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Abstract

This paper gives a detailed system theoretical treatment of the heat flux theory in the linear heat
conduction based on the Laplace transformation method. By restricting the investigations to the
simplest geometrical structures occurring in the practice, the authors prove the criteria guaranteeing
the existence of the convolutional representations of the heat flux depending on the known temperature.
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I. The System Theory of Heat Flux

I.1. Introduction

Let us consider the linear heat equation in one space variablex

�ϑ(x, t) = 1

κ

∂ϑ(x, t)

∂t
, t > 0, x ∈ I, (1)

whereI denotes a finite, or a semi-infinite interval,�, κ denote the Laplace operator,
and the thermal diffusivity, respectively. We shall assume in the sequel that the initial
condition equals zero

ϑ(x, 0) = 0, (2)

for every inner point of the intervalI . The unicity of the solution of (1) is guaranteed
by the initial condition (2) and the boundary conditions. However, from the view-
point of the theory and applications of the heat flux, the knowledge of the boundary
conditions is generally superfluous and uninteresting.

The main problems of the theory of the heat flux can be formulated as follows.
Let an arbitrary linear heat conduction process be given satisfying (1), (2), moreover
let x, x0, x1, x2, (x1 �= x2) be arbitrary points ofI .

Problem I. What is the connection between the heat flux at the pointx , and the
temperature at the pointx0 on the time interval 0< t < ∞, provided that the
temperature determines the heat flux uniquely.
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Problem II. What is the connection between the heat flux at the pointx , and the
temperatures at the pointsx1, x2, on the time interval 0< t < ∞, provided that the
temperatures determine the heat flux uniquely.
Problem III. What is the connection between the heat flux at the pointx , and the
temperature and heat flux at the pointsx1, x2, respectively, on the time interval
0 < t < ∞, provided that the latter determine the previous quantity uniquely.

We shall call Problem II the pure problem and Problem III the mixed problem
of the theory of heat flux, respectively.

The heat flux is by definition:

j (x, t) = −K
∂ϑ(x, t)

∂x
, (3)

whereK denotes the thermal conductivity. In the sequel we assume that the quan-
tities κ, K are constants not depending on position, time and temperature.

By restricting ourselves to the simplest geometrical structures, we shall solve
the above problems by the application of the Laplace transformation method using
a system theoretical treatment. We assume that the functions under consideration
are Laplace transformable and that the time functions, which are obtained by the
inverse Laplace transformation, describe the concrete heat flux problem.

I.2. The Solution of Problem I

By transforming (1), and taking into account (2), we obtain

�
(x, s) − s

κ

(x, s) = 0, (4)

where


(x, s) =
∫ ∞

0
ϑ(x, t)e−st dt. (5)

Let 
1(x, s),
2(x, s) be two linearly independent solutions of (5). The general
solution is of the for


(x, s) = α(s)
1(x, s) + β(s)
2(x, s), (6)

whereα(s), β(s) are arbitrary functions of the complex variables.
We have by (6)


(x0, s) = α(s)
1(x0, s) + β(s)
2(x0, s), (7)

′(x, s) = α(s)
′

1(x, s) + β(s)
′
2(x0, s). (8)

(′ denotes the derivative
d

dx
). It is easily seen that the quantity
(x0, s) does not

determine uniquely the value of
′(x, s) in general. In this paragraph we shall
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restrict ourselves to such structures, where only one of the linearly independent
solutions of (5) should be considered. Let us denote this solution byf (x, s). So
we have


(x, s) = α(s) f (x, s),

(x0, s) = α(s) f (x0, s), (9)

′(x, s) = α(s) f ′(x, s),

and


′(x, s) = 
(x0, s)
f ′(x, s)

f (x0, s)
, (10)

−K
′(x, s) = −K
(x0, s)
f ′(x, s)

f (x0, s)
. (11)

By introducing the notations

H(x, x0, s) = −K
f ′(x, s)

f (x0, s)
(12)

(11) can be written as

J (x, s) = 
(x0, s)H(x, x0, s). (13)

The equation (13) describes a transmission system, the scheme of which is illustrated
in Fig. 1.

Fig. 1. Transmission system model of the heat flux

This scheme symbolises the connection between the input (temperature) and
the output (heat flux). The functionH(x, x0, s) being the quotient of the Laplace
transforms of the output and input, is called the transfer function of the system. (see
FODOR [2], K APLAN [3]).

It follows from the convolution theorem of the Laplace transformation that if
there exists the time functionh(x, x0, t) having the Laplace transformH(x, x0, s)
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then by inverting (1), (6), the heat flux can be written in the form of the convolution
integral

j (x, t) =
∫ t

0
ϑ(x0, t − τ)h(x, x0, τ ) dτ, (14)

having a great practical importance.
If the transfer function has no inverse in the time domain, then, as we shall

see in special cases, the function

1

H(x, x0, s)

will be invertable. Denoting its inverse byh∗(x, x0, t), (13) is equivalent to the
following convolution type integral equation of the first kind∫ t

0
j (x, τ )h∗x, x0, t − τ) dτ = ϑ(x0, t). (15)

We cannot give the explicit form of the solution of (15) in general, since (15)
cannot be reduced to an integral equation of the second kind, the solution of which
is represented by Neumann series. However, in special cases we give the explicit
solution of (15), but not in the form of a convolution type integral.

So the knowledge of the criteria deciding about the two cases above is very
important in the practice. We shall prove these simple criteria for the following
geometrical structures

• The semi-infinite rod (or wall)I = (0,∞).
• The region bounded internally by a sphereI = [a,∞), a > 0.
• The sphereI = (0, a), a > 0.
• The region bounded internally by an infinite circular cylinderI = [a,∞),

a > 0.
• The infinite circular cylinderI = [0, a), a > 0.

I.2.1. The Semi-infinite Rod (or Wall)

f (x, s) = e−√
s
k x, (16)

(see FODOR [2], DOETSCH[7]). We have by (12) that

H(x, x0, s) = K

√
s

k
e−√

s
k (x−x0) (17)

holds. Letx > x0. Then

h(x, x0, t) = K

2t
√

πkt

[
(x − x0)

2

2kt
− 1

]
e− (x−x0)2

4kt , (18)
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see for example (DITKIN – PRUDNIKOV [14]). It follows from (14) that

j (x, t) = K

2

∫ t

0
ϑ(x0, t − τ)

1

τ
√

πkτ

[
(x − x0)

2

2kτ
− 1

]
e− (x−x0)2

4kt dτ . (19)

Let x ≤ x0. Then the inverse Laplace transform of (17) does not exist, since

lim
s→∞

√
s

k
e−√

s
k (x−x0) �= 0 (see [3]). (20)

The inverse of the function
1

H(x, x0, s)
exists. We have by [4]

h∗(x, x0, t) = 1

K

√
k

π t
exp

[
−(x − x0)

2

4kt

]
, (21)

and taking into account (15) the following integral equation will be obtained

∫ t

0
j (x, τ )

exp

[
− (x − x0)

2

4k(t − τ)

]
√

t − τ
dτ = K

√
π

k
ϑ(x0, t). (22)

The kernel of (8) and its derivatives of arbitrary high order vanish fort = 0, if
x < x0. So (22) cannot be reduced to an integral equation of the second kind and
the explicit solution of (22) cannot be given. (see FENYŐ–STOLLE [5]) For x = x0
we obtain from (13), (15):

J (x0, s) = K

√
s

k

(x0, s) = K

1√
ks

s
(x0, s). (23)

Let x0 be an arbitrary inner point of the domainI . Sinceϑ(x0, t) is absolutely
continuous andϑ(x0, 0) = 0, by inverting (23) we obtain

j (x0, t) = K√
πk

∫ t

0

∂ϑ(x0, τ )

∂τ
· 1√

t − τ
dτ. (24)

The convolution occurring on the right-hand side of (24) contains the derivative of
the temperature (not the temperature itself). So we rewrite this formula as follows.
Let 0 < ε < t .
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An integration by parts gives,

∫ t

0

∂ϑ(x0, τ )

∂τ√
t − τ

dτ = lim
ε→0

∫ t−ε

0

∂ϑ(x0, ατ)

∂τ√
t − τ

dτ

= lim
ε→0

[
ϑ(x0, t − ε)√

ε
− 1

2

∫ t−ε

0

ϑ(x0, τ )

(t − τ)
3
2

dτ

]

= lim
ε→0

[
ϑ(x0, t − ε)√

3
− 1

2
ϑ(x0, t)

∫ t−ε

0

dτ

(t − τ)
3
2

+1

2

∫ t−ε

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ

]

= lim
ε→0

[
ϑ(x0, t − ε) − ϑ(x0, t)√

3
+ ϑ(x0, t)√

t

+1

2

∫ t−ε

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ

]

= ϑ(x0, t)√
t

+ 1

2

∫ t

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ. (25)

Finally we have

j (x0, t) = K√
πκ

[
ϑ(x0, t)√

t
+ 1

2

∫ t

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ

]
. (26)

In other form

j (x, t) = K√
κ

∂
1
2 ϑ(x, t)

∂t
1
2

, t > 0. (27)

Let now x0 = 0 and letϑ(0, t) be absolutely continuous. Then by inverting the
formula (23)

j (0, t) = K√
πκ

∫ t

0

∂ϑ(0, τ )

∂τ

1√
t − τ

dτ + Kϑ(0, 0)√
πκt

(28)

is obtained. Analogously to the previous case a simple calculation shows that
Kϑ(0, 0)√

πκt
falls out and

j (0, t) = K√
πκ

[
ϑ(0, t)√

t
+ 1

2

∫ t

0

ϑ(0, t) − ϑ(0, τ )

(t − τ)
3
2

dτ

]
. (29)
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In other form

j (x, t) = K√
κ

∂
1
2 ϑ(x, t)

∂t
1
2

, t > 0. (30)

This formula can be found in OLDHAM – SPANIER[6], the conditions of the validity
of the above formula, however, are not given in [6].

I.2.2. The Region Bounded Internally by a Sphere

f (x, s) = e−√
s
κ

x

x
(31)

(see [1]) and we obtain

H(x, x0, s) =
K x0

√
s

κ

x
e−√

s
κ (x−x0) + K x0

x2
e−√

s
κ (x−x0). (32)

We get from [4] that

h(x, x0, t) = K x0

2t
√

πκt x

[
(x − x0)

2

2κt
− 1

]
e− (x−x0)2

4κ t

+ K x0(x − x0)

2x2t
√

κπ t
exp

[
−(x − x0)

2

4κt

]
, x > x0, (33)

and

h∗(x, x0, t) =
√

κx

K x0
√

π t
exp

[
−(x − x0)

2

4κt

]

− 2κ

K
√

πx0
exp

(
x0

x
− 1 + κt

x2

)∫ ∞
x0−x
2
√

κ t
+

√
κ t
x

e−u2
du, x0 ≥ x (34)

hold. By the aid of (34) we obtain the corresponding integral equation related to
the heat flux.

We have by (32) that

H(x0, x0, s) = K

√
s

κ
+ k

x0
(35)

holds. By taking into account (13)

J (x0, s) = K

√
s

κ

(x0, s) + K

x0

(x0, s) = K

s√
κs


(x0, s) + K

x0

(x0, s) (36)
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will be obtained. Finally, by an inverse Laplace transformation we get the formula

j (x0, t) = K√
πκ

∫ t

0

∂ϑ(x0, τ )

∂τ√
t − τ

dτ + K

x0
ϑ(x0, t) (37)

for every inner pointx0 of the domain.
Moreover, by (24), (26)

j (x0, t) = K√
πκ

[
ϑ(x0, t)√

t
+ 1

2

∫ t

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ

]
+ K

x0
ϑ(x0, t) (38)

holds. Similarly we obtain that, if(a, t) is absolutely continuous, then the validity
of (38) holds true also for the limit pointx0 = a.

I.2.3. The Sphere

f (x, s) =
sh

√
s

κ
x

x
, (39)

and

H(x, x0, s) =
K x0

(
sh

√
s

κ
x −

√
s

κ
x ch

√
s

κ
x

)

x2sh

√
s

κ
x0

. (40)

The casex = 0 can be excluded from the discussion, since the heat flux equals zero
for x = 0. (40) has no inverse forx ≥ x0 since lims→∞ H �= 0. The inverse of
(40) exists forx < x0. Applying

(
1 − e−2

√
s
κ x0

)−1 =
∞∑

ν=0

e−2ν
√

s
κ x0, (41)

we have

H(x, x0, s) = K
x0

x2

[(
1 −

√
s

κ
x

) ∞∑
ν=0

exp

(
−
√

s

κ
[(1 + 2ν)x0 − x]

)

−
(

1 +
√

s

κ
x

) ∞∑
ν=0

exp

(
−
√

s

κ
[(1 + 2ν)x0 + x]

)]
. (42)

By the application of a theorem of DOETSCH[7] (page 206) it is easily seen that
the term by term inversion (42) is admissible.
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So applying [4] we get

h(x, x0, t) = −K x0

2xt
√

πκt

[ ∞∑
ν=0

( [(1 + 2ν)x0 − x]2

2κt
− 1

)
e− [(1+2ν)x0−x ]2

4κ t

+
∞∑

ν=0

( [(1 + 2ν)x0 + x]
2κt

− 1

)
e− [(1+2ν)x0+x ]2

4κ t

]

− K x0

2x2t
√

πκt

[ ∞∑
ν=0

((1 + 2ν)x0 + x)e− [(1+2ν)x0+x ]2
4κ t

−
∞∑

ν=0

((1 + 2ν)x0 − x)e− [(1+2ν)x0−x ]2
4κ t

]
. (43)

For x ≥ x0 we apply Heaviside’s Expansion Theorem and obtain

h∗(x, x0, t) = −2κ

K x0

∞∑
n=0

sinαn
x0

x
sinαn

e− α2
n

x2 κt
, t ≥ 0, x0 �= 0, (44)

(see CARSLAW-JAEGER [1] ). I hereαn denotes then-th positive root of the
equation

α = tg α. (45)

Important special cases:

x = x0 �= 0, h∗(x0, x0, t) = −2κ

K x0

∞∑
n=1

e− α2
n

x2 κt
, (46)

t > 0

x0 = 0, h∗(x, 0, t) = − 2κ

K x

∞∑
n=1

αne− α2
n

x2 κt

sinαn
. (47)

Let x = x0 �= 0. The explicit form of the heat flux can be obtained in the following
way. By (40) we have

H(x0, x0, s) = K

x0
− K

√
s

k

ch

√
s

κ
x0

sh

√
s

κ
x0

(48)

and
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H(x0, x0, s) = K

x0
− K

√
s

k

1 + e−2
√

s
κ

x0

1 − e−2
√

s
κ

x0

= K

x0
− K

√
s

κ

(
1 + e−2

√
s
κ

x0

) ∞∑
ν=0

e−2ν
√

s
κ

x0

= K

x0
− K

√
s

κ
− K

√
s

κ

∞∑
ν=1

e−2ν
√

s
κ x0

−K

√
s

κ

∞∑
ν=0

e−2(ν+1)
√

s
κ x0

= K

x0
− K

√
s

κ
− 2K

√
s

κ

∞∑
ν=1

e−2ν
√

s
κ

x0. (49)

(13) gives

J (x0, s) = K

x0

(x0, s) − K

√
s

κ

(x0, s) − 2K

√
s

κ

∞∑
ν=1

e−2ν
√

s
κ

x0
(x0,s). (50)

Taking into account (36), (38) and applying [4], we obtain by the application of a
Laplace invertation the formula

j (x0, t) = Kϑ(x0, t)

x0
− K√

πκ

[
ϑ(x0, t)√

t
+ 1

2

∫ t

0

ϑ(x0, t) − ϑ(x0, τ )

(t − τ)
3
2

dτ

]

−ϑ(x0, t)∗
K

t

∞∑
ν=0

1√
πκt

e− ν2x2
0

κ t

(
2ν2x2

0

κt
− 1

)
(51)

provided that eitherx0 is an inner point ofI or x0 = a andϑ(a, t) is absolutely
continuous. (We denoted here the convolution by∗.)

In other form

j (x0, t) = Kϑ(x0, t)

x0
− K√

κ

∂
1
2 ϑ(x, t)

∂t
1
2

− ϑ(x0, t)∗
K

t

∞∑
ν=1

1√
πκt

e
ν2x2

0
κ t

(
2ν2x2

0
κ t −1

)
.

(52)

I.2.4. The Region Bounded Internally by an Infinite Circular Cylinder

We have

f (x, s) = K0

(√
s

κ
x

)
, (53)
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whereK0 denotes the modified Bessel function of the second kind of order zero.
So it is

H(x, x0, s) = K

√
s

κ

K1

(√
s

κ
x

)

K0

(√
s

κ
x0

) , (54)

whereK1 denotes the modified first order Bessel function of the second kind. From
the asymptotic expansion of the Bessel functions it follows that

K1

(√
s

κ
x

)

K0

(√
s

κ
x0

) ∼
√

x0

x
e
√

s
κ (x0−x) (55)

holds fors → ∞.
If x ≤ x0 then lims→∞ = ∞ and (54) has no inverse Laplace transform. We

show that (54) has the inverse forx > x0 and we determine this.
Eq. (54) has the following properties forx > x0. Let γ > 0 be arbitrary.

Then

1. H(x, x0, s) is analytic in the half plane Res ≥ γ .
2. ∫ γ+i∞

γ−i∞
|H(x, x0, s)| ds < ∞. (56)

3. In the half plane Res ≥ γ H(x, x0, s) tends uniformly to zero with respect
to args if |s| → ∞. Then an easy application of a theorem in DOETSCH
[3] (p. 236) or BERG [8] (p. 27) shows thatH(x, x0, s) has its inverse in the
above half plane and

h(x, x0, t) = 1

2π i

∫ γ+i∞

γ−i∞
H(x, x0, s)est ds, (57)

moreover,h(x, x0, t) is a continuous function oft andh(x, x0, 0). Applying
the Fourier–Mellin inversion integral

h(x, x0, t) = K

2π i

∫ γ+i∞

γ−i∞
eλt

√
λ

κ

K1

(√
λ

κ
x

)

K0

(√
λ

κ
x0

) dλ. (58)

The integrand has a branch point inλ = 0, so we choose the following contour
on the complex plane (seeFig. 2).
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Fig. 2. Applying of Fourier-Mellin inversion integral on the complex plane

By omitting the details, the evaluation of the inversion integral above gives
the following results.

h(x, x0, t) = 2κ K

π

∫ ∞

0
e−κu2t u2

× J1(xu)Y0(x0u) − Y1(xu)J0(x0u)

J 2
0 (x0u) + Y 2

0 (x0u)
du, t > 0,

h(x, x0, t) = 0. (59)

HereJ0, Y0 denote the nullth order Bessel functions of the first and second kind,J1,
Y1 denote the first order Bessel functions of the first and second kind, respectively.

Finally let x ≤ x0. If x < x0, then the above properties 1,2,3 are satisfied

for the function
1

H
. However, the inverse of

1

H
also exists forx = x0 (see the

procedure in CARSLAW–JAEGER [1] p. 388).
The following results are obtained:

h⊗(x, x0, t) = 2κ

Kπ

∫ ∞

0
e−κu2t

× J1(xu)Y0(x0u) − Y1(xu)J0(x0u)

J 2
1 (xu) + Y 2

1 (xu)
du, t > 0, (60)

h⊗(x, x0, 0) = 0. (61)

For x = x0

h⊗(x0, x0, 0) = ∞ (62)

h⊗(x0, x0, t) = 4κ

Kπ2x0

∫ ∞

0

e−κu2t du

u[J 2
1 (x0u) − Y 2

1 (x0u)] , t > 0, (63)

which follows from (60) by the application of the relation

J1(z)Y0(z) − J0(z)Y1(z) = 2

π z
. (64)
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GOLDSTEIN [10] proves that the inverse of

sα Kµ(
√

sλ) (65)

exists and can be represented by the aid of Whittaker functions. So, forα = 1

2
,

µ = 1, our result can be considered as a generalisation of [10].

I.2.5. The Infinite Circular Cylinder

We have

H(x, x0, s) = −K

√
s

κ

I1

(√
s

κ
x

)

I0

(√
s

κ
x

) , (66)

where I0, I1 denote the modified nullth, and first order Bessel functions of the
first kind, respectively. By the application of the inversion formula we obtain the
following:
Let x < x0, then

h(x, x0, t) = 2κ K

x0

∞∑
n=1

α2
ne−κα2

n t J1(αnx)

J1(αnx0)
, t > 0, (67)

h(x, x0, 0) = 0, (68)

whereαn denotes the positive roots of the equation

J0(αx0) = 0. (69)

Let x > x0, then

h∗(x, x0t) = − 2κ

K x

(
1 +

∞∑
n=1

J0(βnx0)

J0(βnx)
e−κβ2

n t

)
, t > 0, (70)

h⊗(x, x0, 0) = 0. (71)

Let x = x0, then

h⊗(x, x0, 0) = −∞, (72)

h∗(x0, x0t) = − 2κ

K x0

(
1 +

∞∑
n=1

e−κβ2
n t

)
, t > 0, (73)

whereβn denotes the positive roots of the equation

J1(βx) = 0. (74)
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The following statement holds:

Statement. Let us consider the casesA, B, D. The heat flux can be represented
as a convolution integral if and only ifx > x0. For x ≤ x0 the heat flux satisfied a
convolution type integral equation of the first kind. Let us consider the casesC, E .
The heat flux canbe represented as a convolution integral if and only if x < x0.
For x ≥ x0, the heat flux satisfies a convolution type integral equation of the first
kind.

Moreover, ifx = x0, then the solutions of the corresponding integral equations
can be given in explicit forms in the casesA, B, C provided that the pointx0 is either
an inner point of the domainI , or is the limit point ofI , where the temperature is
absolutely continuous.

Remarks. 1.) In the discussion of the case of a region bounded internally by an
infinite circular cylinder, we obtained

J (x, s) = K

√
s

κ

K1

(√
s

κ
x

)

K0

(√
s

κ
x0

)
(x0s). (75)

GARBAI [11] gets an integral equation for the heat flux as follows. Since

K0

(√
s

κ
x0

)
J (x, s) = K

√
s

κ
K1

(√
s

κ
x

)

(x0, s). (76)

By inverting both sides of this equation and applying the convolution theorem of
the Laplace transformation, the integral equation.

∫ t

0
j (x, τ )

e− x2
0

4κ(t−τ )

t − τ
dτ = K x

2κ

∫ t

0
ϑ(x0, τ )

e− x2
0

4κ(t−τ )

(t − τ)2
dτ (77)

is obtained. (77) holds for every pair(x, x0) and its kernel function is simpler than
the corresponding ones given by (60), (63). The disadvantage of (77) lies in the
fact that there occurs a convolution on the right-hand side of it.

It is surprising that (77) has no analogue in the case of the infinite circular
cylinder.

2.) Our results can be well applied in the practice, if the heat flux has a
convolutional representation. Then by measuring the temperature in discrete time
intervals, the convolution can be evaluated by known numerical methods. On the
other hand, there are numerical methods also for solving convolutional integral
equations. We shall deal with these methods in a following paper.

3.) The condition of the absolute continuity of the temperature in the limit
points is a sufficient condition, which holds in the practice. It is, however, not
necessary.
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I.3. Harmonic Processes

It follows from the theory of the linear systems that the results related to the harmonic
processes are simple consequences of our results discussed above (see [2], [3]). If we
substitutes = iω in (13) in Part I, whereω is the angular frequency of the harmonic
oscillation, and replace the Laplace transforms by the notations
(x, iω), J (x, iω)
then the equation

J (x, iω) = H(x, x0, iω)
(x0, iω) (78)

will be obtained.
(x, iω), J (x, iω) are the complex amplitudes of the harmonic
input (temperature), and harmonic output (heat flux), respectively.H(x, x0, iω) is
the complex transfer characteristics of the system.Eq. (78) describes this transmis-
sion system, the scheme of which is illustrated inFig.3.

Fig. 3. Transmission system model of heat flux for harmonic processes

Practically, the most important quantity is the amplitude characteristics.A(x ,
x0, ω) is the absolute value of the transfer characteristicsH(x, x0, iω).

The amplitude characteristics describe the frequence dependency of the quo-
tient of the amplitudes of the output and input (reasonance curve). Let us determine
these in the structures discussed above.

I.3.1. The Case of the Half Space

By (17) in we have

H(x, x0, iω) = K

√
iω

κ
exp

[
−
√

iω

κ
(x − x0)

]
(79)

and

A(x, x0, ω) = K

√
ω

κ
exp

[
−
√

ω

2κ
(x − x0)

]
. (80)

For x > x0 there exists one resonance frequency

ωτ = 2κ

(x − x0)
2

(81)

and
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A max= K
√

2

e(x − x0)
. (82)

I.3.2. The Region Bounded Internally by the Sphere

By (32)

H(x, x0, iω) = K
x0

x

(√
iω

κ
+ 1

x

)
e−

√
iω
κ (x−x0), (83)

and by calculating its absolute value we get

A(x, x0, ω) = K x0

x

√
ω

κ
+ 1

x

√
2ω

κ
+ 1

x2
exp

[
−
√

ω

2κ
(x − x0)

]
(84)

having one resonance frequency forx > x0:

ωτ = κx0

x(x − x0)
2

[
1 + x0

x

√
2x

x0
− 1

]
. (85)

I.3.3. The Sphere

By (40) we have

H(x, x0, iω) = K

x0

(√
iω

κ
x ch

√
iω

κ
x − sh

√
iω

κ
x

)

x2 sh

√
iω

κ
x0

, x0 �= 0. (86)

Let us introduce the notations

α = x

√
ω

2κ
, α0 = x0

√
ω

2κ
, (87)

so after some calculations we obtain the formula

A(x, x0, ω) = K x0

x2

×
√

2α2(ch2α − sin2 α) − α sh2α − α sin 2α ch 2α + sh2α + sin2 α

sh2α0 + sin2 α0
,

(88)

and forx → 0 we have
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A(x, 0, ω) = K

x2

√
κ

ω

×
√

2α2(ch2α − sin2 α) − α sh2α − α sin 2α ch 2α + sh2α + sin2 α.

(89)

I.3.4. The Region Bounded Internally by the Infinite Circular Cylinder

We have by (54)

H(x, x0, iω) = K

√
iω

κ

K1

(
ei π

4

√
ω

κ
x

)

K0

(
ei π

4

√
ω

κ
x0

) , (90)

the transfer characteristics can be expressed by Kelvin functions. Since

kerνz + ikeiνz = e− 1
2νπ i Kν

(
zei π

4

)
z ≥ 0, ν ≥ 0, (91)

(see ABRAMOVITZ –STEGUN [12]), we get

A(x, x0, ω) = K

√
ω

κ

√√√√√√√√
ker21

√
ω

κ
x + kei21

√
ω

κ
x

ker2
√

ω

κ
x0 + kei2

√
ω

κ
x0

. (92)

(We omit the lower index notation forv = 0).

I.3.5. The Infinite Circular Cylinder

By (66) we have

H(x, x0, iω) = K

√
iω

κ

I1

(
ei π

4

√
ω

κ
x

)

I0

(
ei π

4

√
ω

κ
x0

) , (93)

since
bervz + i beivz = e− 1

2vπ i Iv

(
zei π

4

)
, (94)
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(see [9]), consequently

A(x, x0, ω) = K

√
ω

κ

√√√√√√√√
ber21

√
ω

κ
x + bei21

√
ω

κ
x

ber2
√

ω

κ
x0 + bei2

√
ω

κ
x0

, (95)

(where the notation is omitted forv = 0).
The formulas (92), (95) are useful for numerical calculations, since the values

of the square sums can be found in the table KIRK-YOUNG [13].

I.4. The Solution of Problem II

Let


(x, s) = α(s)
1(x, s) + β(s)
2(x, s). (96)

If the temperature is known in the pointsx1, x2, then


(x1, s) = α(s)
1(x1, s) + β(s)
2(x1, s), (97)

(x2, s) = α(s)
1(x2, s) + β(s)
2(x2, s) (98)

forms an equation system for the unknownsα(s), β(s). On the other hand, we get
from (96)

J (x, s) = −Kα(s)
′
1(x, s) − Kβ(s)
′

2(x, s). (99)

Determining the operatorsα(s), β(s) from (3.4) and substituting their values to (99)
we get:

J (x, s) = H1(x, x1, x2, s)
(x1, s) + H2(x, x1, x2, s)
(x2, s), (100)

H1(x, x1, x2, s) = −K

2(x2, s)
′

2(x, s) − 
1(x2, s)
′
2(x, s)


1(x1, s)
2(x2, s) − 
1(x2, s)
2(x1, s)
, (101)

H2(x, x1, x2, s) = −K

1(x1, s)
′

2(x, s) − 
2(x1, s)
′
1(x, s)


1(x1, s)
2(x2, s) − 
1(x2, s)
2(x1, s)
. (102)

(100) describes a transmission system represented in the schemeFig.1.
If H1(x, x1, x2, s), H2(x, x1, x2, s) have Laplace inverses, then by inverting

both sides of (102), we obtain that the heat flux can be represented as the sum of
two convolution integrals.

The operatorsH1, H2 are called the pure transfer functions of the system. In
the following we show the application of the theory to the case of a finite rod (or an
infinite wall of finite thickness). We shall see that in special limit cases, the flux can
be expressed explicitly by the temperatures, but not by the sum of two convolutions.
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Fig. 4. Transmission system model of the heat flux. The pure problem.

I.4.1. The Case of the Finite Rod

Assumex2 > x1. Then it holds the following.

Statement 1: The heat flux can be written as the sum of two convolutions if and
only if x1 < x < x2.

If x = x1, x = x2, then the heat flux can be expressed explicitly by the temperatures,
provided that the pointsx1, x2 are inner points of the domain.

In our case


(x1, s) = e
√

s
κ x, 
(x2, s) = e−√

s
κ x . (103)

By determining the expressions (101), (102) we have

H1(x, x1, x2, s) = K

√
s

κ

e−√
s
κ (2x2−x1−x) + e−√

s
κ (x−x1)

1 − e−2
√

s
κ (x−x1)

, (104)

H2(x, x1, x2, s) = −K

√
s

κ

e−√
s
κ (x+x2−2x1) + e−√

s
κ (x2−x1)

1 − e−2
√

s
κ (x2−x1)

. (105)

If x ≤ x1, or x ≥ x2, then (104), (105) cannot be inverted simultaneously. Obvi-
ously letx ≤ x1, then (104) does not tend to zero fors → ∞. Let x ≥ x2 then
(105) does not tend to zero fors → ∞.

By expanding the expression

1

1 − e−2
√

s
κ (x2−x1)
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in a geometric series we have

H1(x, x1, x2, s) = K

√
s

κ

[ ∞∑
v=0

e−√
s
κ
[2(v+1)x2−(2v+1)x1−x]

+
∞∑

v=0

e−√
s
κ [2vx2−(2v+1)x1−x]

]
, (106)

H2(x, x1, x2, s) = −K

√
s

κ

[ ∞∑
v=0

e−√
s
κ [2(v+1)x2−(2v+1)x1−x]

+
∞∑

v=0

e−√
s
κ
[(2v+1)x2−2vx1−x]

]
. (107)

If x1 < x < x2, then the arguments of the exponential functions are negative and
the infinite series can be inverted term by term. (The validity of this procedure can
be easily seen by a theorem of MIKUSINSKI’s operational calculus [14].)

Denoting the inverse of (106) by h1(x, x1, x2, t), and the inverse of (107) by
h2(x, x1, x2, t), we get

h1(x, x1, x2, t) = K

2t
√

πκt

{ ∞∑
v=0

( [2(v + 1)x2 − (2v + 1)x1 − x]2

2κt
− 1

)

× exp

[
−[2(v + 1)x2 − (2v + 1)x1 − x]2

4κt

]

+
∞∑

v=0

( [2vx2 − (2v + 1)x1 − x]2

2κt
− 1

)

× exp

[
−[2vx2 − (2v + 1)x1 − x]2

4κt

]}
, (108)

h1(x, x1, x2, t) = −h2(x, x1, x2, t). (109)

We have for heat flux

j (x, t) = ϑ(x1, t)∗h1(x, x1, x2, t) + ϑ(x2, t)∗h2(x, x1, x2, t), (110)

where the convolution is denoted by∗.
Let x = x1, andx1 be an inner point ofI . Then we can write:

H1(x, x1, x2, s) = K

√
s

κ
+ 2K

√
s

κ

∞∑
v=0

e−√
s
κ [2v(x2−x1)], (111)

H2(x, x1, x2, s) = −2K

√
s

κ

∞∑
v=0

e−√
s
κ
[(2v+1)(x2−x1)]. (112)
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Let us denote the inverse ofH1 − K

√
s

κ
by ρ1(t), the inverse ofH2 by ρ2(t). By

taking the inversion procedure we get

ρ1(t) = K

t
√

πκt

∞∑
v=1

(
2v2(x2 − x1)

2

κt
− 1

)
exp

[
−v2(x2 − x1)

2

κt

]
,

ρ2(t) = − K

t
√

πκt

∞∑
v=1

(
(2v + 1)2(x2 − x1)

2

2κt
− 1

)

× exp

[
−(2v + 1)2(x2 − x1)

2

4κt

]
. (113)

Taking into account (110), it can be written that

J (x1, s) = K

√
s

κ

(x1, s) + 2K
(x1, s)

√
s

κ

∞∑
v=0

e−√
s
κ
[2v(x2−x1)]

−2K
(x2, s)

√
s

κ

∞∑
v=0

e−√
s
κ
[(2v+1)(x2−x1)]. (114)

By inverting both sides of (114) and taking into account (23), (26) we get the heat
flux as

j (x1, t) = P
K√
πκ

⌊
ϑ(x1, t)√

t
+ 1

2

∫ t

0

ϑ(x1, t) − ϑ(x1, τ )

(t − τ)
3
2

dτ

⌋

+
∫ t

0
ρ1(τ )ϑ(x1, t − τ) dτ

+
∫ t

0
ρ2(τ )ϑ(x2, t − τ) dτ. (115)

In the other form

j (x1, t) = K√
κ

∂
1
2 ϑ(x1, t)

∂t
1
2

+
∫ t

0
ρ1(τ )ϑ(x1, t − τ) dτ

+
∫ t

0
ρ2(τ )ϑ(x2, t − τ) dτ. (116)
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Let x = x2, then by omitting the details we have

j (x2, t) = − K√
πκ

[
ϑ(x2, t)√

t
+ 1

2

∫ t

0

ϑ(x2, t) − ϑ(x2, τ )

(t − τ)
3
2

dτ

]

−
∫ t

0
ρ1(τ )ϑ(x2, t − τ) dτ

−
∫ t

0
ρ2(τ )ϑ(x1, t − τ) dτ. (117)

In other form

j (x2, t) = − K√
κ

∂
1
2 ϑ(x2, t)

∂t
1
2

−
∫ t

0
ρ1(τ )ϑ(x2, t − τ) dτ

−
∫ t

0
ρ2(τ )ϑ(x1, t − τ) dτ. (118)

So the statement has been proved.

I.4.2. The Case of a Region Bounded by Two Concentric Infinite Circular
Cylinders

Then


1(x, s) = I0

(√
s

κ
x

)
, 
2(x, s) = K0

(√
s

κ
x

)
. (119)

From the theory it follows that

H1(x, x1, x2, s) = K

√
s

κ

×
K0

(√
s

κ
x1

)
I1

(√
s

κ
x

)
+ I0

(√
s

κ
x2

)
K1

(√
s

κ
x

)

I0

(√
s

κ
x1

)
K0

(√
s

κ
x2

)
− I0

(√
s

κ
x2

)
K0

(√
s

κ
x1

) ,

(120)

H2(x, x1, x2, s) = K

√
s

κ

×
I0

(√
s

κ
x1

)
K1

(√
s

κ
x

)
+ K0

(√
s

κ
x2

)
I1

(√
s

κ
x

)

I0

(√
s

κ
x1

)
K0

(√
s

κ
x2

)
− I0

(√
s

κ
x2

)
K0

(√
s

κ
x1

) .

(121)
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Therefore the heat flux can be represented by the sum of two convolutions if and
only if x1 < x < x2.

Obviously, if the condition is not satisfied, then from the asymptotic expan-
sions of the Bessel functions

Iv(z) ∼ ez

√
2π z

, Kv(z) ∼
√

π

2z
e−z, z → ∞,

it follows that, apart of constant factors, the asymptotic representations ofH1, H2
are equal to (104) and (105), respectively.

If the condition holds, thenH1, H2 have Laplace inverses, since it can be
easily shown that the properties 1.2.3 are valid forH1, H2. MoreoverH1, H2 are
even and single-valued function of

√ s
κ
, so they can be inverted by Heaviside’s

Expansion Theorem.
The following results are obtained fort > 0:

h1 = 2Kκ

∞∑
n=1

η2
n (122)

× [J0(ηnx2)Y1(ηnx) − J1(ηnx)Y0(ηnx2)]e−κη2
n t

x1[J0(ηn x2)Y1(ηnx1) − J1(ηn x1)Y0(ηnx2)] + x2[J1(ηnx2)Y0(ηnx1) − J0(ηn x1)Y1(ηnx2)]
and

h2 = −2Kκ

∞∑
n=1

η2
n (123)

× [J0(ηnx1)Y1(ηnx) − J1(ηnx)Y0(ηnx1)]e−κη2
n t

x1[J0(ηn x2)Y1(ηnx1) − J1(ηn x1)Y0(ηnx2)] + x2[J1(ηnx2)Y0(ηnx1) − J0(ηn x1)Y1(ηnx2)]
and

lim
t→0

h1 = lim
t→0

h2 = 0. (124)

The numberηn are the roots of the equation

J0(ηx1)Y0(ηx1) − J0(ηx2)Y0(ηx1) = 0 (n = 1, 2, . . .). (125)

I.5. The Solution of Problem III

The temperature and the heat flux are known in the pointsx1 andx2, respectively.
We have the equation system


(x1, s) = α(s)
1(x1, s) + β(s)
2(x1, s), (126)
J (x2, s) = −Kα(s)
′

1(x2, s) − Kβ(s)
′
2(x2, s). (127)
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By substituting the solution of (126), (127) to (101) we get

J (x, s) = V1(x, x1, x2, s)
(x1, s) + V2(x, x1, x2, s)J (x2, s). (128)

V1 = K
′
1(x2)


′
2(x) − K
′

2(x2)

′
1(x)


1(x1)

′
2(x2) − 
2(x1)


′
1(x2)

, (129)

V2 = 
1(x1)

′
2(x) − 
2(x1)


′
1(x)


1(x1)

′
2(x2) − 
2(x1)


′
1(x2)

. (130)

These equations describe a transmission system (seeFig.2).

Fig. 5. Transmission system model of the heat flux. The mixed problem

If the operatorsV1, V2 have Laplace inverses, then by inverting (34), we obtain
the desired representation of the heat flux. The operatorsV1, V2 are called the mixed
transfer functions.

I.5.1. The Case of Finite Rod

The following statements hold.

Statement 2: The heat flux can be represented as the sum of two convolution integrals
if and only if x1 < x < x2. If x = x1, andx1 is an inner point of domain, then the
heat flux has an explicit representation.

Indeed, we have

V1(x, x1, x2, s) = K

√
s

κ

e−√
s
κ
(2x2−x1−x) + e−√

s
κ
(x−x1)

1 + e−2
√

s
κ (x2−x1)

, (131)

V2(x, x1, x2, s) = e−√
s
κ
(x+x2−2x1) + e−√

s
κ
(x2−x)

1 + e−2
√

s
κ (x2−x1)

. (132)

Repeating briefly the idea of solution of the Problem II we get that (131), (132) are
simultaneously invertible only in the case ofx1 < x < x2. Denoting the inverses
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by v1, v2, the following expression will be obtained:

v1(x, x1, x2, t) = K

2t
√

πκt

{
−

∞∑
v=0

(−1)v
( [2(v + 1)x2 − (2v + 1)x1 − x]2

2κt

)

× exp

[
−[2(v + 1)x2 − (2v + 1)x1 − x]2

4κt

]

+
∞∑

v=0

(−1)v
( [2vx2 − (2v + 1)x1 − x]2

2κt
− 1

)

× exp

[
−[2vx2 − (2v + 1)x1 − x]2

4κt

]}
, (133)

v2(x, x1, x2, t) = K

2t
√

πκt

{ ∞∑
v=0

(−1)v[2(v + 1)x2 − (2v + 1)x1 − x]

× exp

[
−[2(v + 1)x2 − (2v + 1)x1 − x]2

4κt

]

+
∞∑

v=0

(−1)v[(2v + 1)x2 − 2vx1 − x]

× exp

[
−[(2v + 1)x2 − 2vx1 − x]2

4κt

]}
, (134)

For x = x1 we have by (131), (132)

V1 = K

√
s

κ
+ 2K

√
s

κ

∞∑
v=0

(−1)ve−2
√

s
κ (x2−x1),

V2 = 2
∞∑

v=0

(−1)ve−√
s
κ [(2v+1)(x2−x1)], x = x1. (135)

Denoting the inverse ofV1 − K

√
s

κ
by ξ1(t), the inverse ofV2 by ξ2(t) and taking

their inversions

ξ1(t) = K

t
√

πκt

∞∑
v=1

(−1)v
(

2v2(x2 − x1)
2

κt
− 1

)
exp

[
−v2(x2 − x1)

2

κt

]
,

ξ2(t) = −x2 − x1

t
√

πκt

∞∑
v=1

(−1)v(2v + 1) exp

[
−(2v + 1)2(x2 − x1)

2

4κt

]
(136)
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are obtained. Taking into account (135) we have

J (x1, s) = K

√
s

κ

(x1, s) + 2K
(x1, s)

√
s

κ

∞∑
v=0

(−1)ve−√
s
κ [2v(x2−x1)]

+2J (x2, s)
∞∑

v=0

(−1)ve−√
s
κ (2v+1)(x2−x1). (137)

Applying again a Laplace inversion, by (23), (26) (in Part I) the heat flux can be
represented as

j (x1, t) = K√
πκ

⌊
ϑ(x1, t)√

t
+ 1

2

∫ t

0

ϑ(x1, t) − ϑ(x1, τ )

(t − τ)
3
2

dτ

⌋

+
∫ t

0
ξ1(τ )ϑ(x1, t − τ) dτ +

∫ t

0
ξ2(τ ) j (x2, t − τ) dτ. (138)

In other form

j (x1, t) = K√
κ

∂
1
2 ϑ(x1, t)

∂t
1
2

+
∫ t

0
ξ1(τ )ϑ(x1, t − τ) dτ +

∫ t

0
ξ2(τ )ϑ(x2, t − τ) dτ.

(139)

I.5.2. The Case of a Region Bounded by Two Concentric Infinite, Circular
Cylinders

The mixed transfer functions can be calculated from (129), (130) and are of the
form:

V1 = K

√
s

κ

K1

(√
s

κ
x

)
I1

(√
s

κ
x2

)
− I1

(√
s

κ
x

)
K1

(√
s

κ
x2

)

I0

(√
s

κ
x1

)
K1

(√
s

κ
x2

)
+ K0

(√
s

κ
x1

)
I1

(√
s

κ
x2

) , (140)

V2 =
I0

(√
s

κ
x1

)
K1

(√
s

κ
x

)
+ K0

(√
s

κ
x1

)
I1

(√
s

κ
x

)

I0

(√
s

κ
x1

)
K1

(√
s

κ
x2

)
+ K0

(√
s

κ
x1

)
I1

(√
s

κ
x2

) . (141)

The heat flux can be written as the sum of two convolutions if and only ifx1 < x <
x2.
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This can be shown quite similarly to the corresponding case of the Problem
II. The following results are obtained:

v1 = 2Kκ

∞∑
n=1

η2
n (142)

× [Y1(λnx2)J1(λn x) − Y1(λn x)J0(λnx2)]e−κη2
n t

x1[Y1(λn x2)J1(λn x1) − Y1(λn x1)J1(λnx2)] + x2[J0(λnx2)Y0(λnx1) − J0(λnx1)Y0(λnx2)] ,

v2 = −2κ

∞∑
n=1

λn× (143)

× [J0(λn x1)Y1(λnx) − J1(λnx)Y0(λnx1)]e−κη2
n t

x1[J0(λnx1)Y1(λnx2) − J1(λnx2)Y0(λn x1)] + x2[J0(λnx2)Y0(λnx1) − J0(λnx1)Y1(λnx2)]
and

lim
t→0

v1 = lim
t→0

v2 = 0. (144)

λn > 0 are the roots of the equation

J0(λx1)Y1(λx2) − J1(λx2)Y0(λx1) = 0. (145)

I.6. Alternative Solution Methods

The theory of the fractional calculus has been applied first by GARBAI [11] in the
investigation of the heat flux. By using time Laplace transformation it has been
shown in [11] that the connection between the temperature and heat flux can be put
down by the application of a semiderivative and its inverse. In the case of a semi-
infinite rod, this connection can be represented by the semidifferential conducting
law

j (x, t) = K√
κ

∂
1
2 ϑ(x, t)

∂t
1
2

, t > 0. (146)

The Laplace transform of the general solution of a heat conduction problem for zero
initial value in an infinite wall of finite thickness (or in a finite rod) is of the form


(x, s) = α(s)e−√
s
κ x + β(s)e

√
s
κ x , (147)

so


′(x, s) = −
√

s

κ
α(s)e−√

s
κ

x +
√

s

κ
β(s)e

√
s
κ

x, (148)

from which the formula


′(x, s) −
√

s

κ

(x, s) =

[

′(o, s) −

√
s

κ

(o, s)

]
e−√

s
κ x (149)
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can be deduced, representing the connection between the Laplace transforms of the
temperatures and heat flux, at the points (0− x), respectively.

By the definition of the heat flux, taking the inversion of (55) we have

j (x, t) = −√Kρc
∂

1
2

∂t
1
2

ϑ(x, t) + 1

2

[
j (o, t) +√Kρc

∂
1
2

∂t
1
2

ϑ(o, t)

]
∗ x√

κπ t3
e− x2

4κ t

(150)
(see [11]).

II. Transient Heat Conduction in Composite Systems

II.1. Introduction

In technical practice one often encounters transient heat conduction problems in
composite systems consisting of solid layers, e.g., walls of buildings, walls of
furnaces, heat insulation of pipelines, etc.

Investigating these involves solving the simultaneous system of differential
equations

�ϑi = 1

κi

∂ϑi

∂t
, i = 1, 2, . . . , N (151)

under prescribed initial and boundary conditions, where:
If we assume that the temperature depends only on one space coordinate,x ,

in addition to time, and that the temperature of the system at the timet = 0 was
zero, then problems of the type indicated above can be redefined mathematically in
the following way:

From among the solutions of the system of heat equations

�ϑi(x, t) = l

κi

∂ϑi

∂t
, li−1 < x < li < ∞, i = 1, 2, . . . , N, (152)

we are to determine the one that satisfies the zero initial condition at the timet = 0
and the continuity conditions at the separating surfaces (or points) with co-ordinates
li

ϑi(li , t) = ϑi+1(li , t),

−Ki
∂ϑi(x, t)

∂x

∣∣∣∣
x=li

= −Ki+1
∂ϑi+1(x, t)

∂x

∣∣∣∣
x=li

, i = 1, 2, . . . , N − 1.

The simplest composite systems in practice are the following:

I. Composite plane walls ofN layers.
II. Composite hollow spheres ofN layers.

III. Composite hollow circular cylinders ofN layers.
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Fig. 6. The scheme of transient heat conduction in composite heat systems

The following figure indicates the domainx for each of the three cases.
We offer solutions for these three basic problems in our paper. In the first

structure we choosel0 = 0, but in structures II and IIIl0 = a > 0, as we do
not consider the process in the interior of the system in the domain (0≤ x ≤
l0). Temperatures will only be considered in the pointsli dividing the individual
conductors, at the beginning of the system (l0) and at its end (lN ), which are important
special cases in technical practice, and whose investigation, as we are going to see,
makes a clear system-theoretic approach possible.

Problems of the types shown above are discussed in the literature using the
method of Laplace transformation (see [1], L IKOV [16]). However, even in the case
N = 2, the Laplace transforms of the temperatures become complex expressions
whose inversion – with the exception of some special cases – poses insurmountable
difficulties. This fact was also stated by JAEGER in [3].

In this paper we are going to present the PAPOULIS-BERG inversion method
[8], [17] in the system - theoretic investigation of heat conduction problems of the
type shown above. The greatest advantage of this method is that it is fairly easy
to apply for arbitrarily large values ofN , so the number of heat conducting layers
with different physical properties is not limited.

II.2. Determining the Laplace Transform of Temperatures

After applying the Laplace transformation toEq. (151), considering the zero initial
condition, we obtain the following transformed expression

�
i(x, s) = q2
i 
i (x, s), qi

√
s

κi
, i = 1, 2, . . . , N . (153)

In the special structures investigated by us:
Plane walls

∂2
i (x, s)

∂x2
= q2

i 
i(x, s). (154)

Sphere
∂2
i (x, s)

∂x2
+ 2

x

∂
i(x, s)

∂x
= q2

i 
i(x, s). (155)
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Cylinders
∂2
i(x, s)

∂x2
+ 1

x

∂
i(x, s)

∂x
= q2

i 
i(x, s). (156)

(See, e.g., [1].)
Let us introduce the Laplace transforms of the heat fluxesji(x, t)

= −Ki
∂
i(x, t)

∂t

Ji (x, s) =
∫ ∞

0
ji(x, t)e−st dt, i = 1, 2, . . . , N . (157)

For the sake of simplicity, let us use the notationsϑ(li , t), j (li , t),
(li ), J (li) for
the temperatures, heat fluxes and their Laplace transforms in the pointsli . It can be
demonstrated that the relationship between the transforms of the temperatures and
heat fluxes occurring at the input with coordinateli and exit with coordinateli−1 of
the i-th heat conductor can be established using the so-called transfer matrix

Ai(s) =
(

Ai (s) Bi(s)
Ci(s) Di(s)

)

of the i-th layer in the following form:(

(li)
J (li )

)
=
(

Ai (s) Bi(s)
Ci (s) Di(s)

)(

(li−1)
J (li−1)

)
i = 1, 2, . . . , N . (158)

For structure I the entries of the transfer matrix can be found in [1]. For structures
II and III we have computed the values, and we will get back to them later.

Let us now consider the system consisting ofN heat conducting layers. Then
the following matrix relationship prevails between the temperatures and heat fluxes
at the input of the system and at the exit of thei-th heat conductor(


(li)
J (li)

)
=
(

Ai (s) Bi (s)
Ci (s) Di(s)

)(

(l0)
J (l0)

)
, (159)

where

Hi(s) =
(

Ai (s) Bi (s)
Ci(s) Di (s)

)
=

i−1∏
j=0

Ai− j (s) i = 1, 2, . . . , N, (160)

andHl(s) = Al(s), and in particular, fori = N(

(lN )
J (lN )

)
=
(

Ai(s) Bi(s)
Ci (s) Di(s)

)(

(l0)
J (l0)

)
, (161)
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Fig. 7. Linear transmission system of transient heat conduction in composite systems

which describes the operator relationship between the input and exit of the system of
heat conductors, and which can be schematically represented as a linear transmission
system as follows:

It is apparent that the combined transfer matrix of the two systems is equal to
the product of the two transfer matrices. Two boundary conditions must be given
in order to solve the problem. One of the two pertains to the beginning (input) of
the system of heat conductors, the other to the end (output). If two of the operators

(l0),
(lN ), J (l0), J (lN ), are known, then the other two can be determined from
(160).

Now we are going to write the Laplace transforms of the temperature we are
most interested in far the most important boundary condition occurring in technical
practice.

1. Temperature is given at both ends of the system. Then


(li) = 
(l0)
Ai BN − Bi AN

BN

+ 
(lN )
Bi

BN

, i = 1, 2, . . . , N . (162)

2. Heat flux is given at both ends of the system. Then from (160)


(l0) = −J (l0)
DN

C N

+ J (lN )

C N

,


(li) = J (l0)
BiC N − Ai DN

C N

+ J (lN )
Ai

C N

, i = 1, 2, . . . , N . (163)

3. Temperature is given atl0, the input of the system, and the heat flux is given
at lN , the output.
Similarly to the preceding cases,


(li) = 
(l0)
Ai DN − BiC N

DN

+ J (lN )
Bi

DN

, i = 1, 2, . . . , N . (164)

The case involving the roles ofl0 andlN reversed can be written analogously.
4. Temperature is given atl0, the input of the system, and the heat flux is pro-

portional to the temperature atlN , the output.
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The latter boundary condition in the form of a Laplace transform is (I):

J (lN ) = γ 
(lN). (165)

Then


(li) = 
(l0)
γ (Bi AN − Ai BN ) + Ai DN − BiC N

DN − γ BN

, i = 1, 2, . . . N .

(166)
5. The heat flux is given atl0, the input of the system, and the heat flux is

proportional to the temperature at (lN ), the output.
In this case


(l0) = J (l0)
DN − γ BN

γ AN − C N

, (167)


(li) = J (l0)
γ (Ai BN − Bi AN ) − Ai DN + BiC N

C N − γ AN

. (168)

Let us now write the entries of the transition matrixAi(s) for structures I, II
and III:

I. Then, according to CARSLAW-JAEGER [1]

ϕ
(1)
i = chqili , ϕ

(2)
i = shqili ,

Ai (s) = Di(s) = ch (li − li−1)qi ,

Bi(s) = − 1

Kiqi
sh(li − li−1)qi ,

Ci(s) = −Ki qi sh(li − li−1)qi , i = 1, 2, . . . , N (169)

and

detAi(s) = 1

which implies
detHi(s) = 1.

II.

ϕ
(1)
i = chqili

li
, ϕ

(2)
i = shqili

li
.

Computing the entries of the transfer matrix, we obtain

Ai (s) = li−1

li
chqi (li − li−1) + l

qi li
chqi (li − li−1).
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We assume that the surrounding temperature is zeroϑ(x, t) = 0, if x < l0,
or x > lN .

Bi(s) = − li−1

Ki qi li
shqi(li − li−1),

Ci(s) = −Ki
li − li−1

l2
i

chqi (li − li−1)+ Ki

(
l

qi l2
i

− li−1

li
qi

)
shqi (li − li−1),

Di (s) = li−1

li
chqi (li − li−1) − li−1

qil2
i

shqi (li − li−1), detAi(s) = l2
i−1

l2
i

,

thus

detHi(s) = l2
0

l2
i

, i = 1, 2, . . . , N . (170)

III. In this case
ϕ

(1)
i = I0(qili), ϕ

(2)
i = K0(qili),

whereI0 andK0 are the Bessel functions of the first and second kind, of order
0. The entries of the transfer matrix are found to be

Ai (s) = li−1qi [I0(qili )K1(qili−1) + K0(qili )I1(qili−1)],
Bi(s) = li−1

Ki
[I0(qili−1)K0(qili ) − K0(qili−1)I0(qili)],

Ci(s) = Kili−1q2
i [K1(qili )I1(qili−1) − I1(qili)K1(qili−1)],

Di(s) = li−1qi [I0(qili−1)K1(qili ) + K0(qili−1)I1(qili )], (171)

where I1 and K1 are the modified Bessel functions of the first and second
kind, of order one. Furthermore,

detAi = li−1

li
, i = 1, 2, . . . , N,

consequently

detHi(s) = l0
li

.

Now the Laplace transforms of the temperatures at the pointsli can be written
explicitly with the help of the formulae obtained thus far. Unfortunately, owing
to the products of the function matrices in (170), the entries of the matrixHi(s)
and, consequently, the formulae generating transforms of the temperatures are so
complex even forN > 2 that inverting them with classical methods is practically
impossible.

The following PAPOULIS–BERG inversion method fixes this problem. Next,
we are going to explain the method briefly, then we are going to invert the Laplace
transforms of the temperatures using the method.
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II.3. Applying the Papoulis–Berg Inversion Method to Solving the Heat
Conduction Problem

Let f (t) be a continuous function of bounded variation defined fort ≥ 0 and
Laplace transformable,f (0) = 0 and let

F(s) =
∫ ∞

0
f (t)e−st dt, s > s0. (172)

PAPOULIS [17] obtains the inverse ofF(s) without applying the Fourier–Mellin
inversion integral in the following way.

Let σ > s0 be an arbitrary positive number and let us substitute

e−σ t cos(x) (173)

into (172). Then by denotingf (t) = g(x), we obtain

F(s) = 1

σ

∫ π/2

0
g(x) cos

s
σ −1 x · sinx dx . (174)

Let
s = (2v + 1)σ, v = 1, 2, 3, . . . ,

then

F[(2v + 1)σ ] = 1

σ

∫ π/2

0
g(x) cos2v x · sinx dx . (175)

Let us now define the functiong(x) to the domain
π

2
< x ≤ π by way of the

formula g(x) = g(π − x). From the theory of Fourier series it is known that the
function f (t) can be expanded into a Fourier series of the form

f (t) =
∞∑

n=0

cn sin(2n + 1)x =
∞∑

n=0

cn sin[(2n + 1) arccos(e−σ t )], (176)

cn = 4

π

∫ π/2

0
g(x) sin(2n + 1)x dx . (177)

The following formula is easily verified by mathematical induction:

sin(2n + 1)x = sinx
∞∑

v=0

(−1)n−v4v

(
n + v

n − v

)
cos2v x . (178)

Substituting this into (178), taking (176) into account, we obtain

cn = σ

π

n∑
v=0

(−1)n−v4v+1

(
n + v

n − v

)
F[σ (2v + 1)]. (179)
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Thereby the inverse Laplace transform ofF(s) is obtained. Indeed, the coefficients
cn are easy to compute from (179) onceF(s) is known, sof (t) can be determined
from (176) for an arbitraryt . For fixed values oft , the speed of convergence of
(176) depends on the choice ofσ , of course.

Considering that BERG [8] has suggested that in order to accelerate the con-
vergence of (176), one should not use a constant value ofσ , but rather – given the
asymptotic relationship betweenf (t) andF(s) – the productσ t should be chosen
to be constant (i.e., for small values oft, σ should be large and vice versa). From
(173) it is apparent that the value ofx is constant this way. Choosing this constant

to be the midpoint of the basic interval,
(
0,

π

2

)
, x = π

4
the following formulae are

obtained:

σ = log 2

2t
, sin(2n + 1)

π

4
= (−1)[

n
2 ]

√
2

and

f (t) =
√

2 log 2

π t

∞∑
n=0

(−1)n+[ n
2 ] ×

n∑
v=0

(−1)v4v

(
n + v

n − v

)
F

[
log 2

2t
(2v + 1)

]
.

(180)

Here
[n

2

]
is the least integer ofn andt > 0. (See BERG [8].)

It is apparent that the timet takes the role of the complex variable s in the
Laplace transformF(s) in the form (180) of the inverse transformf (t), meaning
that it is to be evaluated numerically for arbitrary fixedt .

Let us now apply formula (180) for inverting the Laplace transforms of the
temperatures determined in the preceding section. For the sake of better under-
standing, let us introduce the following notations:


(lN , s) = 
(lN ),
(l0, s) = 
(l0), J (lN , s) = J (lN ), J (l0, s) = J (l0),

A(v)
i = A(v)

i (t) = Ai

[
log 2

2t
(1 + 2v)

]
, B(v)

i = B(v)
i (t) = Bi

[
log 2

2t
(1 + 2v)

]
,

C(v)
i = C(v)

i (t) = Ci

[
log 2

2t
(1+ 2v)

]
, D(v)

i = D(v)
i (t) = Di

[
log 2

2t
(1 + 2v)

]
.

(181)

Then, on the basis of (180), we obtain the following formulaef or the individual
inverses.
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The inverse of (162):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)

×
{




[
l0,

log 2

2t
(2v + 1)

]
· A(v)

i B(v)
N − B(v)

i A(v)
N

B(v)
N

+


[
lN ,

log 2

2t
(2v + 1)

]
B(v)

i

B(v)
N

}
. (182)

The inverse of (163):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)

×
{

J

[
l0,

log 2

2t
(2v + 1)

]
· B(v)

i C (v)
N − A(v)

i D(v)
N

C (v)
N

+J

[
lN ,

log 2

2t
(2v + 1)

]
A(v)

i

C (v)
N

}
. (183)

The inverse of (164):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)

×
{




[
l0,

log 2

2t
(2v + 1)

]
· A(v)

i D(v)
N − B(v)

i C (v)
N

D(v)
N

+J

[
lN ,

log 2

2t
(2v + 1)

]
B(v)

i

D(v)
N

}
. (184)

The inverse of (170):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)



[
l0,

log 2

2t
(2v + 1)

]

×
γ
(

B(v)
i A(v)

n − A(v)
i B(v)

N

)
+ A(v)

i D(v)
N − B(v)

i C (v)
N

D(v)
N − γ B(v)

N

. (185)
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The inverse of (168):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)

×J

[
l0,

log 2

2t
(2v + 1)

]
× γ B(v)

N − D(v)
N

C (v)
N − γ A(v)

N

. (186)

The inverse of (168):

ϑ(li , t) =
√

2 log 2

t

∞∑
n=0

(−1)n+[ n
2 ]

n∑
v=0

(−1)v4v

(
n + v

n − v

)
J

[
l0,

log 2

2t
(2v + 1)

]

×
γ
(

A(v)
i B(v)

n − B(v)
i A(v)

N

)
− A(v)

i D(v)
N − B(v)

i C (v)
N

C (v)
N − γ A(v)

N

. (187)

From formulae (158), (160) and (181) it is apparent that(
A(v)

i (t) B(v)
i (t)

C (v)
i (t) D(v)

i (t)

)

=
i−1∏
j=0




Ai− j

[
log 2

2t
(1 + 2v)

]
Bi− j

[
log 2

2t
(1 + 2v)

]

Ci− j

[
log 2

2t
(1 + 2v)

]
Di− j

[
log 2

2t
(1 + 2v)

]

 , (188)

where the quantitiesAi− j , Bi− j , Ci− j , Di− j in the matrix product on the right-hand
side of the equation can be obtained from formulae (170), (171) or (172), depending

on the geometric structure being investigated, putting the expression
log 2

2t
(1+ 2v)

in the place ofs.
Thus, if we wish to compute the temperatures (182) . . . (187) for a fixed

time, t > 0, then we must substitute the numerical values of the timet into (188),
whereby the multiplication of function matrices is reduced to the multiplication of
numeric matrices.

This is the main advantage of the PAPOULIS–BERG inversion, which is the
consequence of the fact that the timet replaces the complex variables in the Laplace
transform of formula (180).

Conclusions

The system theoretical treatment given in this paper presents a new approach of the
heat flux problem and the results can be well applied in the engineering practice.
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In those simpler cases when the heat flux can be given explicitly lay convolutional
or other type of integrals, these integrals may be computed by the application
of well-known numerical techniques. On the other hand, in the cases when the
determination of the heat flux is reduced to the solution of convolutional integral
equations, simple approximate methods are available in the mathematical literature.

Symbols
j – heat flux
J – Laplace transformed form of the heat flux (j )
K – thermal conductivity
s – complex variable
t – time
x – space variable
� – Laplace operator
ϑ – temperature
κ – thermal diffusivity
τ – time
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