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Abstract

The aim of this study is to determine the effect of the machining parameters and tool geometry. The turning operation is carried out 

as per the Design of Experiments (DoE) of Response Surface Methodology (RSM) to predict the temperature rise of aluminium-6061 as 

a cutting material and Al2O3 coated carbide tool is used as a cutting tool for turning operation. The ANOVA analysis is used to measure 

the performance quality and mathematical model is developed. The values of probability >(F) is less than 0.05 indicates, the model 

conditions are significant. The cutting speed is the most influencing parameters compared to other parameters. For the optimum 

machining parameters leading to temperature rise, the Artificial Neural Network (ANN) model is trained and tested using MAT Lab 

software. The ANN recommends best minimum predicted value of temperature rise. The confirmatory analysis results, the predicted 

values were found to be in commendable agreement with the experimental values.
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1 Introduction
Nowadays manufacturing industries are concentrating 
more on optimization techniques in metal cutting pro-
cess in order to achieve higher production and quality of 
product as per the customer requirements. Selection of 
metal cutting process and process parameter is a basic fun-
damental means for constant enhancement and to produce 
excellent products [1]. Recent days, many researchers con-
ducted the experimental work to select the optimal cutting 
parameters to predict temperature rise, surface roughness, 
tool wear, chip morphology, stress etc. The tool wear and 
surface finish waviness occurred, when cutting force and 
vibration of the machine is increased. Increase in tem-
perature during machining results, decrease in dimen-
sion accuracy, production efficiency and product quality. 
The experiment is conducted by the researcher to mini-
mize flank wear, surface finish and cutting zone tempera-
ture. By considering cutting speed rate of feed and cut-
ting depth as input response, the experiments are designed 
using Design of Experiments (DoE) and ANN tech-
nique [2]. An experimental investigation is done to pre-
dict the temperature rise in cutting tool zone, work piece 

chip, break of the geometry of tool and cutting force [3]. 
An attempt is made to compare the influence of process 
parameters in turning operation using MQL techniques, 
in order to increase cutting tool life and to improve the 
quality of the turned workpiece. Cutting force is an import-
ant phenomenon in metal cutting operation. When the cut-
ting force increases the cutting temperature of the work 
piece and tool also increases [4]. The experiment is con-
ducted using aluminium-6061–T6 alloy material in dry 
turning operation to predict surface roughness. The effect 
of the machining parameters is determined by using 
RSM [5]. The researcher [6] proposed a Taguchi optimiza-
tion technique to study the effect of surface roughness and 
cutting temperature on face milling using AlMg3 mate-
rial. The author suggested that the cutting speed is a fore-
most factor compared to other parameters. The increase 
in tool wear and surface roughness is caused due to the 
poor selection of machining parameters. The author con-
ducted an experiment using hardened AISI 4340 steel and 
suggests that the cutting speed increases, the temperature 
of the cutting tool also increases [7]. An [8] experiment 
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is done using a minimum quality lubrication technique 
during the turning of AISI 1040 steel. To predict tem-
perature rise, the experiment is performed and compared 
with dry machining and MQL technique. The author pro-
poses that the minimum temperature be achieved in MQL 
technique. The experiment [9] is performed using hard-
ened AISI 52100 steel, results the large nose radius of the 
tool is an important parameter to achieve a better surface 
finish. The variation of the nose radius during machining 
of inconel 718 is analyzed at ambient and high tempera-
ture taking into account forces, temperature and stresses 
as an important parameter. Optimization is accomplished 
through FEM analysis [10]. The author reviews the cut-
ting temperature literature and suggests that the tool-
work thermocouple is the best method to determine the 
temperature increase [11]. An experimental and theoret-
ical study is carried out to measure temperature on the 
machined surface considering the speed, rate of feed and 
nose radius of the tool. The author suggests that the radius 
of the nose slightly influences the surface roughness [12].

A study is conducted on inconel material 718 to mea-
sure the effect of the nose radius, resulting in an increase 
in cutting temperaturedue to the friction of material and 
tool during machining [13]. The researchers conduct a lot 
of research in the field of metal cutting using different 
materials, cutting tools, varying cutting parameters such 
as spindle speed, cutting speed, feed rate, depth of cut, 
the angle of the tool such as rake angle, nose radius etc. 
But there is limited research available by considering alu-
minium-6061 as workpiece material. Aluminium-6061 
material have good strength, excellent corrosion resis-
tance, better weld ability and formability. It is used 
in building, structural and automotive applications.

2 Temperature measurements
During machining, the tool and the workpiece are subjected 
to heat due to friction between matting parts. The heat 
generated in both the areas of tool and workpiece causes 
a major problem like wear in tool, surface irregularity etc. 
Nowadays, numerous methods are adopted to measure the 
temperature of tool and workpiece during the machining. 
Thermocouple [14–16], Infrared thermography [17, 18], 
Pyrometers [19, 20] Temperature sensors [21]. Finite differ-
ence method is used to predict the temperature for both cut-
ting tool and chip break off [22]. An experiment is carried 
out to measure the difference in cutting temperature under 
dry and lubrication conditions, suggesting that cutting speed 
is a predominant factor in relation to other factors [23].

3 Experimental design
Owing to the extremely high experimental costs, the num-
ber of experiments is minimized by the use of Central 
Composite Design (CCD) [24]. A design matrix is devel-
oped by means of the central composite design method 
of RSM. Central Composite Design is a factor design 
consisting of center and star points [25]. Cutting speed, 
feed rate, depth of cut, and nose radius are selected and 
its ranges are identified by using the ASM hand book. 
The upper limit (+2) and lower limit (−2) levels of all the 
four variables and intermediate levels of 0, as indicated 
in Table 1. The experiments are performed in accordance 
with the CCD, which consists of 30 tests in the form of 
coded conditions, as shown in Table 2. The temperature of 
the tool is the output response.

3.1 Experimentation
The series of experiments is carried out in a XLTURN-
CNC lathe as shown in Fig. 1. Aluminium-6061 is 
used as a working material and its hardness is valued 
at 43 HRC. The chemical composition of the workpiece 
material is reported in Table 3. The workpiece materials 
are utilized and are used in rare applications in the field 
of engineering. The 40 mm diameter and 100 mm long 
test samples shall be collected for experimental purposes. 
The experiments are conducted in dry condition by using 
Al2O3 coated carbide tool. Cutting speed, feed rate, depth 
of cut and nose radius is considered as machining param-
eter. Hole A1– mm is drilled into the workpiece sample 
mm below the machining surface and the temperature is 
10 measured using a K-type thermocouple and the obser-
vations are tabulated in Table 2.

3.2 Response surface model for the prediction of 
temperature
The author [26] explains the relation between the y 
response area and the x process variable for a common 
form of a quadratic polynomial and is given by:
Y = + × + × + × + × + ×
+ ×

β β β β β β
β

0 1 1 2 2 3 3 11 12 22 22

12 1
 (1)

Table 1 Process parameters and their levels

Sl.
No

Cutting 
parameters Unit

Factorial Levels

−2 −1 0 1 2

1 Cutting speed ( υc ) m/min 75 90 105 120 130

2 Feed rate ( fz ) mm/rev 0.09 0.18 0.27 0.36 0.45

3 Depth of cut ( ap ) mm 0 0.2 0.4 0.6 0.8

4 Nose radius ( rn ) mm 0.2 0.4 0.6 0.8 1
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where:
• β0 is a constant, 
• β1, β2, β3 is the linear term coefficient, 
• β11, β22 is the quadratic term coefficient and
• β12 is the interaction term coefficient.

DESIGN EXPERT V12 software is used for the anal-
ysis purpose [27]. The second-order quadratic model 
is designed to predict the increase in temperature. 
The model is verified for its competence using analysis 
of variance (ANOVA). Table 4 shows the ANOVA anal-
ysis for the prediction of temperature. The objective of 
ANOVA is to specify the magnitude associated with each 
element in the target operation and to reduce the error. 
ANOVA is a technique used to select the highest quality 

components from a large selection of options. ANOVA 
is used to identify which actual measurements affect 
the specified values [28].

The model F-value of 55.14 implies the model is signif-
icant. There is only a 0.01 % chance that an F-value this 
large occurs due to noise.

P-values less than 5 % indicate that the model terms are 
significant. In this case υc , ap , υcap , υcrn , fzC , fzrn , aprn , υc

2 , 
fz

2 , ap
2  are significant model terms. The values greater 

than 0.1000 indicates the model terms are not significant.
The Lack of fit F-value of 0.06 implies the lack of fit is 

not significant relative to the pure error. There is a 99.99 % 
probability that a lack of adjustment of this F-value will 
occur due to noise. Non-significant lack of fit is good 
for experimentation purpose.

Table 2 Experimental values with responses

Sl.No Cutting speed 
(m/min)

Feed rate 
(mm/rev)

Depth of cut 
(mm)

Nose radius 
(mm)

Temperature rise 
°C - To 

(observed)

Temperature rise 
°C - Tp 

(Predicted by RSM)

Temperature rise 
°C - Tp 

(Predicted by ANN)

1 120 0.36 0.6 0.4 28.8 28.800 28.7203

2 90 0.18 0.6 0.4 29.8 29.850 30.2870

3 105 0.27 0.8 0.6 26.6 26.490 26.9952

4 105 0.27 0.4 0.6 25.8 26.100 26.1770

5 90 0.36 0.6 0.8 24.9 24.680 25.7842

6 105 0.27 0.4 0.2 26.8 26.830 27.1534

7 120 0.36 0.6 0.8 29.7 30.110 29.7451

8 105 0.27 0.4 0.6 28.2 26.100 26.1770

9 75 0.27 0.4 0.6 29.3 29.610 29.4078

10 90 0.18 0.2 0.4 27.1 26.800 26.8561

11 90 0.36 0.6 0.4 28.6 28.560 27.8824

12 105 0.27 0.4 0.6 25.6 26.100 26.1770

13 105 0.27 0 0.6 29.6 29.690 28.9326

14 120 0.18 0.6 0.8 29.8 29.750 30.0727

15 120 0.18 0.2 0.4 30.1 30.230 30.1921

16 105 0.27 0.4 0.6 25.6 26.100 26.1770

17 90 0.36 0.2 0.8 27.8 27.830 27.3538

18 90 0.36 0.2 0.4 27.2 27.160 27.3734

19 105 0.27 0.4 1 27.1 27.060 27.2988

20 120 0.18 0.2 0.8 34.2 34.350 35.0518

21 90 0.18 0.2 0.8 25.8 25.710 25.6116

22 105 0.45 0.4 0.6 27.6 27.560 27.4705

23 105 0.09 0.4 0.6 26.8 26.830 27.0262

24 120 0.36 0.2 0.4 30.4 30.500 31.0221

25 105 0.27 0.4 0.6 25.8 26.100 26.1770

26 120 0.18 0.6 0.4 30.1 30.180 27.5176

27 135 0.27 0.4 0.6 38.8 38.480 37.4069

28 90 0.18 0.6 0.8 24.2 24.210 25.0425

29 120 0.36 0.2 0.8 36.5 36.360 35.8257

30 105 0.27 0.4 0.6 25.6 26.100 26.1770
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The regression equation (Eq. (2)) obtained by using 
design software is:

Temperature rise T
f
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The calculated value of the F value is more than the 
standard (tabulated) value of the F value for temperature 
rise is shown in the Table 4; the model is adequate for a 
desired 95 % level of confidence. The error found between 
the experimental and predicted values is acceptable level.

4 Results and discussions
4.1 Interaction effect
Figs. 2 to 5 shows the interaction effect of the machining 
parameters on the temperature rise.

In Fig. 2 depicts the interaction result between cut-
ting speed over feed rate. The cutting speed plays a major 

Table 4 ANOVA Table for prediction of temperature rise

Source Sum of squares df Mean square F-value p-value

Model 307.03 14 21.93 55.14 < 0.0001 Significant

υc - cutting Speed 117.93 1 117.93 296.51 < 0.0001

fz - feed Rate 0.8067 1 0.8067 2.03 0.1749

ap - depth of Cut 15.36 1 15.36 38.62 < 0.0001

rn - nose Radius 0.0817 1 0.0817 0.2053 0.6569

υc fz 0.01 1 0.01 0.0251 0.8761

υcap 9.61 1 9.61 24.16 0.0002

υcrn 27.04 1 27.04 67.99 < 0.0001

fzap 2.72 1 2.72 6.85 0.0195

fzrn 3.06 1 3.06 7.7 0.0142

aprn 20.7 1 20.7 52.05 < 0.0001

υc
2  108.12 1 108.12 271.85 < 0.0001

fz
2  2.04 1 2.04 5.14 0.0386

ap
2  6.8 1 6.8 17.1 0.0009

rn
2  1.21 1 1.21 3.05 0.101

Residual 5.97 15 0.3977

Lack of fit 0.6258 10 0.0626 0.0586 0.9999 Not significant

Pure error 5.34 5 1.07

Cor total 313 29

Fig. 1 Experimental set up using XLTURN-CNC lathe

Table 3 Chemical composition for aluminium-6061

Al 6061 Al Si Fe Cu Mn Mg Cr Zn Ti

Weight (%) Bal 0.40–0.80 0.70 max 0.15–0.40 0.15 0.8–1.2 0.04–0.35 0.25 max 0.15 max
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role in increasing the temperature, so the impact is more 
as shown in the figure in relation to the feed rate. When the 
cutting speed increases, the temperature also increases. 
It is evident from the Fig. 2 that the value of minimum 
temperature attained in between 91 m/min to 102 m/min.

This is caused by the plastic deformation and friction 
of the tool and workpiece. The heat developed in the cut-
ting area causes a high temperature increase due to the 

automatic diffusion between the tool and the workpiece 
material, which propagates the wear of the tool. The find-
ings are verified from the ANOVA table.

Fig. 3 evidenced that the cutting depth to the tempera-
ture rise has a less significant effect. The Fig. 3 illus-
trates that there is a subsequent increase in the depth of 
cut, a slight increase in temperature. If there is an increase 
in the cutting depth, the greater quantity of material is 
removed, the results increase the cutting temperature. 
At lower depths of cut, less amount of workpiece material 
adhere on the flank of the tool than at larger depth of the 
cut. This adhesion of workpiece material on the tool flank 
causes an increase in temperature rise. The findings are 
verified from the ANOVA table.

Fig. 4 depicts the interaction and effect of nose radius 
on temperature rise. It proves that the nose radius on the tem-
perature rise of the turning process has a significant effect. 
The Fig. 4 illustrates that the increase in the nose radius 
reduces the increase in temperature. The findings were also 
verified using the ANOVA table. However, the increase in the 
nose radius translates into an increase in the length of the 
active part of the cutting edge and the mass of the tool point.

Fig. 5 shows that there is an increase in cutting speed 
and depth of cut as the temperature of the turning process 
increases slightly and has a less significant impact. Fig. 6 
shows the relationship between predicted to actual values.

5 Artificial neural network
The artificial neural network can replicate a number of 
functions of human behavior, which are formed by a lim-
ited number of layers with various computational elements 
called neurons [29]. ANN is an adaptive arrangement which 
alters its arrangement based on external or internal infor-
mation circulating throughout the network. ANN is work-
ing on the learning algorithm. It is divided into supervised 

Fig. 2 Interaction effect of cutting speed and feedrate over 
temperature rise

Fig. 3 Interaction effect of cutting speed and depth of cutover 
temperature rise

Fig. 4 Interaction effect of nose radius and cutting speed over 
temperature rise

Fig. 5 Interaction effect of feed rate and depth of cutover 
temperature rise
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and unsupervised learning. In supervised, the input and 
output are trained by using the data. In unsupervised mode, 
output data is not available, new input data called cluster 
and input data must be entered, ANN data can be assigned 
in a corresponding cluster [30]. The ANN structure of cut-
ting parameter is shown in Fig. 7. The ANN architecture, 
the result is to predict the temperature rise (Tm). The net-
work contains three layers: input, hidden, and output lay-
ers. The input and output layers in the form of nodes and 
the hidden layer provide a relation between the input layers 
and the output layers. The number of neurons in the input 
layer and the output layer is based on the geometry of the 
ANN architecture layer of the problem. The optimum val-
ues of network parameter are shown in Table 5.

The input layer which receives four neurons and the 
output layer have one neuron. However, there is no com-
mon rule to select the number of neurons in a hidden layer 
and the number of hidden layers [31]. The processing neu-
ron of the hidden layer provides the processed data of 
the neurons of the input layers to the neurons of the out-
put layer [32]. The neural network method known as the 
back-propagation neural network algorithm is used in the 
study. To train the neural network, the cutting speed, 

feed rate, depth of cut and nose radius are used as input 
parameters, and the temperature as the output parameter. 
The ANN cutting parameter structure is shown in Fig. 7. 
Fig. 8 shows the neural network trainer in which 1000 iter-
ations are performed for temperature prediction. Fig. 9 
shows the validation performance between experimen-
tal, training, predicted value. The best ANN result and 
response to errors after 1000 epochs. Fig. 10 shows the 
Plot Regression of training and validation data. From the 

Fig. 6 Relationship between predicted to actual values.

Fig. 7 ANN Structure of Cutting parameter

Table 5 Optimum values of network parameter

Sl.No Parameter Values

1 Number of input layer 1

2 Number of input layer unit 4

3 Number of Hidden layer 1

4 Number of Hidden layer unit 5

5 Number of output layer 1

6 Number of output layer unit 1

7 Number of Epochs 1000

8 Algorithm Back propagation

9 Learning rule Gradient descent rule

Fig. 8 Neural network training
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30 datasets obtained from the experiment, 20 datasets 
are randomly selected to form the ANN model. To test 
the ANN model, ten datasets are chosen. The results pre-
dicted by ANN model are compared with experimental 
values and the percentage of errors is tabulated in Table 6. 
From Table 6, it is clear that the developed model is well 
trained using ANN and has the capability to predict the 
new outcome result. The average prediction error for the 
data set is found to be 0.84 % and maximum prediction 
error is 9.675262 %. The graph in Fig. 11 shows the com-
parison between the trained ANN output and experimen-
tal data. The graph in Fig. 12 illustrates the comparison of 
experimental data, RSM and ANN data sets. The results 
indicate a good agreement between the experimental 
data predicted by the RSM and predicted by the ANN. 

The graph in Fig. 13 shows the percentage of errors com-
parison between RSM and ANN.

Fig. 9 ANN validation performance

Fig. 10 Plot regression

Fig. 11 Comparison of output of trained ANN and experimental data
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6 Comparative study
The findings of the developed ANN model were compared 
with similar studies in the literature. The experiment is 
conducted by the researcher using aluminum-6061 to pre-
dict temperature increase using RSM (DoE technique) 
and genetic algorithm. The parameters taken into account 
for the turning operation are the cutting speed, feed rate, 
depth of cut and nose radius. The author suggests that cut-
ting speed is the most influential parameter in comparison 
with other parameters [33].

7 Conclusion
A second order mathematical model is developed using 
CCD by Response Surface Methodology (RSM) of DoE 

is developed to predict the temperature rise using alu-
minium–6061 as workpiece material by considering cut-
ting speed, feed rate, depth of cut and nose radius as input 
parameters. The interaction effect of the process parameter 
is studied by using RSM. The optimization was carried out 
by using an Artificial Neural Network (ANN). Analysis of 
the ANN model reveals improved prediction data.

The validation analysis showed in Table 2 that the 
expected RSM and ANN values were close to the vali-
dation values, while the ANN values showed the lowest 
deviation than RSM values. This finding suggests that the 
ANN has shown better prediction and adjustment capacity 
in comparison with the RSM:

• The cutting speed is the most important influenc-
ing parameter with respect to the other parame-
ters. The temperature is low between 91 m/min and 
102 m/min of cutting speed.

• The nose radius of cutting tool should be 0.6 mm 
to 0.8 mm for the better minimum temperature value.

• The optimization using ANN shows a good agreement 
between the observed values and predicted by ANN.

• The percentage of error in ANN predicted data is 
less than 5 %. So the model is acceptable.

• The predictive ANN model is found to be accom-
plished for the better predictions of temperature rise.

7.1 Future studies
There is a lot of research opportunities available using alu-
minium–6061 material:

• The experiment needs to be carried out in the future 
to find the effect of cutting fluids, MQL, cryogenic 
machining.

• Modifying the tool nomenclature to ensure high 
quality machining.

• There is a limited research available to optimize 
machinability, Impact toughness, material removal 
rate, chip volume ratio, surface integrity etc.

• Sustainable machining technologies can be imple-
mented in the future to avoid environmental pollution.

Fig. 12 Comparison of experimental, RSM and ANN data

Fig. 13 Comparison of errors - RSM and ANN
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