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Abstract

This paper is concerned with the mathematical modeling of transient thermal elastic problem involving a layered cylinder with a varied 

coefficient of thermal expansion and powered by a heat flux from an external surfaces. All material's properties are the same for each 

cylinder's layers, besides the coefficient of linear thermal expansion which is varied and corresponds to hardened and unhardened 

layers. An obtained solution is a transient state of a heat transfer for the one-dimensional temperature change under the action 

of heat flux in continuous time. Cumbersome analytical solutions are converted into simple approximation. They are used to solve 

the inverse problems of the thermal stressed state–determining the time of action of the heat flux to achieve the specified maximum 

temperature or stress. Some numerical results for the stress distributions are shown in figures.

Keywords

layered cylinder, heat transfer, transient state, thermal elastic analysis

1 Introduction
Due to modern technical challenges either the implemen-
tation of new technologies or materials in modern high-
tech manufacturing requires the solution of important 
problems of assessing the strength of the materials being 
processed. This is especially important for finishing tech-
nology of shock-wave treatment, such as ultrasonic hard-
ening [1] or finishing by detonating gas mixtures (thermal 
deburring) [2], using the energy of heat flows, including 
high intensity. And here it is very important not only to 
accurately determine the operating heat fluxes [3], but also 
the ability of materials to perceive such heat loads.

A special direction in this problem is the issue of ther-
mal elastic analysis of materials with different properties in 
thickness, for example, treatment metals with a pre-hard-
ened surface layer (after cementation, quenching, etc.) 
by heat flow or polishing surfaces after dynamic coating 
with inherent variability of coverage [4]. It is known, that 
the variability of the coefficient of thermal expansion is 
the most significant for materials with the nonhomogene-
ity of mechanical properties. [5, 6]. So, a surge of thermal 
stresses occurs in the outer layers of the material when an 
intense energy flow acts. Therefore, during determination 

the stress–stain transient state it is absolutely necessary to 
take into account the stresses resulting from the tempera-
ture gradient.

The nonhomogeneous material described above is clos-
est to the Functionally Graded Materials (FGMs) now is 
popular in academic circles. As a rule, the properties of 
such materials are set as a continuous function from one 
phase to another, implying that the sizes of the zones are 
comparable [7–9]. Many studies have been carried out 
within the framework proposed by Biot [10], the classi-
cal conventional coupled theory of thermal elasticity. 
The theory is based on the classical Fourier law of heat 
conduction. This approach involves the instantaneous dis-
tribution of heat in a solid, which is not practically imple-
mented. Examples of analytical solutions of transient ther-
mal stress problems can be found in [11–14].

Therefore, the main purpose of this paper is to obtain 
an exact analytical solution and present it in a foreseeable 
form for an investment in analyzing the results. 

The object of the study is a regular zone of a cylindri-
cal body with a thin outer layer. Used nonhomogeneous 
material emphasizes the difference in thermal expansion 
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coefficients. Note that in FGMs materials are selected with 
similar values (for example, titanium alloy (Ti-6Al-4V), 
α = 8.9 1/МК and zirconium oxide (ZrO2), α = 8.7 1/МК). 

2 Heat conduction problem
2.1 Heat distribution in an infinite cylinder
Consider a two-layer cylinder with a varied coefficient of 
thermal expansion and powered by a heat flux  from an 
external surface (see Fig. 1). Outer layer is thin and its 
thickness is represented by  and  respectively for dimen-
sional and dimensionless description. The coefficients of 
linear thermal expansion of each layer are different and 
their values are constant. It is assumed that other mechan-
ical properties in the both layers are the same. This corre-
sponds to the formulation of the problem of the presence 
of a strengthened layer in a solid body.

The layered cylinder inner and outer radii are desig-
nated R −δ  and R  respectively for dimensional descrip-
tion as well as R1 and 1 for dimensionless description. 
Moreover, three important points are highlighted in the 
depth of the cylinder: on the surface r =1,  in the middle of 
the radius r = 0 5.  and in the center of the cylinder r = 0.

The well–known solution of the problem of heat propaga-
tion in an infinite cylinder when exposed to a heat flux [15] 
in dimensionless quantities has the form:
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here:
• T T T K R= −( )0 /ϕ  – temperature change;
• r r R= /  – radial coordinate (Fig. 1);
• t at R= /

2  – time;
• μn– roots of the equation J n1

0µ( ) = ;

• J0, J1 – Bessel functions of the first kind of zero and 
first orders;

• T ,  T0  – dimensional current and initial tempera-
tures, К;

• K – coefficient of thermal conductivity, W m K⋅ ⋅ −1
;

• t  – dimensional time, s; φ – heat flux, W m⋅ −2
;

• R  – outer radius, m;
• a – thermal diffusivity m s⋅ −1

.

Variation of the temperature change in the time by heat 
flux exposure is shown in Fig. 2.

The maximum temperature occurring on the surface 
( ),r =1  is determined using Eq. (1) by Eq. (2):
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2.2 Approximation of the maximum temperature value
From Fig. 2 and Eq. (2) it can be seen that the temperature 
dependence on time is nonlinear for small values of time t .  
With increasing time, this dependence becomes linear. 

Therefore, Eq. (2) can be approximated by Eq. (3):
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The error of the approximate value of the maximum tem-
perature Eq. (3) relative to its exact value Eq. (2) does not 
exceed 5 % in the entire range of time variation.

By approximation Eq. (3), it is easy to calculate the rel-
ative heating time of the cylinder to achieve the required 
temperature on its surface Tmax.
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Fig. 1 The layered cylinder with a varied coefficient of thermal expansion
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3 Thermoelastic problem
3.1 Analytical solution
Axisymmetric plane strain problem has a solution:

σ
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here:
• σ σ ν αϕ= −( ) ( )K E R1 /  – dimensionless stresses;
• σ  – dimensional stresses, Pa;
• E – Young's modulus, Pa; 
• v – Poisson's ratio;
• α – coefficient of linear thermal expansion;
• ε z const=  – quantity of the axial strain.

The integration constants A and B are determined from 
boundary conditions.

Boundary conditions for a solid cylinder having an 
outer layer thickness δ  with a different coefficient of 
thermal expansion kα (Fig. 1) have a look:
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The constant ε z  characterize the longitudinal strain and 
is determined from the condition of self–balancing stresses:
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In Eq. (6) and Eq. (7) the index "1" refers all values to the 
inside of a cylinder with a relative radius R

1
1< , , and the 

index "2" – to the outer layer with a relative thickness: 
δ = −1

1
R .

After determination the constants from Eq. (6) and 
Eq. (7) that are included in Eq. (5) and calculation the inte-
gral of temperature in Eq. (1), the final equation for calcu-
lating the stresses in both parts of the cylinder will take 
the following form (rather cumbersome):

σ

µ µ
r

n

n n

r k R R t T

J r rk R J R
1

2

1 1

2

1

2

0

1

1 1 1 1

1 1 8 4 8

2

= − + −( ) + +( )( )
+

( ) +
=

∞

∑ (( )
( ) ( )r t Jn n nµ µ µ3 2

0
exp

,  (8)

σ

µ µ µ
θ1

2

1 1

2

1

2

0

1

0 1

1 3 1 8 4 8

2

= − + −( ) + +( )( )
+

( ) + (
=

∞

∑

r k R R t T

rJ r J r

n

n n n )) + ( )
( ) ( )

rk R J R
r t J

n

n n n

1 1 1 1

3 2

0

µ
µ µ µexp

,  (9)

σ δ δ δ

µ
µ

z

n

n

n

k T t r

C J r

1 1 0

2

1

0

2

2
1

4
3

1 3

6

2

= + + − −( )





 +

−( )

+
+ ( )

=

∞

∑
expp

,

µ µn nt J2

0( ) ( )

 (10)

σ

µ

r

n

r k R R t T kr

r
r k R J

2

2

1 1

2

1

2

0

2

2

1

2

1 1 1

1 8 1 4

8

2
1

=
− + − +( ) +( )

−
−( )

=

∞

∑

)(

nn n

n n n

R krJ r

r t J
1 1

2 3 2

0

( ) − ( )
( ) ( )

µ

µ µ µexp

,  (11)

σθ 2
1

2

1

2

1

2

0

2

1

1

2

1 1 8 4 3 1

8

2
1

=
+( ) − − −( ) − −( )( )

+
+( )

−

=

∞

∑

k r R R t T k r

k r R

n

11 1 1 1 0

2 3 2

0

J R krJ r r J r
r t J

n n n n

n n n

µ µ µ µ

µ µ µ

( ) − ( ) − ( )
( ) ( )

( )
exp

,

 
(12)

σ

µ

z

n

n

k R
R

T t k r

C kJ r

2 1 1

1

2

0

2

1

0

1

6
2

1

12

1 3

6

2

=
−( )

− − +








 +

−( )

+
+ (

=

∞

∑ ))
( ) ( )µ µ µn n nt J2 2

0
exp

,  (13)

To shorten the notation in Eqs. (8) to (13), it is indicated 
k k
1

1= − ,  and:
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where H0, H1 are struve functions zero and first orders.
To assess the influence of the thermal expansion coef-

ficients for the two–layered model, the numerical results 
were obtained for the following data: t T= =0 1 0

0
. , ,  

outer layer thickness δ = =( )0 2 0 8
1

. . ,R  the layer has one 
and half times greater coefficient of thermal expansion 
k k= =( )1 5 0 5

1
. . .  This ratio of layer thicknesses is typical 

for metals after strengthening technologies.
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Fig. 3 Variation of thermal stresses along the radial direction
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Fig. 3 shows the variations of thermal stresses σ σ σθz r, ,  
in the transient state along the radial direction. The stress 
jump between the layers is due to the corresponding set-
ting of the thermal expansion coefficient.

Different coefficients of thermal expansion of each layer 
cause jump in the tangential σθ  and axial stresses σ z .  
The radial stresses σ r  are kinked. The value of maxi-
mum radial stresses (along the cylinder axis) is consider-
ably lower than the maximum tangential and axial stresses 
(for the outer layer). The maximum tangential and axial 
stresses in the outer layer have the same level.

3.2 Determination of maximum stresses
The maximum stresses occur in the outer layer r =1,  
in addition, it can be noted that the outer layer is very 
thin. It is about relative thicknesses δ = …0 01 0 001. . ,  
so, it can be taken δ = 0.

With this assumption for k < 4  and t <1,  the error of 
determination of the maximum stresses do not exceed 2 %.

In view of this, Eq. (12) and Eq. (13) take the form:
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Variation of the maximum stresses over the time for 
different values k is shown on Fig. 4. The figure clearly 
shows that for a solid cylinder (k = 1) the stresses reach 
a certain level and do not change with the heating time, 
but if k > 1 the stresses grow indefinitely.

3.3 Approximation of maximum stresses
Maximum stresses (Eqs. (14) and (15)) (in general, like all 
others (Eqs. (8) to (13)) linearly depend on the relative coef-
ficient of thermal expansion k. The type of stresses change 
over time is similar to the type of temperature change 
(see Fig. 4). In Fig. 4 it can be seen that temporal develop-
ment of maximum stresses are nonlinear up to the time value 
t < 0 25. ,  and it becomes linear with increased time value. 

Analytical solutions (Eqs. (14) and (15)) of stud-
ied task can be represented as following approximations 
(Eqs. (16) to (17)):
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The error of these approximations does not exceed 5 % 
over the whole range of time change t and coefficient of 
thermal expansion k. The numerical results for approxi-
mations (Eqs. (16) and (17)) are shown in Fig. 4.

3.4 Determination of heating time by maximum stresses
Take into account the problem statement k >( )1 ,  using 
the theory of maximum shear stresses σ σ σf = −( )1 3

 
and having the temporal development of maximum 
stresses (see Fig. 4) it was defined the principal stresses 
σ σ σ σ σθ1 2 3

0= = =, , z  and finally the equivalent 
stresses σ σf z= − .

For achievement a certain level of equivalent stresses 
σ f  on outer side of the cylinder the required heating 
time can be determined from (Eq. (17)). To reduce the 
recording determined equation, the assumption of the 
absence of stresses in the body at the initial moment of 
time was taken. So, Eq. (18) for calculating the required 
heating become follow:
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Fig. 4 The temporal development of maximum stresses:
σ σθ , z  – analytical solutions,  σ σθ , z  – approximated solutions
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In addition, Eq. (18) must be supplemented by two con-
ditions that which eliminate singularity: 

•	 if k = 1 then σ f ≤1 3/ ,
•	 if k = 3.954/1.638 and S £1 3937.  then 

t f= 0 132 2
. .σ

To assess the influence of the coefficient of thermal 
expansion of outer side, the numerical results for two-lay-
ered model, are shown in Fig. 5. It is important to note, that 
the maximum stresses for homogeneity cylinder with k = 1 
don't exceed 1/3.

4 Conclusion
During the study of the thermal elasticity for a cylinder, 
with thin outer layer having a different coefficient of ther-
mal expansion, the following results were obtained.

When a certain time value is reached, the nonlinear 
terms in the equations determining temperature and stress 
become negligibly small.

The non-stationarity of the problem of determining the 
temperature, and as a result of the stresses, is described by 

a double piecewise function – the nonlinear when t < 0.25 
and the linear dependence otherwise.

The cumbersome analytical equations of the ther-
mal elasticity problem is presented in the form of simple 
approximations. 

Using obtained approximations, it is possible to calcu-
late the application time of the required heat flux up to 
achievement the strength limitations of the treatment sets 
for the studied materials.
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