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Abstract

A geometric model for the thermodynamics of continuous media is constructed, providing a clearer
meaning to the commonly used concept of ‘processes’ and ‘transformations’. The aim is to elucidate
a clear ground suited to analyse thermodynamic transformations outside equilibrium. The model is
applied to the thermodynamics of simple materials and explicit expressions for the existence of an
entropy function are obtained.
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1. The Fibre Bundle of Thermodynamic Transfor mations

We consider a material element ([1]) and following [2] we suppose that an unam-
biguous definition of its state space can be given. The intuitive idea is that when
a material element is given in a concrete physical situation, it is given in a definite
state; the state determines everything about the element: its configuration, its stress
and the response of the element in every possible test. Then we define the state
space at timeé as the seB; of the state variables which ‘fit’ the configuration of the
element at time& and we assume th& has the structure of a finite dimensional
manifold. The ‘total state space’ is then given by the disjoint union.

B =ity x B (1)
t

with the given natural structure of a fibre bundle over the real line R where time
flows [3, 4]. We call it thethermodynamic bundle. If the instantaneous state space
B; does not vary in time (i.e. there is an abstract ‘universal state sjgasech that

B; ~ B for all instants of tim&), whenJ is trivial, i.e. it is the Cartesian product

B~R x B. (2)

In the sequel we shall assume for the sake of simplicity that this holds, although
our treatment extends with simple modifications to the general case.

Now we consider the abstract space of processes which, according to [2],
consists of a sdil of functions

Pti :[0,t] — G, 3)
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where[0, t] is any time internal,the spacej is a suitable target space suggested
by the model (usually a vector space)s a label ranging in an unspecified index
set for all allowed processes ahé R is called theduration of the proces® . For
the given state spadg we suppose that the sBtis such that the following hold:

1. 3D : IT — P(B), whereP(B) is the set of all subsets &; D is thedomain
functionandD} = D(P}) is called the domain of thieth process (of duration
t);

2. 3R : I — P(B); Ris therange function and R = R(P)) is called the
range of the-th process (of duratiot);

3. considering the restrictions

P = Pl \[OJ] (r <t) (4)

new processes are obtained (‘restricted processes’) and they satisfy the fol-
lowing:? _ _
VTt <t D(P') € D(P)). )

Incidentally, this implies that
t . .
() D(P)) = D(P), 6)
=0

wheret is the maximal duration. If it is not necessary to specify the duration,
we shall simply writeD' in place of D(R') = D;. Analogously, the abbreviated
notation R will be used for theange of thei-th process.

A new function is then defined

p: 11— C°%B, B) (7)

so thatvt andvP e IT a continuous mapping is obtained
pi =p(P): D > R (8)

called thetransformation induced by the process?. For any given initial state
b € D' the transformed final statg (b) € R will be called, by an abuse of
notation, thevalue of the process (at timB. We define now a function of time in
the following way:

i _|b if =0 with b e D',
’\b(’)—{ pib if T €l0t], (9)

Iwe explicitly consider the duration interval to be closed. Some authors (see e.g. [5], [6]) consider
instead a semi-closed interval, to allow more sophisticated limiting situations.

2This requirement expresses the intuitive physical idea that restricting the time interval allows a
longer set of possible initial states.
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so that we have _ _ _

Ap(D) = p{(b) = @' (t, b) (10)
with _

®'(t,b) : Rx B— B. (11)

constant solution

.
RN

Vo

Fig. 1. Thermodynamic bundle with the transformation for the system

R

The transformation for the system is a function
c:R—-RxB (12)
such that for every local trivialization of the thermodynamic bundle one has
o 1t = (L, Ap(D)). (13)

With these positions the transformation is interpreted as a curve in the union of all
the state spaces such that it intersects the instantaneous state space just ence, i.e.
is a section of the thermodynamic bundle ([3],[4]). Following [5] and [7] we define

a composition law among processes based on the definitioonGhuation given

by NoLL ([7]). If P/ andP{ are two (time dependent) processes a new process is
given by:

. : Pl (1) if te€l0,t],
i o PJ — t.
(Pt o F$)(T) { Pd(zr —t) if telt,t+s], (1)
with s € R. On the set
f’:{(PSi,Ptj)eHxH:DjﬁRi#@} (15)

consisting of all the pairgP., Ptj) such that the range g¢f intersects the domain
of pl, the M-valued functions are such th&(R o P/) = (p})"X(DI N R).
Accordingly, for eachb e D(PSj o P)), the composition among transformations
can be defined by:

prisb = pllpl(D)1. (16)
This, in turn, allows us to define the ‘action’ bf on the state spad® as mapping
p:MxB—B (17)

such that the following hold:
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* p[P!, bl = p{(b) if b e D!
* p(L,b)=bvbeB
* AP, 5(P!, b)] = G(Pis, b)
If the particular model chosen allows us to give the structure of a pseudogroup
(or, even better, of a Lie group) to the détof all processes thep is an action in

the standard sense ([3], [4]). Moreover, whenever a proeagmits an inverse in
IT (e.g. whenP! is reversible off1 is a pseudogroup) then we have the following:

D(PYH) = R(P), (18)
R(P™H = D(P), (19)
being, of course,
pp-1lpp(0] = [P, (P, b)] = (20)
p(PT'P.b) =51, b)=b (21)
and so:
p(P™H = pp. (22)

In the productB x IT we can now define a suitable subbundli¢B), called the
process bundle, in the following way. The base manifold is given by the manifold
of the state variableB. The fibre at the poinb € B is the set of the values of all
the processes whose induced transformations start from that given configuration for
the body element: ‘

Hbz{P€H|b€ DI(P)}. (23)
If a vector fieldX can be given on the state manifold in a way that its integral curves
are the transformations given by the function of timg @ppearing irEgs. (13),
then the vector field determines a section of the burddi@®) = | J,.g ITp SO
constructed. We indicate witk the application:X : b — b, whereb; e Iy is
the value of the state variable obtained through the transformation at.time

2. An Application to Simple Materials

For simple materials [8], [9] the state space can be given bgdfieemation gradient
F, theinternal energy e and the vectop = —%gradl, wherepu is themass density

andé is thetemperature. We have then:
B=LnV)®R®V, (24)

whereV is the translation space of R. The general procRsis a piecewise
continuous function whose values are

Pt (T) = [L (T), h(T)’ V(T)], (25)

3For the sake of simplicity an obvious short notation without indices is adopted.
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Fig. 2. Process bundle with the vector field on the state variables determining the section

wherel is the instantaneous value of teocity gradient, =8 andh = —1divq,
g being theheat flux vector given as a stationary vertical field on the bundle:
g:RxB—>V (26)

(we are not considering radiation for the sake of simplicity).
With these positions the target space turns out to be

G=LnV)®oR®V =B (27)
so that
BxG~TB (28)
and the process maps an interval of the real line into the @ilwethe bundle
P:[0,t] > G. (29)

We introduce a further stationary field on the thermodynamic bundle R i.e.
thestress field:

T:R x B— Sym(V) (30)
so that a response functional on the state space is given by
T=Top :B— Sym), (31)

which is the stress determined by the process startibgAhother stationary field
is introduced as theemperature field

9:RxB— R™, (32)

R** being the set of real positive numbers.
The system of dynamic equations considered in [5], i.e.

F(r) = L(1)F(1),
&) =T(b)-L(r) +h(r), (33)
B(r) =1(7)
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determines in fact a linear bundle morphi€n TB — TB
G:(F,e B, L,h1t)— (FeB.F &4, (34)

which, in a matricial form, is given by:

(F,e,/S,I':,é,,B')T:<:I) X)(F,e,ﬂ,L,h,y)T (35)
with
F 0O
A:(T 1 o). (36)
001

If we denote byX the vector field corresponding to the system of ordinary
differential equations (33), according to our previous discussion the vectoidield
generates a section of the process budtli®), so that every differentiable curve
Ap On the base manifold is transformed into a differentiable cifwe, in the
section, called th&-lift and denoted by the symbolin the sequel.

The lift of the induced transformation must satisfy the following conditions

1. [tg o X o Ap]™ = X 0o Ap,
2. Y local trivializationTB =B x G, XoAg =[tg 0 X 0 Ap, A - P],
3. Ap(0) = Ao,

whereA is the linear transformation (36) ang is the natural projection of B.

One can notice that the latter relations on the lifted transformation hold in the case

of the general model and not only for simple materials. This allows us to analyse
more general systems in whiGh# B and the bundle constructed does not therefore
coincide with the tangent bundle of the state variables. Inthis way the model allows,
for example, to take into account the action of internal variables (see, e.g. [10, 11])
and this will be the subject of future investigations.

RxTB 5 \> @ .
pgrocess
R x B

R

Fig. 3. State space with the time variable and related tangent space with the process for the

system
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Following [5], a real function called the ‘entropy function’ is defined on
R x TB by:

t t

[ h@)

S(oe, b, 1) = / o+ f alb(o)] - A(r) dr. (37)
0 0

so that in the thermodynamic bundle»RB a 1-form&, is also defined, called the
‘entropy 1-form’, whose integral along the solution curve gives exagtiye.:

t

In Components one can write
Q, = w, dg" + wo dt = wa da”, (39)

whereg* are the variables iB andg® = t, so that

t

/ Q, = / walt, Ap(T)]AL dr. (40)

o 0

UsingEq. (40) together with the relatiorls = F~1F andh = &— TL which follow
from (33), we get:

TF‘
Q, = 41
0= (41)
By differentiation a 2-form is then obtained:
dQ,, = [daws] dg” A dq® (42)

and by using the natural properties of the exterior differential one easily obtains

dQ, = dw, Adq"+woAdt =
= (dowo) At A A" + (3,w;) dg” A dg* + (drw0) dG* A dt,  (43)

which can be written as
1
d2, = (dow; — d,wo) dt A dg* + E(aMwA — dw,) dg* A dg”. (44)
Let us now denote by, , andE; the coefficients of the 2-form¢d,, i.e.:

Apt)» = a/l(,l))\ - a)\(,l)ﬂ (45)
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and
E)\ = 80(1))\ - a)\a)o. (46)
Eq. (44) becomes then:
dQ, = %AM dg* A dg* + E, dt A dg*. (47)
By using relations (44) and (45) we obtain the following explicit expressions:
1 ~TF
ap[g} = ae[ . } (48)
—TF!
0 = 9 [ ] , (49)
0
1
0 = — 50
aHe (50)
~TF
o [ 5 :| = 0elq- Bl (51)
1
ot [5} = 0elq- Bl (52)
0 = dlq-Bl. (53)

Relations (48)—(53) give necessary conditions for the existence of the entropy func-
tion during the analysed process. WHigs. (48), (51) and (52) express a sort of
‘irrotationality’ of the entropy 1-form€2, and condition (50) is trivially satisfied
because of the initial hypothesis, relations (49), (50) and (53) express the physical
requirement that the quantities considered cannot depend on the gradient of tem-
perature. In particularzg. (53) tells us that the projection of the heat flux field
along the direction of the gradient of temperature is constant with respect to the
same gradient.
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