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Abstract

During the fiber fracture of unidirectional composite a distribution of stress around the neighbored fibers happens, this mechanism is

called the local redistribution efforts. Referring to the "shear lag" method, the researches wanted to predict the stress concentration

in the surrounding area of broken fibers as well as the longitudinal resistance of the unidirectional composite which presents a fiber

breaking. The goal of this paper is to develop a new probabilistic model of unidirectional composite plate to calculate the stress

concentration at the broken fibers and their neighboring fiber intact. The "shear lag" method has been generalized to see the broken

fibers interference on the stress concentration factor variation of surrounding sound fibers.

Keywords

shear lag, broken fibers, stress concentration, unidirectional composite

1 Introduction

Actually, the composite materials are using in various
industries due to their high mechanical performance.
Therefore, the mathematics model, design and manufac-
turing process are necessary to assure a good interface
fiber/matrix. The resistance of composite materials can be
predicted not only by the resistance average of its constitu-
ents, but by the determination of the Stress Concentration
Factor (SCF) around the broken fibers and their neigh-
bored. The "shear lag" is the wide method used to mod-
eling the interaction of fiber/matrix. Besides, it leads to
predict the stress concentration in the surrounding area of
broken fibers as well as the longitudinal resistance of uni-
directional composite include broken fibers.

Rosen [1] and Zweben [2] are ones of the first creators of
mathematic model to predict the polymer composite resis-
tance. They determined the effective fiber length to esti-
mate the optimum tensile resistance. Moreover, they made
a shear model analysis of unidirectional composite materi-
als, where neglected the effect of stress concentration on the
neighbored fibers to that broken was taken. Phoenix et al. [3]
were carried out a model to calculate the stress and life
duration statistic of seven carbon fibers arranged under
hexagonal shape reinforced epoxy resin. Landis et al. [4]
were focused on the direct interaction of broken fiber and

their neighbored using finite element methods of length
composite fiber. Next, the last model was enhanced by
Landis and McMeeking [5], where taken into account the
axial slipping effect on the interface fiber/matrix and the
effects of intact fibers position on the stiffness during the
evaluation of stress concentration of around broken fiber.
Case et al. [6] were performed a different technique to that
previous, to study the behavior of unidirectional compos-
ite supporting a broken fibers. Spacing of fibers was the
most important factor of this model to compare with real-
ity of intact fibers neighbored. The succession of the fiber
breaking has been modeled by means of the actualiza-
tion method. Case and Reifsnider [7] treated the breaking
in the center of several concentrically cylinders by adopt-
ing the standard elasticity hypothesis and by choosing the
appropriate functions of each component. The same pro-
cess has been applied with geometrical hypotheses in the
case of fiber breakage in a unidirectional composite mate-
rial. Foster [8] suggested a direct numerical simulation and
an analytical model to predict the resistance of composite
in tensile and flexural. Using a square shaped structure of
surrounding fibers, the researcher determined the resistance
of Ti-6Al1-4V metallic matrix reinforced by SiC. They also
showed that fiber breaking takes place in a random direction
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when the load reaches the resistance limit of the com-
posite. Thus, the statistical accumulation of this breaking
leads to the complete damaging of the composite. Gao and
Reifsnider [9] were suggested the using of Batdorf proba-
bilistic model for the repartition loading analysis to predict
the tensile resistance. Based on shear lag hypotheses, they
studied the fracture of composite due to the interface fiber/
matrix. The shear parameter to describe the functionality
of elastic composite was taken as well as the thoroughly
plastic debonding of matrix. Goda [10] proposed a probabil-
ities model of resistance that is based on the process of the
Markov chain for the unidirectional fibers composite in a
hexagonal shape. This model takes into account only one
fibers group of hexagonal structure. The damaging of this
group changes proportionally with the load. Costa et al. [11]
present a model of composites progressing damage that
contain initially broken fibers. The distribution of Weibull
parameters of the fibers resistance and the mechani-
cal properties to the fiber-matrix interface has permitted
to determine the loss rigidity of the composite. Rouhi and
Rais-Rohani [12], have studied the elastic properties of a
random carbon nanofiber (CNF) reinforced a vinylester
matrix under buckling loading. They introduced the micro-
mechanical approaches on the mathematical modeling.
Besides, they considered the inter-phase mechanical prop-
erties to vary in a manner similar to functionally graded
materials. As results, their model led to calculate the opti-
mum design values for the thickness and radius of a hybrid
composite cylinder and quantify the required value for each
design variable in terms of a prescribed maximum probabil-
ity of failure in a buckling problem.

In this work, an attempt to calculate the stress concen-
tration factor in unidirectional composite plate, where
it contains several broken fibers that are dispersed or
grouped. The "shear lag" method has been generalized
to see the broken fibers interference on the stress con-
centration factor variation of surrounding fibers. A com-
parative study was made to Bandorawalla [13] the results
have checked and proved thanks to the comparison made
between the different common approaches.

2 The "shear lag" method of a unidirectional composite
A plate of unidirectional composite loaded in the fibers
direction has been modeled. When all fibers are intact,
the composite material presents a uniform aspect of axial
united stresses. But if a fiber broke, a micro-mechanical
redistribution occurs near to the broken fibers. This stress
is transmitted to the neighboring fibers through the matrix.
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The NNLS (Nearest Neighbor Load Sharing) and HVDLS
(Hedgepeth and Van Dyke [14], and Load Sharing) meth-
ods have been adopted to determine the stress concentra-
tion factor of a unidirectional composite loaded with a
uniform tensile loading.

Fig. 1 shows a hexagonal arrangement with regular and
irregular spacing between fibers.

According to Bandorawalla [13], the distance between
the fibers centers are represented as follows:

T
s = ’—r . 1
V,sin60° ! M

To be in accordance with the description given in [13],
the broken fiber number (7, j) "37" and the neighboring
fibers have been numbered from 1 to N x M (see Fig. 1).
It is important to point out that the hexagonal shape of
fibers is essential to calculate the general influencing
strengths of the broken and those of neighboring intact
fibers. It is illustrated by Eq. (2):
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For the displacement vector of the fibers that constitute
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when referring to the "shear lag" hypothesis, we can get:
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Fig. 1 Arrangement with hexagonal fiber numbered.
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Using the demonstration in Fig. 1, the space between
the 7 and j fiber center is expressed as follows: d,-p with
w, = d,./. —20r,. The "shear lag" hypothesis is used for the
N x Mfibers plate. The equations system for displacement is:

KZ{UH[A]{U}:O. )

[4] is a square matrix [N x M, N x M] of which ele-
ments are expressed with:

A(ni,ni)zz():i (ni=1..NxM,i=1...N)  (6)
o W

A(ni,nj)=w£ (ni,nj=l...N><M) (7
i
hG
C=—"=. 8
AfEf ()

h is the matrix-width expressed as & = (zr r f)/3.
Limit conditions to calculate the influence functions are:

u, (0)=1,
, o ©
u,(0)=1 ni=1... NxM (nj#ni)
and
d
fal = 10
Uil =0, (10)

We considerate an irregular arrangement fibers that has
a varying diameter (Fig. 2), the displacement of the fiber
(#,) on the x direction is expressed as U,,x) and Eq. (5) is:

. ui—l,j ¥ ui—l,j+l ¥ ui,j+] ui+l,j
d-u. . W . W w, . W, .
R -1,/ i-1,j+1 i,j+1 i+l,j
e 0. ()
dx " Uit + Ui i _6 U ;
Wi j-1 - Wi Wi.j

3 Developed numerical model
The differential equation (Eq. (11)) can be calculated with
the finite differences method with simple boundaries; the
general displacement of fibers is equal zero, but in the
case of broken fiber the displacement will be equal to one.
Fig. 3 shows the discretization based on the finite differ-
ences model and the adding of fictive knots on the four
sides(1=0,/=0,i=n+1landj=m+1).

Thus, the calculation of each fiber displacement can be
represented by Eq. (12):

(0,j+1)
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Fig. 2 Irregular hexagonal structure with varying diameter and

fibers numbering.
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Fig. 3 Discretization as the finite difference model.
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To calculate the stress concentration factor, we must
calculate the derivatives of displacements along with the
three following formulae: the front, center and back:

u. . —Uu. .
_ i,j,k+1 i,j.k
du, ;. = Ef(—Ax ],dui!j!k

= Ef[Mjou du, ,, (13)
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The stress concentration factor can be calculated for all
fibers using:

dui! ik
Cfl.)j)k =1- 7 . (14)
ui,j,l
4 Validation

4.1 One broken fiber
In order to evaluate the efficiency of the model proposed,
a validation was achieved with other analytical models
existed. The first validation has been carried out through
Bandorawalla [13], which compared the HVDLS and the
NNLS models that permit the local distribution loading for
one broken fiber in the equidistant case as shown in Fig. 4.
The NNLS approach supposes that the stress concen-
tration factor generated by the broken fiber and spread
on the nearest neighboring fibers only. In the case of hex-
agonal arrangement, the nearest fibers are six in number;
this is why we can distribute the broken fiber SCF on the
six fibers accurately.

120
116 4 ---HVDLS (A)
e HVDLS (B)
5 = = HVDLS (C)
2 1124 —NNLS (A)
2 1.08 4
o A
(8]
2
2 104
%]
Pl e MU
0.96 . . . .
0 20 40 60 80 100
X (ry)
(@
120
116 ——HVDLS (A)
——HVDLS (B)
———HVDLS (C)
2 ——NNLS (A)
W 1.08 -
3]
7]
1.04
1.00
0.96 T T T T T T T T T 1
o 20 40 60 80 100
X (Rf)
(b)

Fig. 4 Comparison between NNLS and HVDLS of neighboring fibers;
(a) Bandorawalla result [13]; (b) Present model results.
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In contrast, the HVDLS approach supposes that the
stress concentration factor generated by the broken fiber
is not only spread on the nearest neighboring fibers but
beyond these fibers also. Fig. 5 shows the distribution
of the SCF in the plate shown in Fig. 1. The distribution
occurs in the cell that contains the broken fiber and the
SCF is well spread on the whole plate. The experiment has
been proved adequate through 10° necessary iterations.

A PPS graphite-composite has been used in our general
applications. The disturbance distance from the break on
the length is X, till 100 x I Table 1 presents both geomet-
rical and mechanical characteristics of PPS-graphite uni-
directional composite.

Fig. 5 presents a plate in which the SCF is not symmet-
rically done around the broken fiber because of the bro-
ken fiber position; this latter isn't in right center. To prove
areal symmetry of SCF spreading around the broken fiber,
we have to choose an odd number of strata. For example,
the number 9 illustrates the idea in Fig. 6.

Fig. 7, present our results validate with Hedgepeth and
Van Dyke [14] method, where the hexagonal arrangement
of fiber contain a broken fiber. Fig. 7 shows the stress con-
centration factor variation that based on the broken fiber

ceereee
GEGEEEE

Fig. 5 SCF distribution based on our results.

Table 1 Geometrical and mechanical characteristics of PPS-graphite

unidirectional composite

Young's modulus of the fiber £, 234.4 Gpa
Matrix Young's modulus £ 4.4 Gpa
Fiber reference resistor o, 3.17 Gpa
Shear stress z, 25.8 Mpa
Poisson's ratio of the matrix v 0.43
Volume fraction of fibers V, 0.6
Shear parameter 5 1.0
Radius of the fiber r 3.5 um
Disturbance distance x, 100 > r,
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Fig. 6 Symmetry of the distribution of SCF.
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Fig. 7 Comparison between HVDLS and NNLS for the broken fiber.

length. The results of our model are in perfect harmony
with those of the HVDLS. The stress concentration factor
is zero at the x = 0 position. However, the SCF become 1
for the important fiber length. On one hand, Fig. 4 shows
the change of the stress concentration factor in relation
with the neighboring fibers length. We can notice a differ-
ence between the NNLS and the HVDLS models for fiber
(A), especially for x = 0. Both curves convergent to the
same value SCF = 1.0 when towards more important
lengths. On the other hand, the HVDLS brings a less stress
concentration factor around the sound neighboring fiber,
i.e. 1.10 for each nearest neighboring fiber. Consequently,
the remaining stress concentration is spread over the bor-
der of the nearest neighboring fibers as it is show in Fig. 5.

4.2 Two broken adjacent fiber

According to Phoenix et al. [3] (quasi-LLS), the second
fiber break gives birth to equal load distribution over
the six neighboring fibers. SCF that equals 1.166, as in
Fig. 8 (a). Moreover, 1/15 is transmitted to the five fol-
lowing fibers (A, B, F, G, H). This doesn't coincide with
the LLS rule that is developed by Goda [10] Fig. 8 (b).
Recently, Swolfs et al. [15] have entered a correcting coef-
ficient to get a strength balance as Fig. 8 (c).
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Fig. 8 Stress concentration in the case of two broken fibers according to
(a) Phoenix model [3]; (b) Goda model [10]; and (c) Swolfs model [15].

The results determined by our model was in perfect cor-
relation to Swolfs model, known as we did not used a correc-
tion coefficient to reach the equilibrant force. This has been
reached by repeating the same model iteration at least 105,
and by taking very small discretization step Ax as in Fig. 9.

5 Applications
5.1 One broken fiber
The fibers in a hexagonal unidirectional can never be
placed in equidistant, this is why we take into account the
in-between fibers distance as well as the varying fibers
diameters. When we compare both nine strata plates and
we maintain the constant diameter, we can see that plate
(Fig. 10 (a)) shows in Fig. 10 at random given distance
whereas plate (Fig. 10 (b)) presents at random given diam-
eter and distance. When a fiber breaks in the middle (41),
a strength distribution spreads on the other round fibers.
The broken fiber concentration distribution happens
according to two main criteria. These are the distance
that separates the broken fiber from the around ones and
the fiber diameter Bouhamida et al. [16]. Fig. 11 shows
both distributions on the intact fibers. In Fig. 11 (a) near-
est fibers of the broken one present a more important SCF
than the one of fiber 50, fiber 42 and fiber 49. But fiber 40
that is the remotest of the 6 fibers, takes the most little SCF
of the group. Fig. 11 (b) shows that the second criterion
is taken into consideration to differentiate the distribution
because the 33, 40 and 49 are located at the same distance.

1,4000

1,4000

Fig. 9 Stress concentration in the case of two broken fibers according
to our results.
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Fig. 10 Plate of nine layers with the middle fiber is broken;
(a) Distance random and constant diameter; (b) Distance

random and variable diameter.

Fiber 40 has a lowest diameter than that of fiber 49 and
the most important diameter is the fiber 33, so the fiber 40
takes the highest SCF than that fiber 49 and 33.

5.2 Two broken fibers

Fig. (12) shows that the fiber 40 is the most solicited.
Both broken fibers require a third criterion that differen-
tiates the SCF distribution over the around fibers. If the
around fiber is adjacent to both broken fibers, it takes more
SCF. Fig. 12 presents the SCF of the neighbored fibers of
fiber 40 and fiber 41. The example of fibers adjacent to the
broken and fiber 32 and fiber 49 having mostly the same
diameter reveals that fiber 32 is most solicited because of
its location near the broken fiber.

5.3 Three broken fibers

The program has permitted to draw a great deal of ran-
dom pictures that show the fiber qualities and the diame-
ters variation. The number of broken fibers permits to dif-
ferentiate the SCF distribution. The tow be-broken fiber is
fiber 32. Fig. 13 illustrates the SCF distribution of the 40,
41 and 31 broken fibers.
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Fig. 11 SCF distribution around a broken fiber; (a) Random distance

and constant diameter; (b) Random distance and variable diameter.
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Fig. 12 CFS distribution around two broken fibers.

6 Reliability

6.1 Determinism case

To determine the results easily and accurately, we can't
break each given fiber continuously but we can go
for Monte Carlo method. Firstly, experiments have been
carried out with one broken fiber in the middle taking into
account deterministic view. The SCF distribution scope
is less important: the stress concentration variation goes
from 1.1002 to 1.1057. The histogram shows a display gap
and a very small variation coefficient in Fig. 14.
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Fig. 13 Distribution of the SCF on three broken fibers.

6.2 The same net random case
Secondly, experiments have been led with one broken
fiber in the middle, keeping the same netting but in a

random way. The SCF from distribution scope is limited.
The stress concentration variation is not important: it goes
1.18 to 1.20. The distribution here doesn't change since the
fibers and their diameters are kept with the same random
qualities which are influential criteria over the SCF condi-
tion: the distance between the second fiber and the broken
one and the fiber's diameter (Fig. 15).

6.3 Different netting random case

Thirdly, simulated experiments have been conducted with a
broken fiber; the fiber in the middle by having a new netting
each time. The SCF distribution scope spreads from 1.14
to 1.30. So the difference with the above examples is clear.
The distribution has significantly grown. The histogram
in Fig. 16 presents the new netting that includes different
distances between the fibers and their varying diameters.

5000 . T1
4000
Moyenne 1.1032
3000 Ecart-type 0.0008
Coeff. de variation 007 %
2000
1000
ol | []
10997 1,007 1,017 11027 11037 11047  1,1057
11002 11012 11022 1,1032 1,042 11052 1,102
Fig. 14 SCF distribution in the deterministic case with one broken fiber.
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1,1858 1.1898 1,1938 1.1978 1.2018 1.2058 1,2098

Fig. 15 SCF distribution in the case of the same random arrangement with one broken fiber.
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Fig. 16 SCF distribution in the case of a new mesh for each draw.

6.4 Spreading

In this case, there are three fibers. After the central fiber
breaking, the crack has spread from one fiber to another.
This crack spreading gives from the broken fiber to the
nearest round one. Fig. 17 displays the SCF distribution of
which scope is very important and goes over 1.5.

If we carry on the same experiment: the crack spread-
ing over more than three fibers and using 2.0 SCF limit
for a fiber, we can notice that fiber 16 has gone the limits
after the breaking of several fibers (9) and it shows an SFC
of 2.1803 see Fig. 18.

7 Conclusion
The aim of the present study is to determine the SCF dis-
tribution of one or several broken fibers over the around

4000

fibers of a nine strata plate using a new model. When only
one fiber is broken, the SCF is distributed on the whole
plate in a digressive way and a maximum SCF quantity
is taken back by the fibers, which are adjacent to the bro-
ken fiber. Two criteria can greatly influence significantly
the stress concentration distribution such as the distance
between the intact fiber and the broken fiber and the fiber's
diameter. For two broken fibers and more, a third criterion
influence the distribution of SCF is the number of n broken
fibers. The SCF of intact fiber increases considerably if it
is adjacent to several broken fibers.

. T
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Coeff. de variation 3.58 %
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1.2999
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Fig. 17 SCF distribution in the case of crack propagation to three fibers.
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Fig. 18 The SCF around nine broken fibers.
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