
and
RVRY.
h*(x, Xo, 1) = ﬂ exp[_u]
KXp/mt Akt
Xo Kkt o 2
ex -1+ — e ¥ du, > X 34
foO p( " x2> /fﬂ =X 9

hold. By the aid of 4) we obtain the corresponding integral equation related to
the heat flux.
We have by §2) that

/ k

H (Xg, Xo, ) = K s 4+ — (35)
K Xo

holds. By taking into accouni.g)

S K S K
J(Xp,S) = K,/ —®(Xp, S —0O(Xg,8) = K—0O(Xo, S —0O(Xy,5) (36
(X0, S) \/:(o)-i-xo(o) \/E(o)-FXO(o)()
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will be obtained. Finally, by an inverse Laplace transformation we get the formula
30 (Xo, T)

at K
dr + — 9 (Xo, t 37
Mf VT r+XO (Xo, 1) (37)

for every inner point, of the domain.
Moreover, by 24), (26)

j (XOs t) -

. K | 9o, t) 1/tﬁ(xo,t) 9 (Xo, T)
Xo, 1) = —— + =
Joe. b w—[ NS —r—

holds. Similarly we obtain that, ifa, t) is absolutely continuous, then the validity
of (38) holds true also for the limit point = a.

dr } + 5z?(xo,t) (38)
Xo

1.2.3. The Sphere
sh \/E X
f(x,8) = — 2 (39)

and

Kxg(shfx—[xchf>
xzsh\/: o

The case = 0 can be excluded from the discussion, since the heat flux equals zero
for x = 0. (40) has no inverse fox > xg since lim_, ., H # 0. The inverse of
(40) exists forx < xg. Applying

H (X, Xo, S)

S -1 nd S
(1-evie) =) emvie (41)
v=0

we have

H (X, Xg,8) = K % {(1 — \/§x> i exp(—\/g[(l + 2v)Xp — x])
( \f ) Zexp( \f [(1+ 2v)%o + x])} (42)

By the application of a theorem of @ETSCH[7] (page 206) it is easily seen that
the term by term inversiorip) is admissible.
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So applying {] we get

—KXo | = [[(1+2v)% — x]? [as20xg X2
h(X, X, ) = m |:Z ( el —-1)e At
v=0
o0
[(1+2v)Xo + X] _ [a+20xg4x1?
-1 e At
* ; ( 2t
K Xo ad [(14+2v)xg+x12
—_— 14+ 2v)Xy + X)e &t
2x2t /it {g(( )% +X)
*° 2
_ 1ar20xg-x?
_ Z((l + 2v)Xg — X)€ 4t :| . (43)
v=0

Forx > xo we apply Heaviside's Expansion Theorem and obtain

X

e X SInanYO 2.
h*(x, Xg, t) = : e 2 t>0, Xy #0, 44
(X, Xo, t) Kx n§=0 Sina, > 0 # (44)

(see QRSLAW-JAEGER [1] ). | herea, denotes then-th positive root of the
equation
oa=1tga. (45)

Important special cases:

—2% o _9f,
X = Xo # Oa h*(XO’ X0, t) = K_XO Ze x2 ts (46)
n=1

t>0
of t
2 o) e X2
Xo = O, h*(x,0,t) = —K—’; ““ST (47)
Qn
n=1

Letx = Xg # 0. The explicit form of the heat flux can be obtained in the following
way. By @0) we have

S
K SCh\/;XO
H(Xo, X0, 8) = X_O_K\/Eis (48)
h /2
S KXO

and
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K 51+e*2\/§>‘0
H(Xg, X0,8) = ——K /o—T——\+
v 0.9 Vky_g2v/Bo

oo
— 5 — K\/§<1+ e*2\/§X0> Z *2"\/%(0
Xo K

v=0

RN Sl

_K\/EZ e 20+ /Fx0
- __K\ﬁ_zK\fZezvfx‘) (49)
(13) gives

K s S — s
J(Xo,8) = X—O®(xO, S) — K\/;("D(XO, S) — ZK\/; Z e 2V/200008  (50)
v=1

Taking into account3p), (38) and applying 4], we obtain by the application of a
Laplace invertation the formula

. Kﬂ(XOs t) K ﬂ(XO, t) 1 / ﬂ(XO, t) - ﬁ(XOs T)
) = _ :
] (Xo, 1) Yo — |: NG + 2 ), = 1')2 i|

2v2x2
—9 (X, t)* _Z\/— ( Kto —1> (51)

provided that eithekg is an inner point offl or x, = a and®(a, t) is absolutely
continuous. (We denoted here the convolutiori.by

In other form

v2x2 [ 202x2
0
()

(52)

Ko (X0, 1) K 320(x,t) 5000 K Z

-X’tzi——i—
D= T TR ad =

I.2.4. The Region Bounded Internally by an Infinite Circular Cylinder

f(x,s) = Kp (\/gx) , (53)

We have
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whereKg denotes the modified Bessel function of the second kind of order zero.

Soitis
S
S K
H(X, %o, 8) = K,/ —————+,
K S
KO( —Xo)
V k

whereK; denotes the modified first order Bessel function of the second kind. From
the asymptotic expansion of the Bessel functions it follows that

Kl( EX> X
K 7 o | 20e/Z0x (55)
S X
o)
K
holds fors — oc.

If X < Xpthen limy_, ., = co and 64) has no inverse Laplace transform. We
show that $4) has the inverse fax > Xy and we determine this.

Eg. (54) has the following properties for > %. Lety > 0 be arbitrary.
Then

(54)

1. H(x, Xp, S) is analytic in the half plane Re> y.
2.

y+ioco
/ [H (X, Xg, S)| ds < oo. (56)
y—ioco
3. Inthe half plane Re > y H(X, Xy, S) tends uniformly to zero with respect
to argsif |s| — oo. Then an easy application of a theorem iLErscH

[3] (p. 236) or BERG[8] (p. 27) shows thaH (X, X9, S) has its inverse in the
above half plane and

1 y+ioco
h(X, Xo, 1) = ﬁ / . H (X, Xo, S)est dS, (57)
y—ioo

moreoverh(X, X, t) is a continuous function dafandh(x, x, 0). Applying
the Fourier—Mellin inversion integral

27i y—ioco K A
Ko —Xo
K

The integrand has a branch pointir= 0, so we choose the following contour
on the complex plane (sé&g. 2).

( )L )

. K1 —X

K y+ico X K

h(x, Xo,t) = =— et —————dxr. (58)



330 L. GARBAI and T. FENYES

f B A
c' DTN
L/

A=X Y

Fig. 2. Applying of Fourier-Mellin inversion integral on the complex plane

By omitting the details, the evaluation of the inversion integral above gives
the following results.

2K [
h(x, Xo,t) = * f gruty2
T Jo

" J1(Xu) Yo (Xou) — Y1(Xu) Jo(XoU) d
JE(Xou) + YZ(XoU)
h(x,x,t) = 0. (59)
Here Jy, Yo denote the nullth order Bessel functions of the first and second &ind,

Y, denote the first order Bessel functions of the first and second kind, respectively.
Finally letx < xg. If X < Xo, then the above properties 1,2,3 are satisfied

u, t >0,

1 . .
for the function—. However, the inverse of’E also exists forx = X (see the

procedure in @RSLAW—JAEGER [1] p. 388).
The following results are obtained:

h®(x, xo,t) = 2 g Ut
Kr 0
" J1(XU) Yo (Xou) — Y1(Xu) Jo(Xou)

J2(xu) + Y2(xu)

du, t>0, (60)

h®(x, X, 0) = O. (61)
Forx = Xg
h®(xo, X0, 0) = o0 (62)
4 00 efkuztd
he (o, X0, ) = o / : " t-0 (63
K2Xo Jo  U[JIF(XoU) — Y7 (XoU)]

which follows from G0) by the application of the relation

2
L@Y@) — b@V1(2) = —. (64)



HEAT CONDUCTION THEORY 331
GOLDSTEIN [10] proves that the inverse of
K, (v/1) (65)

. . . . 1
exists and can be represented by the aid of Whittaker functions. Se, :E)E,
u =1, our result can be considered as a generalisatiorOpf [

1.2.5. The Infinite Circular Cylinder

K 5@ (66)
)

where |y, |1 denote the modified nullth, and first order Bessel functions of the
first kind, respectively. By the application of the inversion formula we obtain the
following:

Letx < Xo, then

We have

H(X, Xo, S) = -

2K - Ji(anX)
h(x, %o, t) = Z 2 tJl(anxO) t >0, (67)
h(X, %0, 0) = 0, (68)
whereq,, denotes the positive roots of the equation
Jo(aXo) = O. (69)
Letx > Xo, then
h*(x, Xot) = —% (1+ ; %e—wﬁt) . t>0, (70
h®(x, X, 0) = O. (71)
Let X = Xo, then
h®(X,%p,0) = —oo, (72)
h*(Xg, Xot) = “Kx (1 + Z e kit ) > 0, (73)

wherep, denotes the positive roots of the equation

Ji(Bx) = 0. (74)
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The following statement holds:

Statement. Let us consider the casés B, D. The heat flux can be represented
as a convolution integral if and only ¥ > %. Forx < Xg the heat flux satisfied a
convolution type integral equation of the first kind. Let us consider the casEs
The heat flux carbe represented as a convolution integral if and only if X < %.

For X > Xo, the heat flux satisfies a convolution type integral equation of the first
kind.

Moreover, ifx = Xg, thenthe solutions of the corresponding integral equations
can be given in explicit forms in the cas@sB, C provided that the poing is either
an inner point of the domaih, or is the limit point ofl , where the temperature is
absolutely continuous.

Remarks. 1.) In the discussion of the case of a region bounded internally by an
infinite circular cylinder, we obtained

Jx,8) =K. 2V X T g(x9). (75)
K S
s ({7)

GARBAI [11] gets an integral equation for the heat flux as follows. Since

Ko (\/§x0> J(X,8) = K\/gKl (\/gx) ®(Xo, S). (76)

By inverting both sides of this equation and applying the convolution theorem of
the Laplace transformation, the integral equation.

X2 X2
t g win Kx [t e wn
j(x, dr = -2 [ 900 ) d 77
[icofrar =3 [voont——se @

is obtained. 17) holds for every paifx, X)) and its kernel function is simpler than
the corresponding ones given B0), (63). The disadvantage of () lies in the
fact that there occurs a convolution on the right-hand side of it.

It is surprising that{7) has no analogue in the case of the infinite circular
cylinder.

2.) Our results can be well applied in the practice, if the heat flux has a
convolutional representation. Then by measuring the temperature in discrete time
intervals, the convolution can be evaluated by known numerical methods. On the
other hand, there are numerical methods also for solving convolutional integral
equations. We shall deal with these methods in a following paper.

3.) The condition of the absolute continuity of the temperature in the limit
points is a sufficient condition, which holds in the practice. It is, however, not
necessary.
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|.3. Harmonic Processes

Itfollows fromthe theory of the linear systems that the results related to the harmonic
processes are simple consequences of our results discussed abayd @edfwe
substitutes = iw in (13) in Part I, wherew is the angular frequency of the harmonic
oscillation, and replace the Laplace transforms by the nota@gmsi w), J(X, iw)
then the equation

J(X, iw) = H(X, X0, | 0)O(Xo, i ) (78)

will be obtained.®(x, iw), J(X, iw) are the complex amplitudes of the harmonic
input (temperature), and harmonic output (heat flux), respectiv(x, %, iw) is
the complex transfer characteristics of the system .(78) describes this transmis-
sion system, the scheme of which is illustratedrig. 3.

O(zo,iw Tz iw
2 [H (3, 20, 1)) "2

Fig. 3. Transmission system model of heat flux for harmonic processes

Practically, the most important quantity is the amplitude characteristi¢cs,
Xg, w) IS the absolute value of the transfer characteridtcs, x, i w).

The amplitude characteristics describe the frequence dependency of the quo-
tient of the amplitudes of the output and input (reasonance curve). Let us determine
these in the structures discussed above.

[.3.1. The Case of the Half Space

By (17) in we have

H(X, Xg, lw) = K,/i—wexp{—‘/i—w(x—xo)} (79)
K K

AX, Xg, w) = K /gexp[— lﬂ(x—xo)]. (80)
K 2K

Forx > Xg there exists one resonance frequency

B 2k
© (X —X)?

and

(81)

Wr

and
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Amax = Ki\/é (82)
e(X — Xo)

1.3.2. The Region Bounded Internally by the Sphere

i 1 iw
H (X, Xo, i) = K% (,/ g ;) eV E 0, (83)
K

and by calculating its absolute value we get

A(X, Xg, @) = KXO\/ ,/ p e p[ \/7(X—XO):| (84)

having one resonance frequency for X:

By (32

KXo 2X
=0 142221, 85
@ X(X—X())2|:+X Xo } (85)
1.3.3. The Sphere

By (40) we have

oo e

x? sh, / —xo
K
Let us introduce the notations

[ w w
a =X s oo = Xo 2%’ (87)

so after some calculations we obtain the formula

H (X, Xp, iw) = K Xo # 0. (86)

KXo
A(Xv Xo, C()) = 7
202(chPa — sinf @) — o shay — a sin 2v ch 2x + shPa + Slnza
X
S|’12ao + Slnzoc()

(88)
and forx — 0 we have
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K [k
A(X, 0, a)) = ﬁ\/g

X\/ZO!Z(ChZOC — sinfa) — @ shay — a sin 2x ch v + shPa + sinf a.
(89)

1.3.4. The Region Bounded Internally by the Infinite Circular Cylinder

We have by %4)

FNE
s
>

i Ka (el )
H (X, X0, |Cl)) =K,/ — ) (90)
e
K
the transfer characteristics can be expressed by Kelvin functions. Since
ker,z + ikei,z = e 2" Ky (ze‘%) z>0, p >0, (91)

(see ABRAMOVITZ—STEGUN [17]), we get

keP |Zx + ke [Lx
13 Wk Wk
A(X, Xg, w) = K p = = (92)
ker? | —Xo + kei® | —Xo
K K

(We omit the lower index notation far = 0).

1.3.5. The Infinite Circular Cylinder

By (66) we have

e

i |1(e|]‘r‘ X)

H(X, X0, i0) = K = —— 1% 2 93)
K s

|0(eIZ X0>

ber,z+i bei,z = e 371, (ze‘%), (94)

e

since
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(see P]), consequently

be?. [ Zx + be | Zx
A(X, Xg, ) = K\/§ a K (95)
0 o w b w ’
ber —Xo + beP —Xo
K K

(where the notation is omitted far= 0).
The formulas 92), (95) are useful for numerical calculations, since the values
of the square sums can be found in the tablrK<Y OUNG [13].

=

|.4. The Solution of Problem |1

Let
OX,s) = a(9)01(X,S) + B(S)O2(X,S). (96)
If the temperature is known in the points x,, then
O(X1,8) = a(5)O1(X1,S) + B(S)O2(X1, 9), (97)
O(X2,8) = a(S)O1(X2, S) + B(S)O2(X2, S) (98)

forms an equation system for the unknovar(s), 8(s). On the other hand, we get
from (96)

J(x,s) = —Ka(5)®](X, ) — KB(S)OL(X, S). (99)
Determining the operatots(s), f(s) from (3.4) and substituting their values$6)
we get:

‘](X$ S) = H]_(X, Xl, XZ’ S)®(X1s S) + HZ(Xv Xl, X2s S)®(X2’ S)7 (100)

B2(X2, S)OL(X, S) — O1(X2, S)OL(X, S
Hix. X1 x2.8) = —K 2(X2, 5)O5(X, S) 1(X2, S)O5(X, S) ’ (101)
O1(X1, S)O2(X2, S) — O1(X2, S)O2(X1, S)

O1(X1, S)OL(X, S) — O2(X1, S)O4 (X, S
Ho(x. X1 X0.8) = —K 1(X1, S)O5(X, ) 2(X1, 9)O7(X, ) _ (102)
O1(X1, S)O2(X2, S) — O1(X2, S)O2(X1, S)

(100 describes a transmission system represented in the sdfigrhe

If Hi(X, X1, X2, S), Ha(X, X1, X2, S) have Laplace inverses, then by inverting
both sides of102), we obtain that the heat flux can be represented as the sum of
two convolution integrals.

The operatordi;, H, are called the pure transfer functions of the system. In
the following we show the application of the theory to the case of a finite rod (or an
infinite wall of finite thickness). We shall see that in special limit cases, the flux can
be expressed explicitly by the temperatures, but not by the sum of two convolutions.
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O(x1, S
AN VRNV

002, ) L

Ho(x, x1 ,x2.,8)

@ J(X, S)

Fig. 4. Transmission system model of the heat flux. The pure problem.

|.4.1. The Case of the Finite Rod

Assumex, > X;. Then it holds the following.

Statement 1; The heat flux can be written as the sum of two convolutions if and
only if x; < X < Xo.

If X = X1, X = Xo, then the heat flux can be expressed explicitly by the temperatures,
provided that the pointg, X, are inner points of the domain.

In our case
Ox,8) =eVeX,  O(x, ) =e Vix (103)
By determining the expressionsi(), (102 we have

se Vi@e 0 | gy/F-x)
Hl(Xv X1, X2, S) = K,/ — , (104)
K 1— e 2/20-x)
[5e VExPe—21 4 g/t
—K /= .
K

1— e—Z\/g(Xz—Xﬂ

Ha(X, X1, X2,8) =

(105)

If X < Xg, 0rX > Xy, then (L04), (105 cannot be inverted simultaneously. Obvi-
ously letx < xq, then (04) does not tend to zero f& — oo. Letx > % then
(105) does not tend to zero fer— oc.

By expanding the expression

1
1— e*Z\/g(Xzfxl)
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in a geometric series we have

H1(X, X1, X2, S)

o]
K |3 {Z e/ 220+ DX~ (@D x1—x]
K v=0

o0
n Zeﬁ[2vxz(2u+l)X1X]:| , (106)

v=0

00
S
Ha(X, X1, X2, 8) = —K /—{E e VR0 @ Dxx]
K
v=0

00
n Z e_\/g[(zv+l)xz—2vxl—x]:| . (107)
v=0

If X; < X < Xp, then the arguments of the exponential functions are negative and
the infinite series can be inverted term by term. (The validity of this procedure can
be easily seen by a theorem ofillSINSKI's operational calculus. {].)

Denoting the inverse ofLQ6) by hi(X, X1, X2, t), and the inverse ofLQ7) by
ho(X, X1, X2, 1), we get

K 2 (200 + DX — (2v + D)xq — X2 )
hi(X, X1, X2, t) = -1
1%, X1, X2, 1) 2t/ it [; ( 2t
y exp[_ [2(v + DXo — Qv + D)xq — x]Z}
it
2\ [ [2v%2 — (2v 4+ 1)Xx; — X]?
-1
(T )
_ _ 2
8 exp[— [2uX2 — (2v 4+ D)X; — X] }} , (108)
it
hi(X, X1, X2, 1) = —ho(X, X1, X2, t). (209)
We have for heat flux
(X, 1) = 9 (X1, )" (X, X1, X2, 1) + 7 (X2, 1)*ha(X, X1, X2, 1), (110)

where the convolution is denoted hy
Letx = x;, andx; be an inner point of . Then we can write:

o
S S 5
Hix X%, 8) = K /> 2K > Y ev/izvewl - (117)
K K =0

o
S S
Ha(x, X1, %2, 8) = —2K, [~ Y e v/Fl@noel (112)
K
v=0
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. [s .
Let us denote the inverse &fi — K./ — by p4(t), the inverse oH, by p,(t). By
K
taking the inversion procedure we get

K o /202X — X1)? ) [ v2(Xo — xl)z]
) = LR g)exp| -2
p1(t) = ;( pr p =
K o= (2 + D20 — x1)? )
t) = — —1
pa(t) = ;( o
2 1 2 _ 2
xexp[—( v D70 = x) ] (113)
Akt
Taking into accountl(10), it can be written that
S S — s
J(X1,8) = K\/i@ (X1, S) + 2K O (x4, S)\/jz e_\/;[ZU(XZ—Xl)]
K K =0
S — s
—2K O (X, s)\/j > /@ +D0exD] (114)
k v=0

By inverting both sides ofl(L4) and taking into accoun®8), (26) we get the heat
flux as

t —
joa,t) = p_K_ V(Xl’t)Jr}/ 9 (X, 1) — 9 (Xe, T) er
0

NETH IRVA 2 t—1)5
t
—|—/ o1(T)0 (X, t — 1) dt
0

t
—I—/ 02(T)0 (X2, t — 7) dr. (115)
0
In the other form
) K a%ﬁ(xl,t)_i_/t (90wt — 7
, = —— T ,Jt—1)drt
] (X1 N A 1 1

t
—I—/ 02(T)0 (X2, t — 7) dr. (116)
0



340 L. GARBAI and T. FENYES

Let x = Xy, then by omitting the details we have

. K | 9, t) 1/t (X2, 1) — 9 (Xp, T)
t = — — d
J (X, 1) — |: NG +2 A (t—r)% T:|
t
- / pr(0)D (ot — 7) e
0
t
—/ 02(T)0 (X, t — 7) dr. (117)
0
In other form
. K 920, t) [
j(xo, 1) = ——=—g— —/ p1(T)¥ (X2, t — 7) dr
K 9tz
\/: 0
—/ 02(T)0 (X, t — 7) drt. (118)
0

So the statement has been proved.

1.4.2. The Case of a Region Bounded by Two Concentric Infinite Circular
Cylinders

®1(X,8) = lg (\/§x> , ®s(%,s) = Kg (\/gx) . (119)

From the theory it follows that

s
Hi(X, X1, x2,8) = K, /-
K

Then

X
)
\_/
A~
S
7N

~
o
N
T
X
x
= N———"
=
N
T
X
N— [ N———
+
o
N

<3
N
Sy
x
i
N~
o
N
74
X
N
|
o
N
1ol
X
N
N~
-~
o
N
mf‘\lm
X
i
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/S
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Therefore the heat flux can be represented by the sum of two convolutions if and
only if X, < X < Xo.

Obviously, if the condition is not satisfied, then from the asymptotic expan-
sions of the Bessel functions

@ ~ ——, K@~ [, z- o0,
2Tz 27

it follows that, apart of constant factors, the asymptotic representatiohs bk
are equal toX04) and (L05), respectively.

If the condition holds, therH;, H, have Laplace inverses, since it can be
easily shown that the properties 1.2.3 are validHprH,. MoreoverH,, H, are
even and single-valued function gff so they can be inverted by Heaviside's
Expansion Theorem.

The following results are obtained for> 0:

oo
hi=2Kk ) na (122)
n=1
x [30(nX2) Y1 (1nX) — J1(0nX) Yo (i1nx2) 1e ™t
X1[Jo(mnX2) Y1(nnX1) — J1(nnX1) Yo(nnX2)] + X2[I1(mnX2) Yo(mnX1) — Jo(nnX1) Y1(nnX2)]

and
o0
hy = —2Kk Y 73 (123)
n=1

. [Jo(1nXD) Y1(1nX) — J1(nnX) Yo(nnxg) et
X1[Jo(mn*2) Y1(nnX1) — J1(nmnX1) Yo(nnX2)1 + X2[J1(nnX2) Yo(nnX1) — Jo(nnX1) Y1(nnX2)]

and
limh; = !lm0 h, = 0. (124)

t—0
The numbem, are the roots of the equation

Jo(nx1)Yo(nx1) — Jo(nX2)Yo(nxy) =0 n=12...). (125)

|.5. The Solution of Problem |11

The temperature and the heat flux are known in the poirasidx,, respectively.
We have the equation system

®(X1’ S) = Cl(S)@]_(X]_, S) + :3(8)62()(1’ S)’ (126)
J(X2,8) = —Ka(9)0](xz,s) — KB(S)O5(Xz, S). 227)
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By substituting the solution ofLl6), (127) to (101) we get

J(X,S) = V1(X, X1, X2, S)®O (X1, S) + Vo(X, X1, X2, S)J (X2, S). (128)

vy K @&(Xz)(?’g(x) - K ®'2(X2)/®’1(X) ’ (129)
O1(X1)O5(X2) — O2(X1) O (X2)

v, O1(X1)O5(X) — O2(X1) O (X) (130)

O1(X1) O (X2) — O2(X1) O] (X2)

These equations describe a transmission systent{ges.

O(x1, 8) Vi( )
— Vi(x, x1, X2, S| \

s

@ J(x, 9)

Jxo, s

Vax, x1 ,x2.,9)

Fig. 5. Transmission system model of the heat flux. The mixed problem

Ifthe operatord/,, V, have Laplace inverses, then by invertig)( we obtain
the desired representation of the heat flux. The oper&to¥s are called the mixed
transfer functions.

1.5.1. The Case of Finite Rod

The following statements hold.

Statement 2: The heatflux can be represented as the sum oftwo convolutionintegrals
if and only if X; < X < X. If X = Xq, andxy is an inner point of domain, then the
heat flux has an explicit representation.

Indeed, we have

S efﬁ(ZXZ*Xl*X) + efx/%(xfxl)
Vi(X, X1, X2, 8) = K, /= , (131)
K 14+ e/ Etex)
e—\/g(x+xz—2x1) + e—\/g(xz—x)

14+ e—Z\/E(Xz—Xﬂ

Vo (X, X1, X2,S) =

(132)

Repeating briefly the idea of solution of the Problem Il we get ttzl)( (132) are
simultaneously invertible only in the casexf< X < x,. Denoting the inverses
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by v1, v,, the following expression will be obtained:

K B i(_l)v ([2(1) + DX — (2 + D)xq — X]2>
2/t v=0 2«t

. _ 2
8 exp[_ [2(v + )Xo Aftv + Dxg —Xx] }

o0 _ w12
n Z(_l)v ([vaz (2v + )X — X] B 1)
v=0

v1(X, X1, X2, t)

2kt
[2v% — (2v + )X — x]z]}

(133)

K oo
v2(X, X1, X2, ) = N {Z(—l)”[Z(v + Dxz — (2v + Dx1 — X]
v=0

y exp[_ [2(v + DXo — (2v + 1)X1 — x]z}

it

+ 3 (=D[Q2v + DXo — 2vX1 — X]
v=0
y exp[— [(2u + )Xo — 2uXq — x]z]} ’

134
it ( )

Forx = x; we have by 131), (132

o0
S S 5
Vo= KD 4+2K [ S (e i,
K K =0

o0
Vo = 2) (-~ V@bl -y (135)

Denoting the inverse o¥; — K\/E by &1(1), the inverse ol by &,(t) and taking
K

their inversions

o0 2 _ 2 2 _ 2
gl(t) — K 1\ (21} (XZKt Xl) _ 1) eXp|:—U (XZ Xl) j|,

Kt

|
ﬁ
A
dng
e

(2v + D%(X2 — x1)?
4ict

E2(t) = Z( 1)"(2v + 1) exp[ } (136)

t\/—
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are obtained. Taking into accouiBf) we have
S S — s
J(a.9) = Kﬁ@(xl, s) + 2K O (x1, s)\ﬁ (e Vi)
K K '—0

1230x,9) Y (~1)’e Vi @hoex, (137)
v=0

Applying again a Laplace inversion, b3, (26) (in Part I) the heat flux can be
represented as

, K| 9(x, 1) 1/tl9(X1,t)—l9(X1, T)
) = — 4= ; d
J(Xl ) ANTTK L \/f 2 0 (t _ -[)j TJ

t t
+/ E1(D)0 (X, t —1)dT + / E(1)] (Xo, t — T)dr. (138)
0 0

In other form

K 920 (Xq, 1)

t t
LASLLAG LN / E1(7)9 (X0, t — 7) dr + / £(7)0 (X, t — 7) .
JE otz 0 0

(139)

J(xg, 1) =

I.5.2. The Case of a Region Bounded by Two Concentric Infinite, Circular
Cylinders

The mixed transfer functions can be calculated from (129), (130) and are of the

) BB
([ ()
() )
(7)) )

The heat flux can be written as the sum of two convolutions if and oy<f x <
Xo.
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This can be shown quite similarly to the corresponding case of the Problem
II. The following results are obtained:

o0
vy =2Kk Y 1 (142)
n=1

. [Y1(inX2) HL0nX) — Y1(inxX) Jo(hnxp) Je ™ot
X1[Y1(AnX2) J1(AnX1) — Y1(AnX1) I1(AnX2)] + X2[ Jo(AnX2) Yo(knX1) — Jo(AnX1)Yo(AnX2)]’

o
v =2 Y Anx (143)
n=1

. [Jo0nX) Y2 (inX) — J1(enx)Yo(Anxp)Je ot
X1[Jo(AnX1) Y1 (AnX2) — J1(AnX2)Yo(AnX1)] + X2[ Jo(AnX2) Yo(AnX1) — Jo(AnX1)Y1(AnX2)]

and

limuvy =limwv, = 0. 144
t—0 U1 t—0 v2 ( )
An > 0 are the roots of the equation

Jo(AX1) Y1(AX2) — Ji(AX2) Yo(AXy) = O. (145)

|.6. Alternative Solution Methods

The theory of the fractional calculus has been applied first ABg&a [L1] in the
investigation of the heat flux. By using time Laplace transformation it has been
shown in [L1] that the connection between the temperature and heat flux can be put
down by the application of a semiderivative and its inverse. In the case of a semi-
infinite rod, this connection can be represented by the semidifferential conducting
law

K 829 (x,t)
Vo otz
The Laplace transform of the general solution of a heat conduction problem for zero
initial value in an infinite wall of finite thickness (or in a finite rod) is of the form

j(x,t) = > 0. (146)

O s = aGeViXt gV (147)
SO
(X5 = —\/ga(s)e\/f“r\/gﬁ(s)eﬁx, (148)

from which the formula

O'(X,s) — \E(a(x, s) = [@’(o, s) — \E(a(o, s)} eV (149)
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can be deduced, representing the connection between the Laplace transforms of the
temperatures and heat flux, at the points-(R), respectively.
By the definition of the heat flux, taking the inversion &f)(we have

1 1
(%, 0) = —/Kpeom 9 (x, 1) + = {j (0.) +y/Kpe= 9 (o, t)} L.
ot2 2 9t3 3
(see [L1]).

Il. Transient Heat Conduction in Composite Systems
[1.1. Introduction

In technical practice one often encounters transient heat conduction problems in
composite systems consisting of solid layers, e.g., walls of buildings, walls of
furnaces, heat insulation of pipelines, etc.
Investigating these involves solving the simultaneous system of differential
equations
Aﬁi=£%, i=12...,N (151)
K ot
under prescribed initial and boundary conditions, where:
If we assume that the temperature depends only on one space coorgijnate,
in addition to time, and that the temperature of the system at thettim® was
zero, then problems of the type indicated above can be redefined mathematically in
the following way:
From among the solutions of the system of heat equations
A (X, 1) = 1 ovi

, i1 <x <Ii < o0, i=1,2,...,N, (152)
ki ot

we are to determine the one that satisfies the zero initial condition at thé tnte
and the continuity conditions at the separating surfaces (or points) with co-ordinates
li

Di(i, ) = Bigalli, 1),
. a1 (X, 1) _ k. 0ip1(X, 1)
Loax e, ax

—-K — T N\Nji+1
The simplest composite systems in practice are the following:

, i=12...,N—-1

x=l;

I. Composite plane walls dfl layers.
II. Composite hollow spheres ™ layers.
lll. Composite hollow circular cylinders dfl layers.
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1)1(‘[3 t)
I;
€0 Ki
—_— 0

NS

Fig. 6. The scheme of transient heat conduction in composite heat systems

The following figure indicates the domainfor each of the three cases.

We offer solutions for these three basic problems in our paper. In the first
structure we choosky = 0, but in structures Il and lll; = a > 0, as we do
not consider the process in the interior of the system in the domaig 0 <
lg). Temperatures will only be considered in the pointividing the individual
conductors, atthe beginning of the systéyygnd atits end( ), which are important
special cases in technical practice, and whose investigation, as we are going to see,
makes a clear system-theoretic approach possible.

Problems of the types shown above are discussed in the literature using the
method of Laplace transformation (ség [ ikov [16]). However, even in the case
N = 2, the Laplace transforms of the temperatures become complex expressions
whose inversion — with the exception of some special cases — poses insurmountable
difficulties. This fact was also stated byEGER in [3].

In this paper we are going to present theeBULIS-BERG inversion method
[8], [17] in the system - theoretic investigation of heat conduction problems of the
type shown above. The greatest advantage of this method is that it is fairly easy
to apply for arbitrarily large values dfl, so the number of heat conducting layers
with different physical properties is not limited.

I1.2. Determining the Laplace Transform of Temperatures

After applying the Laplace transformationtg. (L51), considering the zero initial
condition, we obtain the following transformed expression

S :
AG;(X,9) = PO (X,9), G./—, i=12...,N.  (153)
Ki
In the special structures investigated by us:
Plane walls )
270 (X, S)
T = g0 (X, 9). (154)
Sphere

920; (X, 9) N 200;i(X,s)
X2 X X

= g?0; (X, 9). (155)
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Cylinders
3?0i(X,8)  190i(X,8)
2 T x  ax G Bi(X,s). (156)
(See, e.qg., 1)
Let us introduce the Laplace transforms of the heat flux€s,t)
a0 (X, 1)
= _Ki _—
at
Mn@:/’hame“m, i=12...,N. (157)
0

For the sake of simplicity, let us use the notatiav, t), j (i, 1), @(;), J(;) for

the temperatures, heat fluxes and their Laplace transforms in the polintsn be
demonstrated that the relationship between the transforms of the temperatures and
heat fluxes occurring at the input with coordinhignd exit with coordinaté_; of

thei-th heat conductor can be established using the so-called transfer matrix

A B(S)
A9 = ( Ci(9) Di(s) )

of thei-th layer in the following form:

O ;) Ai(s) Bi(s) O(li_1) .
( J() ): ( Ci(s) Di(s) )( ‘](II—Z:) ) =12 ...,N. (158)

For structure | the entries of the transfer matrix can be found.irFpr structures
Il and Il we have computed the values, and we will get back to them later.
Let us now consider the system consistind\dieat conducting layers. Then
the following matrix relationship prevails between the temperatures and heat fluxes
at the input of the system and at the exit of thith heat conductor

ol \ _( A B ®(lo)
(MM)‘(G@'E@)(M@)’ (159)
where
— — i—1
e [ A Bi(s) \ _ . .
HQ_(G®.5®>_EAﬂ@ i=12...,N, (160)

andH,(s) = A (s), and in particular, for = N

Oln) Y\ _ ( A Bi(® ©(lo)
(Mm)—(a@ E@)(um)’ (161)
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J(e())v J(en)
O(£o), O(£n),

Fig. 7. Linear transmission system of transient heat conduction in composite systems

which describes the operator relationship between the input and exit of the system of
heat conductors, and which can be schematically represented as a linear transmission
system as follows:

It is apparent that the combined transfer matrix of the two systems is equal to
the product of the two transfer matrices. Two boundary conditions must be given
in order to solve the problem. One of the two pertains to the beginning (input) of
the system of heat conductors, the other to the end (output). If two of the operators
Oo), (), Jg), J(N), are known, then the other two can be determined from
(160).

Now we are going to write the Laplace transforms of the temperature we are
most interested in far the most important boundary condition occurring in technical
practice.

1. Temperature is given at both ends of the system. Then

Ol = 01g 2N "B L o402 i—12... N (162)
Bn Bn

2. Heat flux is given at both ends of the system. Then fros6)(

Dn . J(n)
@I = —J I p— — .
(lo) (O)CN + z.
o) = I SN AP 5108 i—12 N (163)
Cn Cn

3. Temperature is given &, the input of the system, and the heat flux is given
atly, the output.

Similarly to the preceding cases,
ADy - BC B :
O()=0>)——N L Jly=—, i=12...,N. (164)
Dn Dn
The case involving the roles kfandly reversed can be written analogously.
4. Temperature is given &, the input of the system, and the heat flux is pro-
portional to the temperature lat, the output.
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The latter boundary condition in the form of a Laplace transform is (1):

J(In) = yO(w). (165)
Then
BiAy — AB A Dy — BiC
o) = 0y LBAN T AB F ADN =BGy 5
Dn — ¥Bn
(166)

5. The heat flux is given dp, the input of the system, and the heat flux is
proportional to the temperature &), the output.

In this case
Dy — ¥Bn
yAn — Cy
ABn —BAy - ADy+BCT
®(Ii)=J(I0)V(A' N~ Bi. N) _A| N Cn (168)
Cn — Y AN

Let us now write the entries of the transition mat#xs) for structures I, Il
and Il

I. Then, according to ERSLAW-JAEGER [1]

oY = chql;, ¢ = shql;,
Ai(s) = Di(s) =ch(l; = li_1)q;,

1
BiS = ———sh Ii_lif i
(s Kq ( 19
Ci(s) = —Kigsh(i—Ili_1)q, i=12...,N (169)
and
detAi(s) = 1
which implies
detHi(s) = 1.
.
™ _ chqli @ _ shql;

i , i
li li
Computing the entries of the transfer matrix, we obtain

I |
Ai(s) = I—l chg (i —li_y) + ar cha (I — li_y).
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We assume that the surrounding temperature is @€xot) = 0, if X < b,
orx > ly.
li_q

Bi(S) = —

sho (li — i),

iGili
li —lizq |

_ li_
Ci(s) = —KiTChqi (i —li2) + K (W - _lCIi) shgi (i —li—1),

Di(s) = |||_-|1 chg (i —li—1) — I(;,;I; shai (i —li-1), detAi(s) = Illz—zl
thus 2 | |
detH;(s) = @ i=12...,N. (170)
[ll. In this case

wi(l’ = lo(qili), wi(z) = Ko(gl)),

wherelg andKg are the Bessel functions of the first and second kind, of order
0. The entries of the transfer matrix are found to be

A(s) = lisagllo(@il)Ka(gili—1) + Kol 11(aqli—1)],
li_
Bi(s) = %[lo(qilifl)KO(Qili) — Ko(@ili—1) lo(ai1i)],
Ci(s) = Kilia@?[Ke(@il)lu(Gli—n) — l(ql)Ka(gli-p)],
Di(s) = licaGillo(@ili—)Ke(ali) + Ko(aili—) 11(qili)], (171)

where l; and K, are the modified Bessel functions of the first and second
kind, of order one. Furthermore,

Ii—l .

detA; = T i=1,2...,N,

[

consequently
[
detHi(s) = I—O.
i

Now the Laplace transforms of the temperatures at the péicen be written
explicitly with the help of the formulae obtained thus far. Unfortunately, owing
to the products of the function matrices kv (), the entries of the matriki;(s)
and, consequently, the formulae generating transforms of the temperatures are so
complex even foN > 2 that inverting them with classical methods is practically
impossible.

The following RAPOULIS-BERG inversion method fixes this problem. Next,
we are going to explain the method briefly, then we are going to invert the Laplace
transforms of the temperatures using the method.
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11.3. Applying the Papoulis—Berg Inversion M ethod to Solving the Heat
Conduction Problem

Let f(t) be a continuous function of bounded variation definedtfer 0 and
Laplace transformablef, (0) = 0 and let

F(s) = foo f(t)e St dt, s> . (172)
0

PapouLls [17] obtains the inverse o (s) without applying the Fourier—Mellin
inversion integral in the following way.
Leto > 5 be an arbitrary positive number and let us substitute

et cogx) (173)
into (172). Then by denotingf (t) = g(x), we obtain

/2 <
F(s) = l/ g(x) cos ~x - sinx dx. (174)
o Jo

Let
s=(2v + D)o, v=1223,...,

then 12
F[(2v 4+ Do] = 1 / g(x) cos’ x - sinx dx. (175)
0 Jo

Let us now define the functiog(x) to the domains < x < = by way of the

formulag(x) = g(r — x). From the theory of Fourier series it is known that the
function f (t) can be expanded into a Fourier series of the form

f(t)y =) chsin@n+1x =Y ¢, sin[(2n + 1) arccos(e™")], (176)
n=0 n=0

4 /2
C, = — / g(x) sin(2n 4+ 1)x dx. (177)
T Jo

The following formula is easily verified by mathematical induction:

> n
sin(2n + 1)x = sinx E (—1)"vg (n + v) cosV X. (178)
— v
v=0

Substituting this intoX(78), taking (L76) into account, we obtain

_E - _1\h—v v+l n+v
cn_ﬂg( 1)"v4 (n_v>F[a(2v+1)]. (179)
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Thereby the inverse Laplace transformfgf) is obtained. Indeed, the coefficients
Cn are easy to compute fror{9 onceF (s) is known, sof (t) can be determined
from (176) for an arbitraryt. For fixed values of, the speed of convergence of
(176) depends on the choice af of course.

Considering that BRG [8] has suggested that in order to accelerate the con-
vergence of176), one should not use a constant valuerobut rather — given the
asymptotic relationship betwednt) andF (s) — the productt should be chosen
to be constant (i.e., for small valuestob should be large and vice versa). From
(173 it is apparent that the value &fis constant this way. Choosing this constant

to be the midpoint of the basic intervé[), %) X = % the following formulae are
obtained:
log 2 7 (=l

= — sin2n+1)— =
o= @n+1)- NG

and

_V2log2 g L L (n+v\_[log?2
o = 8 ol -1 (n ) |:—(2v " 1)]
n (180)
Here[i] is the least integer af andt > 0. (See ERG[9].)

It is apparent that the timetakes the role of the complex variable s in the
Laplace transfornt(s) in the form (80) of the inverse transforni (t), meaning
that it is to be evaluated numerically for arbitrary fixed

Let us now apply formulal@0) for inverting the Laplace transforms of the
temperatures determined in the preceding section. For the sake of better under-
standing, let us introduce the following notations:

O(n,s) = O(n), O(o,s) = (o), In.s) = I(In), I(o,s) = I(lo),
AY = AVt = A ['—(1+2 )] BY =B (t) = [loiz(uzv)]
c® =c) = [—'Og (14 2v )] D™ = DV (t) = [—log A+ 20 )}
(181)

Then, on the basis 0i.80), we obtain the following formulad or the individual
inverses.
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The inverse of162):

o(i,t) = ‘/_IOQZZ( 1z ]Z( 1)”4”( _Z)

o @M _ g AW
x @[Io,i(z +1)]-A O
BN

log 2 B
| 20+ 1) | 21 182
+o e+ O (182)

The inverse of163):

o, t) = IIOQZZ( 1)m+3 ]Z( 1)? 4”( —Z)

o BWC® _ A0 p®
x1J IO,L(2U+1) By —A Dy
2t cy

(v)
[IN, I—(2 + 1)] A*(U) } (183)

The inverse of164):

(i, ) = leogZZ(_l)M[%] Z(—l)”4”<:irz>

log
{o [IO,
4 [I log 2, +1)} B‘(U)} (184)
N> v - .
2t D(N)

V) () W)~ ()
Ai DN - Bi CN
(v)

Dy

(2 + l):| .

The inverse of170):

(it = ﬁl‘)gzZ(—w[?] Z(—l)”4v(:i_z>®|:lo, 'Ozitzavﬂ)}
n=0 v=0

y (Bi(”) AD — AV Bﬁ,”)) +AVDY — B 55
X .
Oy - 7By
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The inverse of169):

2, = le—(’gz Sy Y e (” i “)

n=0 v=0 n—v
log 2 By — Dy’
% J [IO, 0920, 4+ 1)} x LN TN (186)
2 Ch —7AN

The inverse of169):

s, t) = \/5170922(_1)”4_[2] Z(_l)v4v (: i_ Z)J |:|0’ IOZLtZ(ZU + 1):|
n=0 v=0

y ( AVB® — BV Aﬁj)) — AYDY — BWCW a8
X .
Cy’ — v AY

From formulae 158), (160 and (L81) it is apparent that

( Ai(U)(t) Bi(U)(t) )
Ci(U)(t) Di(U)(t)

log 2 log 2
i-1 [ A L(l—i—Zv) Bi_j L(l+2v)
- log 2 log 2 ’

j=0 Ci,j 2—t(1+21)) Di,j 2—t(1+21))

where the quantitiesy_;, Bi_;, Ci_j, Dj_; in the matrix product on the right-hand
side of the equation can be obtained from formul&é) (171) or (172), depending

. N . . log.2
on the geometric structure being investigated, putting the expresgtlenl—i- 2v)

in the place os.

Thus, if we wish to compute the temperaturg8 . . . (187) for a fixed
time,t > 0, then we must substitute the numerical values of the timéo (L898),
whereby the multiplication of function matrices is reduced to the multiplication of
numeric matrices.

This is the main advantage of the#OULIS-BERG inversion, which is the
consequence of the fact that the tilteplaces the complex varialdén the Laplace
transform of formula180).

Conclusions

The system theoretical treatment given in this paper presents a new approach of the
heat flux problem and the results can be well applied in the engineering practice.
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In those simpler cases when the heat flux can be given explicitly lay convolutional
or other type of integrals, these integrals may be computed by the application
of well-known numerical techniques. On the other hand, in the cases when the
determination of the heat flux is reduced to the solution of convolutional integral
equations, simple approximate methods are available in the mathematical literature.

Symbols

j — heat flux

J — Laplace transformed form of the heat fluy (
K — thermal conductivity

s — complex variable

t —time

X — space variable

A — Laplace operator

¥ — temperature

k — thermal diffusivity

T —time

(1]
(2]

3]
(4]

(5]
(6]
(7]

(8]
9]

(10]
(11]
(12]
(13]
(14]
(18]

16
17
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