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Abstract

Nowadays the growing computer capacity provides a new opportunity of the simulations regarding
more reliable and accurate models and fast computation. This paper presents a complete dynamic
simulation of the Puma 560 robot. The simulation is based on the dynamic model of the servo
drives of the joints and the robot model taking into account mass, inertia, frictions, etc. The robot
model and the simulation are implemented in LabVIEW. This approach has several advantages; the
opportunities of parallel computation, built in functions provide easy and fast numerical calculation,
fast implementation of different models and methods. Several simulation results are demonstrated
using different trajectory planning methods for one given path.
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1. Introduction

The advance of high-speed technology, the growing computer capacity and the
technical improvement of the control devices provide realistic opportunity for new
robot control, new simulation technique and new control theories. The trend of
this, the technical improvement together with the need for high-performance robots
created faster, more accurate and more intelligent robots using new robot controls,
new drives and advanced control algorithms. The new control algorithms, the new
control devices and in most cases any robot application need simulations before
the real operation. That is why the simulation is still emphasized in our research.
This paper presents a complete dynamic simulation of the Puma 560 robot. All
the geometrical data, mass, inertia, friction of the robot were taken into account
in creating the realistic model of the Puma 560. The simulation utilises also the
dynamic model of the servo drives of the joints. The robot model and the simulation
were implemented using high level graphical programming language (LabVIEW).
The programming in LabVIEW has several advantages; the opportunities of par-
allel computation, built in mathematical functions provide easy and fast numerical
calculation and the main advantage is the opportunity of the fast implementation
of different models and methods. The purpose of the presented simulation is to
improve different trajectory planning methods that are used in the real control sys-
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tem. Also the simulation can be used for tuning the parameters of the real control
systems. Using the same given path different trajectory planning methods are tested
from the accuracy point of view.

The following paragraphs present the models – control system (control card),
amplifier, servo motor, friction model and robot hardware (links) – what the Lab-
VIEW software utilises in the presented dynamic simulation of the PUMA 560
robot.

2. The Model of the Servo Motor and the Amplifier of the Robot

Fig. 1. The model of the amplifier – DC motor combination

The simulation model of the robot utilises the simplified DC motor model, which
is well-known and frequently used for simulation and control purpose.Fig. 1
shows the equivalent-circuit model of amplifier and DC motor, whereea(t) is the
input voltage of armature coil,R is the resistance of the motor armature coil,La
is the self-inductance of the motor armature circuit,eb(t) is voltage drop (inverse
electromotive force),Jeff is the effective inertia and� is the angular position of the
shaft. According to the Kirchoff law for the electrical side of the DC motor one can
write:

ea(t) = La · di(t)

dt
+ R · i(t) + K · d�(t)

dt
. (1)

whereK is a motor constant. The model for amplifier-motor combination is easily
obtained by substitutingKAe(t) for ea(t) and(R0 + R) for R in Eq. (1)

K · ea(t) = La · di(t)

dt
+ (R0 + R) · i(t) + K · d�(t)

dt
. (2)

The torque developed on the shaft by the current – magnetic field interaction (Am-
pere’s rule) isT (t) = K∗i(t). Euler’s law applied to the output shaft gives us the
following equation:

[K · i(t) − µ · TL(t) − Beff(ω(t))] = Jeff · d2�(t)

dt2
. (3)
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The well-planned DC motor is capable to accelerate the given robot links (Jeff
inertia) to compensate theBeff damping effect and theTL loading torque.

3. The Control System

Fig. 2. The block diagram of the control system

The control algorithm utilises Proportional feedback, Integral feedback and
Velocity feedback based on a real robot control card developed by Compumotor
[9]. Fig. 2 describes the block diagram of the control system. The model of the
control system was planned so, that the model utilises the same algorithms as the
Compumotor control card in the real control system in order to be closed to the
reality. The control system consists – in sequence – of the control card including
the control algorithm, the amplifier, the DC motor, the friction as disturbance of the
process and the robot hardware (links, joints). The parameters of the control system,
the DC motor, the amplifier, the friction and the robot hardware characteristic were
either measured or they were found in the literature.

4. The Friction Model

Fig. 3 describes the friction in function of the velocity applied at the joints. The
two relevant parameters areFsa = 0.146 Nm andFsb = 0.124 Nm.
Fig. 4 describes the block diagram of the simulation. The first step in the simulation
is the trajectory planning where the path and the velocity profile of the joints are
determined. The simulation model concentrates to the first three joints of the robot
in this experiment, however, the model is capable to calculate all the six joints.
The simulation makes all the calculations parallel through the control algorithm the
amplifier and the servo motor. Then comes the direct dynamic calculation block,
which is the essential part of the simulation. Dynamic modelling of the robot
manipulator consists of finding the mapping between the forces exerted on the
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if ABS(V ) = 0 and τ ≤ Fsa thenFs = τ ;
if ABS(V ) = 0 and τ ≥ −Fsa thenFs = τ ;

if ABS(V ) = 0 and τ ≥ Fsa thenFs = Fsa;
if ABS(V ) = 0 and τ ≤ −Fsa thenFs = −Fsa;

if ABS(V ) > 0 thenFs = Fsb ∗ SI GN(V );

-

6
Fsb

Fsa

Fs

−Fsb
−Fsa

v

Fig. 3. The friction model

structures and the joints positions, velocities and acceleration. Two formulations
are mainly used to derive the dynamic model: the Lagrange formulation and the
Newton–Euler formulation.

5. Direct Dynamic Calculation

In the direct dynamic calculation block, basically, the Lagrange formulation is
used, but with small changes. In that case when the Lagrange formulation is used
and (n = 6 joints) there are 425 multiplies and 369 additions are required to
take in one simulation step. TheFig. 5 shows the block diagram of the direct
dynamic calculation related to Lagrange formulation. This calculation is based on

Fig. 4. The block diagram of the simulation
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Fig. 5. The block diagram of the direct dynamic calculation

the Lagrange equation, which is described byEq. (4)

τ = H(q) · q̈ + h(q, q̇) · q̇ + C(q), (4)

where theH(q) is then ×n symmetric, positive definite inertial matrix of the robot,
h(q, q) is then degree vector of centrifugal, and Coriolis forces andC(q) is then
degree vector of gravitational forces.

Big amount of calculations are required to produce theH(q) inertial matrix,
the h(q̇, q) and theC(q) and the parameters maybe not so punctual as the simu-
lations require. The solution that the authors propose utilises the Newton–Euler
formulation to determine theH , h andC matrixes in the following way.

A. The following state is assumed in a given moment of the movement

q = qn−1
q̇ = 0;
q̈ = 0;

Newton
Euler

→ τc1.

Substituting these values to Newton–Euler formulationτc1 is determined.
Then using the Lagrange formulation and taking the assumption into consid-
eration

τc1 = C(q) (5)

theC(q) function is obtained.

B. In the second step of the calculation another state is assumed in the same
moment of the movement

q = qn−1
q̇ = q̇n−1;
q̈ = 0;

Newton
Euler

→ τc2.
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Then using the Lagrange formulation as in the previous step

τc2 = h(q, q̇) · q̇ + C(q) (6)

theh(q, q̇) function is obtained.
C/1. In the third step of the calculation theH matrix will be determined

q = qn−1, q̇ = q̇n−1;
and

q̈ =
[

0
0
1

]
Newton
Euler

→ τc3/1 τc3/1 =
[

a13
a23
a33

]
·q̈ +h(q, q̇)·q̇ +C(q). (7)

C/2.
q = qn−1, q̇ = q̇n−1;

and

q̈ =
[

0
1
0

]
Newton
Euler

→ τc3/2 τc3/2 =
[

a12
a22
a32

]
·q̈ +h(q, q̇)·q̇ +C(q). (8)

C/3.
q = qn−1, q̇ = q̇n−1;

and

q̈ =
[

1
0
0

]
Newton
Euler

→ τc3/3 τc3/3 =
[

a11
a21
a31

]
·q̈ +h(q, q̇)·q̇ +C(q). (9)

After these calculations the Lagrange formulation can be used and based on the
simulation module of the direct dynamic (Fig. 5) using Eq. (10) the q̈ value is
obtained

q̈ = (H(q) + Z2I )−1 · (τ − h(q, q̇) · q̇ + C(q)) , (10)

WhereZ is the gear ratio and

I =
[

I d1 0 0
0 I d2 0
0 0 I d3

]
(11)

I d1, I d2 and I d3 are the inertia of the motor shafts.
Using two times the Adams–Basforth Integrator theq̇ andq values can be

obtained. These two values are stored in shift registers for the next calculation step.
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6. Simulation Results

The presented dynamics calculation method is faster than the normal use of La-
grange computation. In our case the simulation time step was dt = 0.0005 s and
theT = 24 s, it means 48000 simulation steps. Using Pentium II.(300 Mhz) based
PC the simulation took 337 s.Fig. 6 describes the path of the robot andFig. 7 shows
the arbitrary speed profile applied along the path.

Fig. 6. The trajectory of the robot inxy plane

Fig. 7. The arbitrary speed profile along the path

In this case the maximum speed along the path is 0.1 m/s. This is a rather low value
compared to the real speed values of the robots.Fig. 9 describes the absolute error
along the path.
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Fig. 8. The trajectories of the first three joints

Fig. 9. The absolute error along the path

Fig. 10. The arbitrary speed profile along the path

The maximum difference between the desired and the simulated values is 0.65 mm,
which value is a reasonable one considering the low speed value along the path. By
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Fig. 11. The absolute error along the path

increasing the speed value and using the same arbitrary velocity profile –Fig. 10
describes it – the maximum error value increases too – see inFig. 11.

Fig. 12. The zoomed speed profile

Fig. 12 describes the part of the speed profile using the zoom function. This figure
shows the dynamic behaviour of the system. The whole profile consists of small
responds for step functions.

7. Conclusion

The presented dynamic simulation of the Puma560 gives reasonable results regard-
ing to the real robot behaviour. Further study should be made to make a comparison
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experiment between the real system and the model using an external measuring sys-
tem. The simulation model used the first three joints of the robot in this experiment,
but the dynamic calculation module takes into account all the six joints dynamics.
The authors described a new way of calculation of the direct dynamics, which
is faster than the usual way of use of the Lagrange formulation. The simulation
model of the robot was developed using LabVIEW. This achievement provides easy
and fast further development in improving the model and the trajectory planning
methods. In this paper the arbitrary trajectory planning method was used to make
comparison in absolute error regarding to the speed along the path.
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