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Abstract

The manufacturing of polyurethane (PU) parts has an ever-increasing trend due to the production of
cars. The automation of the demoulding of polyurethane car seats is a current problem the suppliers
of car manufacturers have to face. The automation of other processes of seat foam production has
already been solved but the problem of demoulding is still a much-investigated subject. To design
robot grippers for this process we need to know the value of the demoulding force. We present a
mathematical model for the calculation of this force for polyurethane seat-like foams in general. A
material model is proposed that uses only those parameters that are available for the factories, and
this model is compared with test results.

Keywords: demoulding, polyurethane, material properties.

Introduction

The ever-increasing need of vehicle seats made of polyurethane implicates the au-
tomation of the whole manufacturing process of seat production. Parts of the pro-
cess have already been automated, such as mixing the polyurethane components,
pouring the PU mixture into the mould on a controlled path, operating the mould,
etc., but according to our literature survey, the demoulding process has not yet been
automated. Demoulding is the process when the finished foam part is taken out of
the mould [3].

The problem encountered in this process is the different sizes and shapes of
foam which often have large undercuts and inserts in them. The inserts are used
to modify the characteristics of the seat to give it more rigidity, comfort, etc., to
suit different car types (for example a sports car need to have a totally different
characteristic seat than a family car or a truck or a train). The undercuts are used
to give the seat a better look, a good fashion and a nice design. They also cover the
insert (wrap them over) so the seat is much safer and softer for the user.
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By making technologies for the automation procedure these characteristics
of the foams must be kept as the designer has made them.

The automation of demoulding requires assistance of robots with different
gripping strategies for different foams. This is necessary to keep the flexibility of
the system that is required greatly in the automobile industry. To design such a
system the demoulding force has to be calculated first for each foam in order to
obtain the initial value for the design process.

In this paper we present a method for estimating an upper boundary for the
demoulding force for a general foam from as few material parameters as possible.
This upper boundary gives an initial safety value for the design.

1. TheTask

The task is to determine thié force that is required to lift a foam out from the
mould (seefFig. 1).

Fig. 1. Model of foam in the mould
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Fig. 2. The deformation of undercuts in the foam during demoulding

This means to calculate the force that is required to deform the undercuts of
the foam to the size of the mould opening. Demonstration of the deformation of
undercuts during lifting the foam out of the mould can be sedfgr®.

The deformation of the foam is the principle of the calculation.

The first assumption is that the deformation energy is constant in every foam.
This means that no matter how and in what sequence the foam is deformed (e.g.
first the small undercuts are taken out, then the large ones) the same energy is
needed for the whole foam to be lifted out of the undercuts. A proper lifting path,
however, can considerably reduce the force (§&ég:3). The force can be consid-
ered to be proportional to the amount of volume that is deformed at a given time,
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so when the whole volume is deformed we get the largest force. We take this case
for obtaining the maximum value for the demoulding force.

Fig. 3. A lifting method (path) to reduce demoulding force

In the case of controlled lifting path (as seerfig. 3) only a part of the foam
is deformed at a given time, so the force is much smaller, but the overall energy is
the same, because the foam has to be bent and this also causes deformations.
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Fig. 4. The free heightl() of the foam being lifted out of the mould (a) and the change of
the lifting force with the free height (b)

When the foam is lifted out of the mould the amount of volume that is de-
formed at a given time is determined by the free height of the mould sdég #a.
The change of forceR) along the lifting path I() can be seen ifrig 4.b. This
curve is different for each foam therefore it is just an approximation to show the
characteristics of the lifting process.

2. Modd for the Calculation

When calculating the demoulding force the following components are taken into
consideration:

Fdem := Fdef + Frrict + Fstr + I:g + Fag. (1)

Where:
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Feem Demoulding force.

Faef Deformation force. It is a projection of the compression force perpendic-
ular to the wall of the mould issued from the compression of the foam in
cross direction. (We use this for the calculation).

Frrict Frictional force acting between the foam and mould.

Fstr Stretching force arisen from the elongation in the lifting direction.
Fy Mg, where M is the mass of the foang is the gravitational constant
9.81 m/$.

Fad The adhesion force acting between the foam and the mould when produc-
tion parameters are not set properly. It is not taken into consideration in
this model (see: Appendix 2).

If we presume that the foam is demoulded by making the whole undercut
volume deformed to the size of the mould opening, as a first approach the frictional
and the stretching force can be neglected. This can be achieved with the use of the
CGM gripper [2].

This will be our first assumption. The method gives the smallest force for
demoulding and may be used for special grippers only.

Available data for the calculation.

For all force calculations the geometrical foam parameters are the base data.

Usually in the factories the precise geometry of the foam is documented in
a 3D CAD model (e.g. in such CAD systems as ProEngineer, Unigraphics, etc.).
This model is used for designing the seat, making the mould for the foam, calcu-
lating storage space, transport, etc. The solid model of the foams can be used to
derive features and size measurements for the calculations and may be the base for
further finite element studies.

The other important parameters for the calculations are the foam material
parameters. These are the tensile strength, ripping strength, compression strength,
tearing strength, bending strength, etc.

The most important parameter for the factory is the compression strength, a
kind of compression resistance, which is called hardness by the factory men. This
is regularly measured in the factory for every series of foam. From this value the
factory can tell whether a series of foam has a good quality or not. The hardness
is a designer value that is important for the safety and comfort of the car and its
passengers. It can be very different for different types of cars. A sports car has
to have hard seats that do not let the driver slide out of the seat in narrow bends
and corners. A family car or a truck has to have soft, comfortable seats for long
voyages. Sometimes a foam has different hardness values at different parts. This
type of seat has a softer inner part and a harder outer rim. The comfort and the
safety is achieved in one foam, although the manufacture is more costly. In this
paper we only deal with single hardness foam. The calculation for the variable
hardness foams is not much different although twice as much material parameters
are needed.

For a first approach of the calculations we use the parameter of compression
strength and later check the results on a real life tests.
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3. The Compression Strength

When a foam material is compressed by a universal tensile test machine a force-
displacement curve is obtained as seeRim 5.
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Fig. 5. The original curve from the test (a) and the principal main sections of that (b)

The curve can be divided into three sections. In sections | and Il of the curve
(see: Fig. 51 and Il on the picture) a volumetric decrease occurs. The volume
decreases in these sections because the foam can be considered a material that has
a Poisson factor of relatively zero. So the foam decreases in height, the stress
increases but the other two dimensions of the foam block do not increase. This
is just an approximation but the change is so small that it does not concern the
calculations in the range we are interested in.

The three sections of the curve can be explained by the physics of the foam.

First let us look at a foam at demoulding before the processing. When the
foam has finished polymerising a lot of gas is trapped in it. These gas bubbles
(in the foam cells) have to be ruptured to let the gas out, otherwise the foam col-
lapses and this collapse ruins it. That is why after demoulding the foam has to
be processed (beaten, rolled or put in vacuum) to rupture these cells. In the first
part the foam can be considered as an entity that consists of lots of closed cells
that has hot (approximately 55 deg. centigrade) gas in them. This is a residue of
the polymerisation. When the compression of the foam part starts, the pressure
in these cells begins to increase, as the volume of each cell decreases. This lasts
till the end of section I. In the second part (section 1) the pressure gets so great
that it begins to rupture the cells. In this section the slope of the curve is much
gentler that in the first section. It lasts till all the gas from the cells has escaped (till
the end of section Il). In the third part the slope of the curve increases radically.
This is because at this time the polymer material itself, without any free volume, is
being compressed. This is a very narrow section that happens in the last few mil-
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limetres of the compression that ends at an infinitely large force when it reaches
the 100% mark of the compression. That is why the part can never be compressed
completely, the interaction forces between the atoms prevent that.

The division of the curve was done to explain what happens during com-
pression. In real life these sections cannot be separated sharply. All three types
of characteristics are present in all three sections, but the characteristics that are
most typical at a part of the curve can be categorised in one section. The other two
characteristics are present too in this section but in a much smaller scale.

After processing a foam part has a similar curve but a slightly different first
section. This state of the foam is also interesting, because several times the tests
have to be done on a processed foam (after pounding). There is just not enough
time to make the test on a fresh foam before it collapses. The foam has air in its
cells at the beginning and all the cells are already ruptured. When the compression
starts these cells begin to contact and the air pressure in them begins to increase.
Because the cell walls are already open they begin to let air out very soon, first at
the open surface of the foam then gradually inside. So the first two sections cannot
be separated well. The third section is the same as for the unprocessed foam.

To generate a function for the curve several methods can be chosen. The
approximation of ideal elastomers or real elastomers is like in the Mooney—Riwlin
approach from statistical physics. Or we can use mathematical approaches that are
not supported by physics but give a good approximation for the curve. These can
be spline approximations or analytical curves.

In this paper we try to give an analytical function for the curve from just the
compression strength. The spline approximation will give a little better function
but at a much larger calculation cost. For the statistical physics approach several
other material parameters are needed.

To generate a function that approximates the curve properly the following
criteria have to be taken into consideration:

1. At 0% of compression the stress has to be zero;

2. At 100% of compression the stress has to be infinite;

3. The function has to have an inflexion point;

4. From the 0 point to the inflexion point it has to be concave.

The proposed function that was found by us is as follows:

o () = ag® + ctan(e). 2)
Where:
o =2 isthe stress;
e =9 jsthe strain;

a,b,c  are constants for a given polymer material.

These parameters can be derived from the compression tests of a given material.
For the determination of these parameters from the tests: see Appendix 1.
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4, The Deformation Needed

The foam has to be compressed until all its parts are smaller than the undercuts.

In Fig. 6 a section of a sample seat cushion with real life parameters can be seen.

Usually these values do not differ much on different seats therefore a general rule

can be set. It means that the needed deformation on all seat-like foams may be less
than 30% of the whole size of the foam section.

=
131

Fig. 6. The cross section of the seat foam

This deformation is well inside section | of the stress-strain curve. The de-
formation can go above section | till the end of section Il, Bag 5. In section Il
we get a lot of deformation for just a little increase in deformation force! The
deformation should never reach section lll, because the force increases there very
rapidly and could damage the foam structure. In real life situations, as we have
seen earlier, there is no need to deform the foam into section lll.

5. Simplifications for the Calculation

Let us summarise the simplifications that we have to make to set up the model for
the demoulding force.

The most serious assumption is tlatacts in one direction only and this
direction is collinear with the direction of the compression. On sharp corners the
o is three-directional. These corners, however, take up less than 1% of the foam
and they are well rounded for proper foam design. At first approach we disregard
them.

The other simplification used for the material is that the Poisson fagjas (
zero, as was suggested earlier. In fact the Poisson factor in these foams is so small
[3] that it may be neglected to make the model considerably simpler.

The next three assumptions are technical. The inserts in the foam that are
parallel with the compression are not taken in consideration for the calculation.
The inserts, that are collinear with the pulling out force (normal to the compres-
sion) do not affect the calculations. Although almost every seat has some inserts
in them. Fortunately, these inserts never reach into the undercut parts of the seats,
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otherwise the demoulding would be impossible. The compression causes a sliding
stress along the surface of the inserts in the foam. The sliding stress is the largest at
the part nearest to the side of the seat and zero at the middle. At present this stress
is neglected, but further investigations are made to include it in the model later.
Sometimes the seat cover is polymerised onto the foam. This makes the
production simpler, cheaper and gives a better securing for the cover. In the cal-
culations the cover is not taken into consideration. This is because there are too
many different materials used for the covers (almost every car seat has a different
cover) that by taking it into consideration would make calculations too specific.
The stress caused by a cover is similar to the stress caused by an insert. Although
the cover acts on a large surface the stress it causes is much smaller, because the
cover deforms more at the same compression stress than an insert or than the foam.
The last simplification is about the starting pressure of the foam inside the
mould. The pressure is inside the foam from the residue gas of the polymerisation.
This is an initial value of the demoulding force calculation. This means that at
mould opening the foam would like to be bigger than the mould so it presses the
mould apart. Since the mould does not extend a pressing force acts between the
mould and the force. This can be seen when trying to demould a foam that has
no undercuts. The force is larger than the weight of the foam, because the force
for the pressure acting on the side of the mould times the frictional constant acts
between the mould and the foam. This has to be taken into consideration at the
calculations by calculating the difference of the foam’s volume (at demoulding)
and the volume of the mould. In this article the initial value is determined by tests.
In our tests this force from this initial pressure was so small that we have neglected
in the calculations.

6. Demoulding Force

For the determination of the demoulding force first let us consider a one-directional
problem, when the foam shape does not change along the contour. In this case a
section of the foam can be written down by a single variable functionylike f (x)
(see:Fig. 7).

i e X

Fig. 7. Section of a simple foam

The compression stress and the size of the area where the compression stress
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acts changes with the variabte This can be formulated as:

F=) ox)AAX). 3)

where
io(x) isthe stress acting in the directionxf
AA(X) isthe infinitesimal area where the stress acts.

By performing the limit on (3) we get the integral for the force as:

X2

/ o (X) dA(X). 4)

X1

To convert the integral to a Riemannian integral so it can easily be calculated the
dA(x) is converted to ¢x) by the formula:

dA(X) o
de = A (X) dx. (5)

By substituting (5) integral equation (6) for the one-dimensional demoulding force
problem is obtained as:

X2
F= /o(x)A’(x) dx. (6)
X1
By taking these results into consideration the more complex problem of a real life
foam can be presented.

On a general foam the surface of the undercuts can be given by a binary
functionZ = f (x, y), seeFig. 8:
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Fig. 8. An infinitesimal section of a foam

Where :
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A is the base area where the double integral has to be calculated. On a
real part it is the area of the middle section of the foam.
dx, dy: is the elementary rectangular area. By summing these small areas

and performing the limit we obtaiA.

dA(xi, y;): isthe elementary surface area of the foam.

zZ(Xi, Yj): is the height of the small parallelepipeds that hayexdly; for the
base area.

The stressr (X, y) and the area A(X, y) can also be considered as functions of
two variables.
Since the foams are symmetrical these calculations may be done only to one side
of the foam. So the middle split section of the foam may be the base Ayas (
the XY plane from where the calculation of the integral can be performed.

With these parameters the deformation force can be calculated by the same
way as was seen in the one dimensional problem but using the method for the
double integrals:

F = > 0. y)AAX.y)) = by performing the limit, (7
i,

F = /cr(x, y) dA(X, y) :f/a(x, YA (X, y) dx dy. 8
A Xy

Because our assumption says thatdhis acting in one direction only the calcu-
lation is made fow (x) and not fore (X, y). The forces then have to be multiplied
by two to obtain the value for the whole foam.

When calculating the sometimes rather difficklt= [ o (x, y) dA(X, y) in-

A
tegral, several methods can be used. Symbolic programming languages are avail-
able (Mappl®) to get a closed form or numerical results of these integrals. The
first three variables of Taylor formula may be used for simplifying dtie) func-
tion. The precision of the calculation does not need higher variables of the Taylor
formula.

If the surface of the foam cannot be presented by one function then it has to
be broken down to smaller surface parts until these parts can be written down by a
function.

Another method is to use a larger surface that is tangential to the original sur-
face that can be presented by a simple function. By calculating with this containing
surface a larger force for the deformation is obtained. This pushes the results of
the calculation to safer values, because the real deformation will always be smaller
than the calculated ones. Of course the approximating surface should not be much
larger or different from the original, otherwise the forces will be much larger than
needed and would result in a heavy gripper design and an unnecessary large and
expensive robot. Usually numerical values for the integral in the calculations are
enough. For more precise calculation finite element analysis may be used with the
suggested material model. The procedure of demoulding force calculation can be
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followed on the chart oFig. 9. The inputs are the foam hardness, the foam'’s ge-
ometry and the parameters from previous tests. The result of the process is a value
of the demoulding force for the given foam part.

FOvid HARDRE RS
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WA TERWL wiODEL
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Fig. 9. The process of demoulding force calculation

If the foam is not made properly large adhesion force can occur between the mould
and the foam. In this case the demou Iding force can be 2-3 times larger than in a
proper situation. (Sed=ig 3 in Appendix 2). Investigations of this problem can be

a future task.

7. Conclusions

The results show (see Appendixes) that the force and the curves calculated by the
theory give a good approximation for the real life problem.
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Appendix 1. Determining the Parameter s from the Har dness

The theory has been proven and adjusted by the tests. (To obtain a strength-strain
curve for the compression.)

The method of solving the curves for three points is given in MappleV R4
symbolic programming language. With this method the parameters of the function
can be obtained by giving the hardness of the foam.

The verification tests were performed on a 20000 x 100 mm foam block
on a tensile test machine in compression mode. The values iR thalL curve
are represented for this specimen.

(& Pl bm M v-2 ____________ HEE [ Pt by 1 WG
Fia Edt Snde dpwi Proweson

BRI ED BRI

F

Sy
o / |
: z -
] A |
! Caleulated } !
1 Curye _." o el f
T/ @ [Tame |
Ll | |
| I'-,l_ L iy ! | -"III
| e "-"-\-u,.___ | o
100 o . il
| IJ-T--:: Cirve | 1 .-__,.--'" T
/ T r r-loz: Curye | A
Jo 02 04 05 08 1 12 04 In 0z 04 0B 08 12 14
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Fig. 1. Comparing the results of the tests with the calcul&eeddL curve on a screenshot
from Mapple V

The presentation of the approximation of the compression curve for the 48 Hz
(for this term see Appendix 2) foam in MappleR4:

restart;
X :=[0.3142 0.6283 0.9425; Value of points on the x-axis from
the test curve
X :=[.3142 .6283 .9425
y :=[120, 154, 244, Value of points on the y-axis from

the test curve.
y := [120, 154, 244
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fori from 1to 3 do Cycle for the equation with the
eqi]l:=yli]=a"x[i])"b+ c*tanx[i]): given x, y values
od;
eq: = 120=a-3142 + .324964731%
eq: = 154=a-628% + .726514216@
e: = 244=a-942% +1.376446190¢
sol := solve Solving of the three equations for
({eq1], edq2], eq3l}, {a, b, c}); the A, B, C parameters
sol:={b = 1752181818 a = —767.5144927 ¢ = 6799156974
B := (0p(2, op(1, sob))); The value for the B material pa-
rameter
B :=1752181818
A = (op(2, op(2, saol))); The value for the A material pa-
rameter
A := —7675144927
C := (0p(2, op(3, sab)); The value for the C material pa-
rameter
C := 6799156974
Y := A*X"B + C*tan(X); The function with the calculated
parameters

Y := —767.5144927X1 752181818, 5799156974 tanX)

plot({[[0,0],[0.0393,30],[0.0785,60],[0.1571,99],[0.2356,114],[0.3142,120],
[0.3927,127],[0.4712,134],[0.5498,144],[0.6283,154],[0.7069,168],[0.7854,186],
[0.8639,208],[0.9425,244],[1.0210,304],[1.0996,410],[1.131,480]], Y},
X=0..3.14/2,0..500);

Plotting the function and the con-
trol points.

dL is represented as the parameterr¢2 because the 100% of the compression is
represented by /2 to suit the tangent function.

The 40 Hz, 48 Hz is a factory mark of the softer (40) and the harder (48)
foam.

The calculated and the measured curves are illustrated in one diagram for
different hardness foams. The results show that the calculated curve follows the
measured curve well. Curves for many hardness foams were determined but the
calculations for the 48 Hz foam were explained in detail. The curve for the 40 Hz
foam is only shown for an example.

The points used for the illustration of the test curvé-ig. 1(a) are given in
Table 1.
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Table 1. Sample co-ordinates of the test curve (48 Hz)

No. X Y Nr. X Y
1 0 0| 10 0.62832 154
2 0.03926 30 11 0.70686 168
3 0.07854 60| 12 0.78539 186
4 0.15708 99| 13 0.86394 208
5 0.23562 114| 14 0.94248 244
6 0.31416 120 15 1.02102 304
7 0.39269 127| 16 1.09956 410
8 0.47124 134 17 1.13097 500
9 0.54978 144
Appendix 2

Applying the calculation for simple foam parts and verifying them with test re-
sults we used simple conical specimen for the verification of our calculation (see:
Fig. 2).

Fig. 2. The dimensions of the test mould

This simple shape was chosen because it has a large undercut and is axially sym-
metrical. In this case the changingrotthe radial component of the deformation)
will only change withH (the variable changing with the height) and not with the
radial parameter. The calculation was done in polar co-ordinates. The foam pa-
rameters given in Appendix 1 were used for the 48 Hz foam.

We have performed many demouldings from the test moulds and measured
the force in the function of the length on a tensile test machine. The results of the
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test for the 48 Hz foam are seenhig. 3. The value of the frictional coefficient
was chosen to be 0.65 according to factory values.

restart; The start of the session.
b:=1752181818: The value of ‘b’ parameter from the
calculated curve (48 Hz)
a:= —7675144927. The value of ‘a’ parameter from the
calculated curve (48 H2)
Cc:=6799156974: The value of ‘¢’ parameter from the
calculated curve (48 H2)
RO := 40: The radius at the bottom of the test
mould in mms.
RH := 20: The smaller radius of the conical sec-
tion in mms.
H := 35: The height of the cone in mms.
eq :=h*(RO— RH)/H; The deformation x as the function of
h.
4
eq = =h
% 7
eq, := eq/R0O*(Pi/2); The deformation is transferred to the
period of 7 /2.
1
:=—h
®% = 120"
eg := ((c*tan(eq,) + a* The material model from Appendix 1
((eq,)"(b)))/10000; for the 48 Hz foam.

1
eq := 06799156974 tap hr — .0000133253940@7 )*-7>181818

F :=2"Pi*(int(egg, h = 0..H)) ; The integral calculating the demould-
*0.65*RH ing force.

F :=10.6825442% ~ 34N

The result of the calculation is approximatdfy= 34 N. The maximal force on

the Force-displacement curve (sé&g 3) is ~ 35 N. The calculated result came
very close to the real life one.

If the parameters of the production are not set precisely (release agent is not ap-
plied properly, the temperature of the mould is higher/lower than the optimum, the
ratio of mixture of the PU is not set according to the factory standard, etc.) the de-
moulding force can be much greater than the calculated one. This is because large
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Fig. 3. The Force-displacement diagram of the 48 Hz foam from the test
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Fig. 4. Force-displacement curve when the manufacturing parameters are not set properly

adhesion force acts between the mould and the foam. This is added to the already
present deformation force. To take this force into consideration a new model is
needed, which requires further investigations. We reckon that by proper care in the
production the large adhesion can be avoided.



	The Task
	Model for the Calculation
	The Compression Strength
	The Deformation Needed
	Simplifications for the Calculation
	Demoulding Force
	Conclusions

