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Abstract

The dynamics and stability of flow induced vibration of flow conveying in pipes particularly in case of high velocity flow may lead 

to severe damage. Predicting the circular natural frequencies and critical fluid velocities is an important tool in design and prevent 

system failures. In this study transverse dynamic response of simply supported pipe with variable tubular cross sectional area carrying 

fluid with a constant flow rate is investigated. Euler Bernoulli's beam theory is used to model the pipe. Hamilton's principle will be 

used to produce the governing equation of motion for the system. The resulting partial differential equation is solved using Galerkin's 

technique. The impact of the flow velocity and non-uniform variable cross section on the natural frequencies of the system, critical flow 

velocity and system stability is presented.
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1 Introduction
Tubular beams conveying fluid are found in many engi-
neering applications like aircraft engines, jet pumps, 
heat exchanger, nuclear reactors and human circulation. 
The flow-induced vibrations in such systems are known 
as fluid structure interaction. This brought huge atten-
tion on the dynamics ad stability of flow induced vibra-
tion of fluid conveying in pipes particularly in case of high 
velocity flow which may lead to severe damage [1–20]. 
Predicting the natural frequencies and critical flow veloci-
ties is an important tool in design and prevent system fail-
ures. There are a number of papers reporting the vibration 
of pipe conveying fluid. These include experiments and 
theoretical studies on the dynamic response of pipes with 
different boundary conditions such as simply supported 
pipes, cantilevered pipes, and curved pipes. Other engi-
neering applications may require non-uniform cross sec-
tion beams and pipes as it has better capacity and vibra-
tion characteristics in many applications. In most of these 
studies, the non-uniform beam is divided into several 
intact non-uniform beams in order to examine its natural 
vibration. As an application in biomechanics, from clini-
cal practice, it is known that the blood flow in the arterial 
system is essential in the human body.

In early studies on flow induced vibration in pipes 
conveying fluid, Ashley and Haviland [1] attempted 
to study the vibration of the Trans-Arabian pipeline 
using Euler Bernoulli theory. Later on, Feodos'ev [2] 
and Housner  [3], considered the Coriolis force in devel-
oping the governing equation of motion for simply sup-
ported conditions. They  presented the natural frequen-
cies and instability by bucking at critical velocities. 
Niordson [4] studied the problem of finding using shell 
theory and obtained similar results. Eigenvalues were pre-
sented analytically by Handelman [5]. Movchan [6] used 
Liapunov's direct method to analyze system's stability. 
Naguleswaran et al. [21] by theoretical and experimental 
study concluded that buckling may occur at small range 
of velocities for simply supported pipe conveying fluid. 
Thurman and Mote [22] used perturbation technique to 
investigate effect of nonlinearity in such systems, and 
found that nonlinearity increases the natural frequencies. 
Païdoussis and Issid [23], Paidoussis and Laithier [24] and 
Païdoussis et al. [25] showed the response of the natural 
frequencies and stability for different boundary conditions 
using Euler Bernoulli's and Timoshenk's beam theories. 
Nemat-Nasser et al. [26] presented the impact of velocity 
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on the stability of conveying flow through tubular can-
tilevers. Using thin-shell theory, Weaver and Unny [27] 
found an interesting phenomenon that the simply sup-
ported pipes are not only subject to beam mode instabil-
ity in terms of buckling, but also could be subject to cou-
pled mode instability. Similar behavior was confirmed for 
clamped system by Païdoussis and Denise [28]. A com-
prehensive review of fluid-structure interaction of convey-
ing flow in pipes is available by Ibrahim [20]. Gupta [29] 
studied the vibration tapered beam using finite ele-
ment approach. Alshorbagy et al. [30] used virtual work 
approach to investigate the response of FG non-uniform 
beam. Caruntu [31] considered the nonlinear dynamics 
for non-uniform beams and developed the solution by uti-
lizing the factorization method. Askarian et al. [32] ana-
lyzed the stability of thin variable cross-section beam con-
veying fluid using extended Hamilton's principle and the 
Galerkin method. Zhao et al. [33] used Chebyshev polyno-
mial theory to analyze the vibration of functionally graded 
non-uniform beam considering both Euler–Bernoulli and 
Timoshenko beam theories. Very few studied consid-
ered the vibration of pipes conveying fluid with non-uni-
form cross section in biomechanics, aerospace and indus-
trial applications. The variable cross section of the pipe 
conveying fluid is not thoroughly investigated. In which 
the application of such system can be found in nozzles, 
vehicles, and most of the arteries in the human body. For 
instance, the artery was assumed as a straight pipe with 

non-uniform cross section with external thick-walled tube 
and conveying fluid. Its dynamics and stability was inves-
tigated to obtain the effect of blood flow profile and vari-
ation of geometry on critical velocities and buckling [34], 
Hosseini and Paparisabet [35]. 

In this study transverse dynamic response of sim-
ply supported pipe with variable cross sectional area 
carrying fluid with a constant flow rate is investigated. 
Euler Bernoulli's beam theory is used to model the pipe. 
Hamilton's principle will be utilized to produce the gov-
erning equation of motion for the system. The resulting 
partial differential equation is solved using Galerkin's 
method. The impact of the flow velocity on the natural fre-
quencies of the system and its stability is examined.

2 Formulation of the problem
The system considered constitutes a pipe of finite span L 
and mass per unit length m(x) conveying a fluid with con-
stant flow rate and inlet velocity vo and of mass per unit 
length M(x). The pipe is of variable circular cross section 
and simply supported at ends, E is Young's constant, I(x) is 
variable inertia, and the pipe assumed to be inextensible.

Consider the pipe conveying fluid in the axial coordi-
nate, x-direction, and the transverse motion in the y-direc-
tion as in Fig. 1.

The equation of motion (Eq. (1)) for the simply sup-
ported pipe is developed based on kinetic, T, and potential, 
V, energies of the system:

Fig. 1 Schematic diagram of simply supported pipe with non-uniform cross section.



58|Gaith
Period. Polytech. Mech. Eng., 65(1), pp. 56–62, 2021

T T T

m w
t

MV M w
t

MV w
t
w
x

MV w

p f= +

=

∂
∂







 + +

∂
∂









+
∂
∂

∂
∂

+
∂
∂

1

2
2

2

2

2

2

xx
x

t

t



























∫
d

1

2

,
	 (1)

V E I w
x

x
L

=
∂
∂







∫2 0

2

2

2

d . 	 (2)

Introducing the Hamilton's principle:
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Both T and V energies are derived for the model, followed 
by the variational procedure for the simply supported ends 
and using similar approach as Benjamin's [36], the govern-
ing differential equation of motion is derived in Eq. (4):
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where w(x, t) is the transverse deflection of the pipe, I(x), 
V(x) are the moment of inertia and fluid velocity function 
at any location of the pipe, respectively, and h is the thick-
ness of the circular pipe, with simply supported conditions: 
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 and ρp, and ρf are density of pipe and fluid, 
respectively, and Ω is the complex circular frequency. 
Hence, the governing equation is rendered as:
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Assuming the general displacement solution for Eq. (15) is 
in the form of Eq. (16):

W X T X ei T, ,( ) = ( )ϕ ω 	 (16)

where ω is the dimensionless circular frequency and sub-
stituting Eq. (16) in Eq. (15) the results are:
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Using the Galerkin's method with two terms of harmonic 
sine function:

ϕ π πX c X c X( ) = +
1 2

2sin sin , 	 (22)

and solving the system by making use of the support con-
ditions. Eq. (7), the general complex frequencies of the 
system is determined in terms of β* and U1.

3 Results and discussion
The significant parameters that affect the stability of 
the system from Eq. (15) are the ratio of pipe density to 
fluid density, β*, the non-dimensional inlet velocity of the 
fluid, U, and the change of the circular cross section pre-
sented in terms of input to output radius ratio b/a, to be 
designated as the non-uniform cross section ratio, through 
the spatial coordinate (X ). In this paper, I have chosen a 
linear change in the radius of the circular cross section, 
say r(x) through the spatial coordinate x, written as:

r x a b a x
L

( ) = + −( ) . 	 (23)

To be confident from the derivations of the governing 
equations and results, we compared our results for the case 
of uniform cross section, b/a = 1.0, as shown in Fig. 2, 
to the available results in the literature [36, 37] of uniform 
cross section with the same configuration, and it was with 
excellent agreement. Fig. 2 shows the Argand diagram of 
complex components, i.e. real and imaginary, of the circu-
lar natural frequency in terms of inlet velocity, U. For pipe 
conveying a fluid with uniform cross section with simply 

supported ends, as the flow velocity increases, the  first 
natural frequency gradually decrease until it vanishes at 
the first critical velocity, and becomes negative imaginary, 
leading to divergence instability. Upon increasing the flow 
velocity until the second natural frequency vanished at 
the second critical velocity, and becomes negative imagi-
nary, with further increase in velocity till then an interest-
ing phenomenon occurred where the first mode frequency 
amalgamates with the second mode frequency to generate 
coupled mode flutter [27].

In general, the pure imaginary part of the complex nat-
ural frequency will determine when the system undergoes 
unstable motion. If the imaginary part of ω is negative, 
it indicates that the system undergoes unstable motion. 
Meanwhile, if the imaginary part of ω is positive, the sys-
tem undergoes stable (damping) motion. In our solutions 
of ωn, we present these values (natural frequencies) and 
explore the effect of β*, U, and b/a. 

In Fig. 3, the natural frequencies of the system are plot-
ted with stationary fluid, U = 0, for different b/a ratios. 
Apparently, the first (lowest) natural frequencies are 
slightly decreased by increasing the b/a ratio, meanwhile 
significantly the second natural frequencies is decreased 
by increasing the b/a ratio. The real and imaginary parts 
of non-dimensional first two natural frequencies in terms 
of inlet velocity, U, for simply support end with non-uni-
form cross section (b/a = 1.2) is presented in Fig. 4. For all 
2.39  > U > 0, first natural frequency has real and very 
small negative imaginary parts. The first critical velocity 
for the first natural frequency with b/a = 1.2 is decreased 
down to Uc1 = 2.39. For 4.7 > U > 2.39, it has positive imag-
inary part indicating stable behavior in that rage. Then 
it goes with two different negative pure imaginaries till 
U = 5.0 with unstable behavior, then it goes with real and 
negative imaginary parts till U = 6.4 indicating oscillatory 

Fig. 2 The non-dimensional first two natural frequencies versus the non-
uniform cross section ratios, b/a for stationary fluid, U = 0.

Fig. 3 The Argand diagram of the real and imaginary of non-dimensional 
natural frequencies in terms of non-dimensional velocity for simply 

support end with uniform cross section (b/a = 1.0).
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divergence, then gain it goes with two different negative 
imaginary parts. Apparently the system shows unstable in 
the first frequency mode, except for 4.7  >  U  >  2.39, as 
the imaginary part is always negative. For U > 0, all the 
non-dimensional second natural frequencies are consisting 
of both real and imaginary parts. As the velocity increases 
the real part is decreasing till it vanishes at Uc 2 = 7.24 and 
at the same time the positive imaginary part is building up. 
At the second critical velocity, instability by divergence 
occurs. Upon increasing U > 7.24, the natural frequency 
becomes positive pure imaginary indicating stability. 
For the case of non-uniform cross section (b/a = 1.4), Fig. 5 
shows the real and imaginary components of non-dimen-
sional first two natural frequencies in terms of inlet veloc-
ity (U) for simply support end. The first critical velocity 
for the first natural frequency with b/a =1.4 is decreased 
down to Uc 1 = 1.901, then it goes with pure negative imag-
inaries indicating instability. Similar behavior is found for 
b/a = 1.6, 1.8 and 2.0 with Uc1 = 1.59, 1.38 and 1.28, respec-
tively, as shown in Figs. 6 to 8.

Figs. 5 to 8 also show the real and positive imaginary 
parts of non-dimensional second natural frequencies as 

a function of non-dimensional velocity for simply sup-
port end with non-uniform cross sections (b/a  =  1.4, 
1.6, 1.8, and 2.0), respectively. Similar trend to b/a = 1.2 
can be found for b/a  =1.4, 1.6, 1.8, and 2.0 with 
Uc 2 = 5.35, 4.12, 3.29 and 2.69, respectively.

It can be concluded that this system configuration is sta-
ble in the second mode with reduced critical velocity. Fig. 9 
presents the real part of the first natural frequencies with 
the inlet fluid velocity, U, for different non-uniform cross 
sections (b/a =1.0, 1.2, 1.4, 1.6, 1.8, 2.0). As the non-dimen-
sional velocity increases, the real part of the first natural 

Fig. 5 The real and imaginary of non-dimensional first two natural 
frequencies in terms of non-dimensional velocity for simply support end 

with non-uniform cross section (b/a =1.4).

Fig. 6 The real and imaginary of non-dimensional first two natural 
frequencies in terms of non-dimensional velocity for simply support end 

with non-uniform cross section (b/a =1.6).

Fig. 7 The real and imaginary of non-dimensional first two natural 
frequencies in terms of non-dimensional velocity for simply support 

end with non-uniform cross section (b/a = 1.8).

Fig. 8 The real and imaginary of non-dimensional first two natural 
frequencies in terms of non-dimensional velocity for simply support 

end with non-uniform cross section (b/a = 2.0).

Fig. 4 The real and imaginary of non-dimensional first two natural 
frequencies in terms of non-dimensional velocity for simply support end 

with non-uniform cross section (b/a =1.2).
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frequency decreases. For the second first natural frequency, 
similar trend can be observed except for b/a = 1.2 as shown 
in Fig. 10. Finally, from Fig. 11 we can conclude that the 
larger the non-uniform cross section ratio, the smaller the 
first critical velocity except for b/a = 1.2 where it has unex-
pected increase in the critical velocity.

4 Conclusion
The dynamic response of simply supported variable cross 
section pipe conveying fluid is investigated, and the stabil-
ity of the system is illustrated. Euler Bernoulli's beam the-
ory is utilized to model the pipe. Hamilton's principle will 
be utilized to produce the governing equation of motion 
for the system. The resulting partial differential equation 
is solved using Galerkin's technique. The complex natu-
ral frequencies and critical flow velocities are calculated 
for different variable cross section ratios. The effect of 

the flow velocity that conveys through the pipe and the 
non-uniform variable cross sectional area on stability is 
presented. It can be concluded that this system with con-
veying flow configuration is damping in the second mode, 
meanwhile it is undamping for the first mode for non-uni-
form cross section. The critical flow velocity is decreasing 
by increasing the cross section ratio b/a.

Fig. 9 The non-dimensional fluid velocity versus the real non-dimensional 
first natural frequencies for different non-uniform cross sections 

(b/a = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0).

Fig. 10 The non-dimensional fluid velocity versus the real non-dimensional 
second natural frequencies for different non-uniform cross  sections 

(b/a = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0).

Fig. 11 The non-dimensional critical fluid velocity, Uc, versus the non-
uniform cross section ratios, b/a.
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