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Abstract

A geometric model for the thermodynamics of continuous media is constructed, providing a clearer
meaning to the commonly used concept of ‘processes’ and ‘transformations’. The aim is to elucidate
a clear ground suited to analyse thermodynamic transformations outside equilibrium. The model is
applied to the thermodynamics of simple materials and explicit expressions for the existence of an
entropy function are obtained.
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1. The Fibre Bundle of Thermodynamic Transformations

We consider a material element ([1]) and following [2] we suppose that an unam-
biguous definition of its state space can be given. The intuitive idea is that when
a material element is given in a concrete physical situation, it is given in a definite
state; the state determines everything about the element: its configuration, its stress
and the response of the element in every possible test. Then we define the state
space at timet as the setBt of the state variables which ‘fit’ the configuration of the
element at timet and we assume thatBt has the structure of a finite dimensional
manifold. The ‘total state space’ is then given by the disjoint union.

B =
⋃

t

{t} × Bt (1)

with the given natural structure of a fibre bundle over the real line IR where time
flows [3, 4]. We call it thethermodynamic bundle. If the instantaneous state space
Bt does not vary in time (i.e. there is an abstract ‘universal state space’B such that
Bt � B for all instants of timet), whenB is trivial, i.e. it is the Cartesian product

B � IR × B. (2)

In the sequel we shall assume for the sake of simplicity that this holds, although
our treatment extends with simple modifications to the general case.

Now we consider the abstract space of processes which, according to [2],
consists of a set� of functions

Pi
t : [0, t] → G, (3)
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where[0, t] is any time internal,1 the spaceG is a suitable target space suggested
by the model (usually a vector space),i is a label ranging in an unspecified index
set for all allowed processes andt ∈ IR is called theduration of the processPi

t . For
the given state spaceB we suppose that the set� is such that the following hold:

1. ∃D : � → P(B), whereP(B) is the set of all subsets ofB; D is thedomain
function andDi

t ≡ D(Pi
t ) is called the domain of thei-th process (of duration

t);
2. ∃R : � → P(B); R is therange function and Ri

t ≡ R(Pi
t ) is called the

range of thei-th process (of durationt);
3. considering the restrictions

Pi
τ = Pi

t

∣∣[0,τ ] (τ ≤ t) (4)

new processes are obtained (‘restricted processes’) and they satisfy the fol-
lowing:2

∀τ < t D(Pi
t ) ⊆ D(Pi

τ ). (5)

Incidentally, this implies that

t⋂
τ=0

D(Pi
τ ) = D(Pi

t ), (6)

where t is the maximal duration. If it is not necessary to specify the duration,
we shall simply writeDi in place ofD(Pi

t ) = Di
t . Analogously, the abbreviated

notationRi will be used for therange of the i-th process.
A new function is then defined

ρ : � → C0(B, B) (7)

so that∀t and∀Pi
t ∈ � a continuous mapping is obtained

ρ i
t ≡ ρ(Pi

t ) : Di
t → Ri

t (8)

called thetransformation induced by the processPi
t . For any given initial state

b ∈ Di the transformed final stateρi
t (b) ∈ Ri will be called, by an abuse of

notation, thevalue of the process (at timet). We define now a function of time in
the following way:

λi
b(τ ) =

{
b if τ = 0 with b ∈ Di ,

ρ i
t b if τ ∈]0, t], (9)

1We explicitly consider the duration interval to be closed. Some authors (see e.g. [5], [6]) consider
instead a semi-closed interval, to allow more sophisticated limiting situations.

2This requirement expresses the intuitive physical idea that restricting the time interval allows a
longer set of possible initial states.
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so that we have
λi

b(t) = ρi
t (b) = 
i (t, b) (10)

with

i(t, b) : IR × B → B. (11)

B
σ

λb

t

τ

constant solution



ρt

B

R

Fig. 1. Thermodynamic bundle with the transformation for the system

The transformation for the system is a function

σ : IR → IR × B (12)

such that for every local trivialization of the thermodynamic bundle one has

σ : t → (t, λb(t)). (13)

With these positions the transformation is interpreted as a curve in the union of all
the state spaces such that it intersects the instantaneous state space just once, i.e.σ
is a section of the thermodynamic bundle ([3],[4]). Following [5] and [7] we define
a composition law among processes based on the definition ofcontinuation given
by NOLL ([7]). If Pi

t and P j
s are two (time dependent) processes a new process is

given by:

(Pi
t ◦ P j

s )(τ ) =
{

Pi
t (τ ) if τ ∈ [0, t],

P j
s (τ − t) if τ ∈]t, t + s], (14)

with s ∈ IR. On the set

P̃ =
{
(Pi

s , P j
t ) ∈ � × � : D j ∩ Ri �= ∅

}
(15)

consisting of all the pairs(Pi
s , P j

t ) such that the range ofρi
t intersects the domain

of ρ
j
s , the �-valued functions are such thatD(Pj

s ◦ Pi
t ) = (ρ i

t )
−1(D j ∩ Ri ).

Accordingly, for eachb ∈ D(P j
s ◦ Pi

t ), the composition among transformations
can be defined by:

ρ
i, j
t+sb = ρ j

s [ρ i
t (b)]. (16)

This, in turn, allows us to define the ‘action’ of� on the state spaceB as mapping

ρ̃ : � × B → B (17)

such that the following hold:
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• ρ̃[Pi
t , b] = ρi

t (b) if b ∈ Di

• ρ̃(1, b) = b ∀b ∈ B
• ρ̃[P j

s , ρ̃(Pi
t , b)] = ρ̃(Pi, j

t+s, b)

If the particular model chosen allows us to give the structure of a pseudogroup
(or, even better, of a Lie group) to the set� of all processes theñρ is an action in
the standard sense ([3], [4]). Moreover, whenever a processPi admits an inverse in
� (e.g. whenPi is reversible or� is a pseudogroup) then we have the following:3

D(P−1) = R(P), (18)
R(P−1) = D(P), (19)

being, of course,
ρP−1[ρP(b)] = ρ̃[P−1, ρ̃(P, b)] = (20)

ρ̃(P−1P, b) = ρ̃(1, b) = b (21)

and so:
ρ(P−1) = ρ−1

P . (22)

In the productB × � we can now define a suitable subbundle�(B), called the
process bundle, in the following way. The base manifold is given by the manifold
of the state variablesB. The fibre at the pointb ∈ B is the set of the values of all
the processes whose induced transformations start from that given configuration for
the body element:

�b = {P ∈ � | b ∈ Di(P)}. (23)

If a vector fieldX can be given on the state manifold in a way that its integral curves
are the transformations given by the function of time (λb) appearing inEqs. (13),
then the vector field determines a section of the bundle�(B) = ⋃

b∈B �b so
constructed. We indicate with̃X the application:X̃ : b → bt wherebt ∈ �b is
the value of the state variable obtained through the transformation at timet .

2. An Application to Simple Materials

For simple materials [8], [9] the state space can be given by thedeformation gradient
F, theinternal energy e and the vectorβ = −1

µ
grad1

θ
, whereµ is themass density

andθ is thetemperature. We have then:

B = Lin (V) ⊕ IR ⊕ V, (24)

whereV is the translation space of IR. The general processPt is a piecewise
continuous function whose values are

Pt (τ ) = [L(τ ), h(τ ), γ (τ)], (25)
3For the sake of simplicity an obvious short notation without indices is adopted.
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Fig. 2. Process bundle with the vector field on the state variables determining the section

whereL is the instantaneous value of thevelocity gradient, τ = β̇ andh = − 1
µ

divq,
q being theheat flux vector given as a stationary vertical field on the bundle:

q : IR × B → V (26)

(we are not considering radiation for the sake of simplicity).
With these positions the target space turns out to be

G = Lin (V) ⊕ IR ⊕ V � B (27)

so that
B × G � T B (28)

and the process maps an interval of the real line into the fibreG of the bundle

P : [0, t] → G. (29)

We introduce a further stationary field on the thermodynamic bundle IR× B, i.e.
thestress field:

T : IR × B → Sym(V) (30)

so that a response functional on the state space is given by

T̃ = T ◦ ρt : B → Sym(V), (31)

which is the stress determined by the process starting atb. Another stationary field
is introduced as thetemperature field

θ : IR × B → IR++, (32)

IR++ being the set of real positive numbers.
The system of dynamic equations considered in [5], i.e.


Ḟ(τ ) = L(τ )F(τ ),
ė(τ ) = T(b) · L(τ ) + h(τ ),

β̇(τ ) = τ(τ)

(33)
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determines in fact a linear bundle morphismG : T B → T B

G : (F, e, β, L, h, τ ) → (F, e, β, Ḟ, ė, β̇), (34)

which, in a matricial form, is given by:

(F, e, β, Ḟ, ė, β̇)T =
(

II o
o A

)
(F, e, β, L, h, γ )T (35)

with

A =
(

F 0 0
T 1 0
0 0 1

)
. (36)

If we denote byX the vector field corresponding to the system of ordinary
differential equations (33), according to our previous discussion the vector fieldX
generates a section of the process bundle�(B), so that every differentiable curve
λb on the base manifold is transformed into a differentiable curveX ◦ λb in the
section, called theX-lift and denoted by the symbol∧ in the sequel.

The lift of the induced transformation must satisfy the following conditions

1. [τB ◦ X ◦ λb]∧ = X ◦ λb,
2. ∀ local trivializationT B ≡ B × G, X ◦ λ0 = [τB ◦ X ◦ λb, A · Pt ],
3. λb(0) = λ0,

whereA is the linear transformation (36) andτB is the natural projection ofT B.
One can notice that the latter relations on the lifted transformation hold in the case
of the general model and not only for simple materials. This allows us to analyse
more general systems in whichG �= B and the bundle constructed does not therefore
coincide with the tangent bundle of the state variables. In this way the model allows,
for example, to take into account the action of internal variables (see, e.g. [10, 11])
and this will be the subject of future investigations.

B
σ̂

σ

R × T B

R × B

R

process

Fig. 3. State space with the time variable and related tangent space with the process for the
system
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Following [5], a real function called the ‘entropy function’ is defined on
IR × T B by:

s(ρt , b, t) =
t∫

0

h(τ )

θ[b(τ )] dτ +
t∫

0

q[b(τ )] · β(τ) dτ, (37)

so that in the thermodynamic bundle IR× B a 1-form�ω is also defined, called the
‘entropy 1-form’, whose integral along the solution curve gives exactlys, i.e.:

∫
σ

�ω =
t∫

0

h(τ )

θ[b(τ )] dτ +
t∫

0

q[b(τ )] · β(τ) dτ. (38)

In components one can write

�ω = ωµ dqµ + ω0 dt ≡ ωA daA, (39)

whereqµ are the variables inB andq0 = t , so that

∫
σ

�ω ≡
t∫

0

ωA[t, λb(τ )]λ̇A
b dτ. (40)

UsingEq. (40) together with the relationsL = F−1Ḟ andh = ė −TL which follow
from (33), we get:

�ω = −TF−1

θ
dF + 1

θ
de + q · β dt. (41)

By differentiation a 2-form is then obtained:

d�ω = [∂AωB] dq A ∧ dq B (42)

and by using the natural properties of the exterior differential one easily obtains

d�ω = dωλ ∧ dqλ + ω0 ∧ dt =
= (∂0ω0) dt ∧ dqλ + (∂µωλ) dqµ ∧ dqλ + (∂λω0) dqλ ∧ dt, (43)

which can be written as

d�ω = (∂0ωλ − ∂λω0) dt ∧ dqλ + 1

2
(∂µωλ − ∂λωµ) dqµ ∧ dqλ. (44)

Let us now denote byAλµ andEλ the coefficients of the 2-form d�ω, i.e.:

Aµλ = ∂µωλ − ∂λωµ (45)
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and
Eλ = ∂0ωλ − ∂λω0. (46)

Eq. (44) becomes then:

d�ω = 1

2
Aµλ dqµ ∧ dqλ + Eλ dt ∧ dqλ. (47)

By using relations (44) and (45) we obtain the following explicit expressions:

∂F

[
1

θ

]
= ∂e

[−TF−1

θ

]
, (48)

0 = ∂β

[−TF−1

θ

]
, (49)

0 = ∂β

[
1

θ

]
, (50)

∂t

[−TF−1

θ

]
= ∂F[q · β], (51)

∂t

[
1

θ

]
= ∂e[q · β], (52)

0 = ∂β[q · β]. (53)

Relations (48)–(53) give necessary conditions for the existence of the entropy func-
tion during the analysed process. WhileEqs. (48), (51) and (52) express a sort of
‘irrotationality’ of the entropy 1-form�ω and condition (50) is trivially satisfied
because of the initial hypothesis, relations (49), (50) and (53) express the physical
requirement that the quantities considered cannot depend on the gradient of tem-
perature. In particular,Eq. (53) tells us that the projection of the heat flux field
along the direction of the gradient of temperature is constant with respect to the
same gradient.
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