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Abstract

The tensile strength of newly developed ultra-high strength steel grades is now above 1800 MPa, and even new steel grades are 

currently in development. One typical welding process to join thin steels sheets is resistance spot welding (RSW). Some standardized 

and not standardized formulas predict the minimal shear tension strength (STS) of RSWed joints, but those formulas are less and less 

accurate with the higher base materials strength. Therefore, in our current research, we investigated a significant amount of STS data 

of the professional literature and our own experiments and recommended a new formula to predict the STS of RSWed high strength 

steel joints. The proposed correlation gives a better prediction than the other formulas, not only in the ultra-high strength steel range 

but also in the lower steel strength domain.
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1 Introduction
High strength steels (HSS) are gaining more and more atten-
tion and application in mechanical engineering, especially 
in the automotive industries [1–3]. Among high strength 
steels, advanced high strength (AHSS) and ultra-high 
strength (UHSS) steels are the most developing research 
areas due to their excellent mechanical strength (tensile 
strength Rm  >  1500  MPa) and adequate ductility, which 
are achieved during carefully selected thermo-mechani-
cal heat treatment processes [4]. These mechanical proper-
ties make these types of structural steels lucrative for the 
application in automotive industries, e.g., crash boxes, car 
bodies, etc. [5]. Moreover, the increasing strength leads to 
the reduction in wall thicknesses. The smaller wall thick-
nesses have allowed engineers to manufacture lighter vehi-
cles, which is very important in terms of fuel consumption, 
and, thus, in environmental considerations [6, 7].

The most important joining process of high strength 
thin sheets is welding. The arc welding of AHSS and UHSS 
can be challenging due to the unwanted phase transforma-
tions and the possible coatings [8–11]. For these reasons, 
the mostly applied joining process for AHSS and UHSS 
thin sheets is resistance spot welding (RSW) [12,  13]. 

RSW welding process can be easily automated [14, 15], 
robotized, therefore RSW is also an optimal process for 
mass production. RSW is also one of the most used weld-
ing process in car body manufacturing.

To improve weld quality and welding process efficiency 
new types of power sources with advanced electrical con-
trols have recently been developed. They focus on the elec-
tronic control of the welding current and, thus, the heat 
input. Recently, extensive research hase been done in the 
field of the application of different pulsed welding technol-
ogies in the case of HSS welding. Kim et al. [15] investi-
gated different pulse profiles to improve the weld quality of 
CP1180 steel. They have found that the volume of the weld 
nugget can be increased by pulse welding, and the weldable 
current range can be extended compared to single pulse 
welding. Pulse welding can also have beneficial effects 
in terms of metallurgical weldability. Wintjes et  al.  [16] 
have found that pulse welding schedules can reduce liquid 
metal embrittlement sensitivity in the case of zinc coated 
TRIP1100 steels. Liu  et  al.  [17] have found that double 
pulse welding with higher secondary current can lead to 
an enhancement in shear tension strength in the case of 
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Q&P 980 steel, due to the reduction of the partially melted 
zone. Multiple welding current pulses also act as a  post 
weld heat treatment (PWHT). Stadler et al. [18] have found 
that the second welding current pulse remelted the center 
of the weld nugget of a 0.1 C, 6.4 Mn, 0.6 Si (wt%) medium 
Mn-steel, leading to a recrystallization and homogeniza-
tion of the initial weld microstructure, thus improving the 
mechanical properties. For the optimization of welding 
process parameters design of experiments (DoE) methods 
have widely been used in RSW. Soomro et  al.  [19] have 
used Taguchi DoE to optimize PWHT parameters in order 
to obtain the maximum peak load and failure energy in 
RSW of DP590 steel. Tutar et al.  [20] have used Taguchi 
method to optimize welding parameters for the RSW of 
TWIP sheets. They have found that the weld current has the 
highest statistical effect on the tensile-shear load, followed 
by the welding time and the electrode force. Artificial neu-
ral network is also a useful tool in terms of optimization. 
Rao et al. [21] have used neural network algorithm to obtain 
the optimized welding parameters. With the evaluation of 
shear tension strength, coach-peel strength and weld nug-
get size, the proper parameters were selected for the RSW 
of DP590 steel. Beside of the these highly developing weld-
ing technologies, design and evaluation methods, the con-
ventional weld parameter design is still based on the shear 
tension strength and the failure mode of the RSW joint.

The shear tension strength (STS) values found in the 
literature is presented on Fig.  1 (according the data of 
[12, 17, 22–166]) for similar and dissimilar joints.

To the designer to plan joint configurations some for-
mula is needed to predict the joint strength of RSWed high 
strength steels. Therefore, we made our research to refine 
such a correlation to predict the STS value.

Our current research  is a follow up paper of a previ-
ously published work "About the shear tension strength 
of ultra high strength steels" [22]. Here a new correlation 
has been proposed to predict the STS values with better 
accuracy in the UHSS steel range (Rm  >  1340  MPa) for 
thin sheets (≤  3  mm thickness). Now with more experi-
mental and more literature data an even better correlation 
is proposed which is applicable for the whole high strength 
range for steels.

2 Equations to predict the shear tension strength
2.1 Different STS prediction models of the literature
There are different classifications for normal strength 
steels, HSS and UHSS in different literature, for our 
investigations we set the boundaries according to the 
American AWS D8.1M standard [167] to normal strength 
steel Rm < 400 MPa, HSS 400 MPa < Rm < 800 MPa and 
UHSS Rm > 800 MPa, respectively.

There are several equations to predict the STS values 
for resistance spot welded steel sheets. One approach is 
according to the mentioned AWS D8.1M standard [167], 
which gives a guide for the minimum acceptable shear 
tension strength values (STSAWS) in Eq. (1) for automotive 
applications.
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In this formula Rm is the tensile strength of the steel in 

MPa, and t the sheet thickness in mm. Due to the nature 
of this correlation (it has maxima at Rm = 1340 MPa), the 
required STSAWS values start to decrease in the ultra-high 
strength steel range. It can be explained with the conser-
vative nature of the standard, at some places of the joints 
even cracks are allowed. Presumably, the welding of such 
high-strength steel grades is challenging, and joint flaws 
are inevitable. Several research showed that UHSSs can 
be welded without defects free [28, 35, 44, 47, 72, 86–88, 
98, 101, 166]. 

Nevertheless, this equation is not suitable for the design 
of RSWed steel structures with Rm > 1340 MPa. To achieve 
the same structural strength, more spot welds are required 
than in case of lower strength base material. For example, 

Fig. 1 STS values of RSWed high- to ultra-high strength steels in 
similar [18, 23–142] and dissimilar [12, 23, 25, 36, 38, 43, 50, 78, 79, 82, 

87, 96, 98, 100, 101, 115, 119, 125, 143–166] joint configurations
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for the welding of a Rm = 1500 MPa steel the same STS is 
required for the joint as for a Rm = 1200 MPa steel grade 
(see also in Figs. 2 and 3). 

Investigating the professional literature and previ-
ous experiments of the authors about RSW of UHSS 
steels, it seems that the STS does not decrease in the 
Rm > 1340 MPa range (Fig. 1). Therefore in our previous 
work [22], we modified the formula of AWS D8.1:2003 
standard (Eq. (1)), to increase the minimum required STS 
value above the range Rm > 1340 MPa (Eq. (2)).
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In this formula Rm is the tensile strength of the steel in 
MPa, and t the sheet thickness in mm. This correlation 
gives a better prediction of the STS values in the UHSS 
range Rm > 1340 MPa. Nevertheless, there is a shortcom-
ing of both equations namely the required STS to actual 
STS ratio is decreasing with increasing Rm of the base 
material. This ratio can be interpreted as a kind of safety 
factor, but the change over the Rm range is not beneficial 
for the joint design.

The authors have also investigated other standards and 
correlations. The ISO 14373:2015(en) [168] gives a mini-
mal requirement for low carbon (C < 0.15%, Mn <0.6%) 
steels (uncoated and zink coated till 3 mm thicknes). Most 
of the UHSS steels have also a low carbon content; there-
fore, we investigated this correlation too (Eq. (3)).

STS t d R kNISO
w m=
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1000

. 	 (3)

In this formula dw is the weld nugget diameter in mm, 
t the sheet thickness in mm, and Rm is the tensile strength 
of the steel in MPa. For this correlation, a required weld 
nugget diameter is needed.

Similarly, Radakovic and Tumuluru [59] defined some 
formulas for interstitial free (IF), transformation induced 
plasticity (TRIP), and dual phase steels (DP). One cor-
relation is for predicting STS for pullout (PO) and one for 
interfacial (IF) fracture. Generally, the preferred fracture 
mode of RSWed joints is PO therefore the correlation for 
PO fracture (Eq. (4)) has been considered. 
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In this formula kPO is a constant with the value of ~2.2, 
Rm is the tensile strength of the steel in MPa, dw is the weld 
nugget diameter in mm, and t the sheet thickness in mm. 
This equation is similar to the STSISO function; only kPO is 
lower than the constant (2.6) in Eq. (3).

In both equations (Eqs. (3) and (4)) weld nugget size is 
an important parameter. The minimal weld nugget diame-
ter commonly considered at least 3.5 ·  t (under this value 
is a risk of lack of fusion defects) and the maximum nug-
get size 5 ·  t or 6 ·  t (above that size there is a great risk 
of splash) [168]. Therefore, these correlations have been 
investigated in the dw = 3.5…5 ·  t range.

2.2 Comparison of the different STS prediction models
The graphical representation of the previous models 
(Eqs.  (1)–(3)) in the thin sheet range is shown in Fig.  2. 
The decreasing trend of STSAWS in the UHSS range 
(Rm  >  1340  MPa) is apparent. Also, there is a significant 
difference in the STS values of the different models with 
increasing Rm and sheet thickness. 

For example, in Fig. 3 the minimal STS values are plot-
ted for the commonly available 1 mm sheet thickness in 
correlation with the tensile strength.

The model of AWS D8.1:2003 standard [167] (Eq.  (1)) 
and the model of Radakovic and Tumuluru [59] (Eq.  (3)) 
dw = 3.5 · t  give approximately the same STS values in 
the range of Rm < 800 MPa. The other models predict sig-
nificant higher STS values than (Eq. (1)). For instance, in 
the high strength steel range (400 MPa < Rm < 800 MPa), 

Fig. 2 Graphical representation of the different STS prediction 
equations (Eqs. 1–4) in the thin sheet range
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the predicted STS values according to the AWS standard 
for the sheet thickness of 1.5 mm are the same as the STS 
values according to the ISO standard with the nugget 
diameter dw = 5  · t . The difference in the UHSS range 
(Rm > 800 MPa) is even more severe. For example, for an 
UHSS with t = 1 mm thickness and Rm = 1600 MPa the 
STSAWS = 7.03 kN, STSNew1 = 8.12 kN, STSR&T = 17.6 kN 
(dw = 5 · t ) and STSISO = 20.08 kN (dw = 5 · t ), the dif-
ference between the lowest and highest estimation is about 
300 %! This difference can be even higher at higher Rm and 
sheet thicknesses.

Therefore, RSW experiments were performed and eval-
uated together with the literature data to better correlate 
the STS values.

3 RSW experiments
To complement the STS data from the literature, weld 
optimizations were made in the HSS and UHSS range in 
similar and dissimilar combinations. With the exception 
of the TRIP steel, which was produced as a test produc-
tion by ISD Dunaferr Ltd, the other grades were produced 
by the company SSAB. The main properties of the base 
materials are listed in Table  1. The different steel types 
were designated according to their minimal guaranteed 
tensile strength (Rm = 800–1700 MPa). The trade names of 
the DP 800 and DP 1000 sheets of steel are Docol 800DP, 
Docol 1000DP, for the CP 1000 steel Docol 1000CP and 
for the martensitic grades 1400 M, 1500 M, 1700 M are 
Docol 1400M, Docol 1500M, and Docol 1700M, respec-
tively. The martensitic and bainitic wear-resistant steel 
grade has been designated according to its trade name as 
Hardox 450, where 450 is Brinell hardness of the steels.

The RSW experiments were made with a P.E.I.-POINT 
PN25 machine at 50 Hz frequency (AC), with P.E.I.-
POINT PX 1500P control unit. The RSW welding unit had 
an X-type welding arm assembly, with D = 5 mm diame-
ter round CuCrZr electrodes. Electrode force was 1.9 kN. 
Welds were made with a simple work schedule. The var-
ied parameters were the welding time and welding current. 
Both parameters can be set from 0 to 99 as integer values. 
Calibration curves were measured for the welding parame-
ters by a BF Entron WA1 Weld Analyse type current mea-
surement unit with a Rogowski coil. According to the calibra-
tion the welding time, welding current and welding voltage 
can be calculated by the Eqs. (5), (6) and (7), respectively.

Welding time = welding cycles ⋅ ( )50 100/ s 	 (5)

Welding current

currrent setting of the RSW machine kA

=

+ ⋅ (1 73 0 12. . ))

	
(6)

Welding voltage

currrent setting of the RSW machine V

=

+ ⋅ ( )0 59 30.
	 (7)

The RSW joints were optimized to achieve the highest 
STS value. The experiments were arranged with a cen-
tral composite design (with Box-Wilson optimization) 
method [169]. 

The tensile-shear tests were performed with an 
MTS 810 universal material testing machine according to 
AWS D8.1M standard [167].

4 Results and discussion
4.1 Experimental STS data
The objective of the RSW experiments was to achieve 
the highest STS value with an acceptable weld quality. 
The STS values of the optimized joints and their weld-
ing parameters are listed in Table  2. It is evident from 

Fig. 3 Graphical representation of the different STS models (Eqs. 1–4) 
for t = 1 mm sheet thickness (except dotted lines for t = 0.5 and 1.5 mm)

Table 1 Main properties of the base materials used for own RSW 
experiments

Steel grade
Sheet 

thickness 
(mm)

CEV
Rp0.2 
min. 

(MPa)

Rm 
min. 

(MPa)

A80 
(%)

Hardness 
(HV10)

TRIP 800 1.2 0.21 n.a. 896 22 277

DP 800 1.2 0.39 620 800 14 241

CP 1000 1.4 0.41 800 1000 6 300

DP 1000 1 0.39 700 1000 10 305

1400 M 1 0.39 1150 1400 3 447

1500 M 1 0.37 1200 1500 3 470

1700 M 1 0.21 1350 1700 3 600

Hardox450 1 0.46 1300 1820 4 475
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the table that the higher strength steels need to be welded 
with a shorter work schedule and higher current values. 
Moreover, the possible STS values are increasing with the 
base materials thickness. 

All joints were defect-free and had the favorable pullout 
type fracture during tensile-shear testing.

It must be emphasized that the optimization for the 
highest STS was made within the boundaries of the RSW 
machine used in the experimental tests. Higher STS val-
ues could be achieved by: (a) using flat tip electrodes (other 
machine arm assembly required), (b) higher electrode 
force, (c) MFDC machine, (d) complex work schedule. 
This means the measured STS values are little less than 
the than the maximal achievable values for a given steel 
sheet. Which is not a big problem, because little underesti-
mation of the highest achievable STS means staying on the 
safe side for the joint design for shear loading.

4.2 Evaluation of the STS data according to the 
literature models
The experimental STS data and those obtained from the 
literature are investigated here. Altogether those STS val-
ues are examined based on the different STS prediction 
models. On Figs. 4 and 5, the actual measured STS values 
are divided by the corresponding values obtained from the 
various models. Note: for dissimilar welds the calculations 
were done for the weaker side (according to th investigated 
formula) of the joint. 

Dividing the actual values by the ISO (Eq.  (3)) and 
the Radakovic and Tumuluru equations (Eq.  (4)), a clear 
decreasing trend can be observed (Fig. 4(a) and (b), respec-
tively) for similar and dissimilar welds in the whole tensile 
strength region.

The ratio of the measured and predicted STS values can 
be handled as a kind of safety factor (if greater than 1); 
therefore, it would be better if the ratio of the measured 
and predicted values would not change with the base mate-
rials Rm range.

In Fig. 4(a), this ratio for dw = 3.5 · t  is decreasing from 
~ 2.5 till 1 at Rm = 1600 MPa, at higher Rm this model over-
estimates the actual STS of the welds. For a larger weld 
nugget  this ratio decreases from ~2 to 1 till Rm = 1200 MPa.

Table  2 Main properties of the base materials used for own RSW 
experiments

RSW joint Sheet 
thickness

(mm)

Current
(-)/(kA)

Time
(cycles)

STS
(kN)Sheet 1 Sheet 2

DP 800 DP 800 1.2 60/8.9 30 23.0 ± 2.0

TRIP 800 TRIP 800 1.2 70/10.1 50 16.3 ± 1.9

**TRIP 800 TRIP 800 1.2 50/7.7 35 11.8 ± 0.9

DP 800 TRIP 800 1.2 45/7.1 45 17.3 ± 0.7

CP 1000 CP 1000 1.4 47/7.4 32 20.3 ± 1.2

DP 1000 DP 1000 1 45/7.1 20 13.7 ± 0.8

1400 M 1700 M 1 42/6.8 28 16.0 ± 1.0

1400 M Hardox450 1 42/6.8 23 15.7 ± 0.7

*1500 M 1500 M 1 35/5.9 20 14.9 ± 0.9

*1500 M Hardox450 1 50/7.7 30 16.4 ± 1.7

*1700 M 1700 M 1 46/7.3 14 17.7 ± 0.6

*1700 M S 1300 1 42/6.8 21 13.9 ± 0.8

*Hardox450 Hardox450 1 50/7.7 30 22.0 ± 2.2

**Hardox450 Hardox450 1 50/7.7 20 20.1 ± 4.4

* Previously published here [22]; ** Different optimization method [67]

Fig. 4 Measured STS values from the literature and the experimental 
(Exp.) data divided by the different STS functions (Eqs. (3) and (4)) for 

two different weld nugget sizes (dw = 3.5 · t  and dw = 5 · t )
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In Fig. 4(b), the measured values being divided by the 
Radakovic  and  Tumuluru equation, which has the same 
characteristic as the ISO equation, showing very simi-
lar plots, only the transition of this quotient from > 1 to 
<  1 occurs at different base materials Rm. This ratio for 
dw  =  3.5  · t  begins with ~3 to decrease till 1 at base 
materials Rm = 1600 MPa, for dw = 5 · t  from ~ 2 to 1 at 
Rm = 1400 MPa.

In Fig. 5, the values are divided by the AWS function 
(Eq. (1)) and at base materials Rm > 1340 MPa by the pre-
vious correlation proposed by the authors (Eq.  (2)). This 
plot can be divided into two characteristic parts. Until 
Rm  ~  1200  MPa, the STSmeasured  / STSAWS values contin-
uously decrease from ~  4 to ~  2, this ratio increases at 
higher base materials Rm (on Fig.  5 indicated by white 
arrow at Rm > 1340 MPa). This means the measured values 
are lot higher than the predicted ones. It is not very ben-
eficial for the designers, because designing according the 
STSAWS function means that they have to plan with more 
weld nuggets than necessary. For thath reason was Eq. (2) 
proposed previously [22]. In Fig.  5 it is evident that the 
increasing part of the ratio ceased with the application of 
Eq. (2) and stabilized around the ratio of 1–3.

4.3 Determination of a new STS prediction model
To have a more constant STSmeasured  / STSpredicted ratio a new 
function has been determined based on experimental data 
and the STS data of about 150 papers [12,  17,  22–165]. 
All  the STS data is represented in Fig.  6 as a 3D plot. 

Several types of linear and nonlinear surfaces have been 
fitted on the STS values. There is no significant difference 
between them for the current available information; there-
fore also for easier handling, a 3D plane function has been 
determined (STSNew2) (Eq. (8)). 

STS R t kNNew m2
10 10 0 0088 15 80=− + ⋅ + ⋅ ( ). . . 	 (8)

In this formual Rm is the tensile strength of the steel in 
MPa and t the sheet thickness in mm.

For comparison the different STS models are plotted for 
1  mm sheet thickness in Fig.  7. In this case, the STSNew2 
function predicts a higher STS value than the other equa-
tions, while at Rm ~ 1345 MPa it predicts lower strength than 
the STSISO function for dw = 5 · t . For larger sheet thick-
nesses, this transition shifts for the smaller base materials 

Fig. 5 Measured STS values from the literature and the experimental 
(Exp.) work divided by the different STS functions (Eqs. (1) and (2))

Fig. 6 Measured STS values from the literature and experimental (Exp.) 
work and a fitted plane (Eq. (8))
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strength, e.g., for 2 mm sheet thickness the transition occurs 
at Rm  ~  750 MPa, while at Rm  ~  1600 MPa the predicted 
STSNew2 value is smaller than the STSR&T value for dw = 5 ·

t . So it seems Eq. (8) approximates better the measured 
STS values for the whole high strength base materials 
400 MPa < Rm ~ < 2000 MPa range for thin sheets.

4.4 Evaluation of the STS data according to the 
different models for selected HSS and UHSS types
The different STS prediction models were investigated 
especially for HSS ans UHSS steel grades. The most lit-
erature data was available for the DP, TRIP and marten-
sitic steel grades in this strength regions. The measured 
STS values of these three grades (in similar joints) are 
divided by the different STS prediction functions are 
shown in Fig. 8. 

DP steel grades are in the 400 MPa < Rm < 1300 MPa 
range (Fig. 8(a)). The STSmeasured  / STSfunction values for the 
AWS model continuously decrease from approx.  2.5–3.5 
range to 1–1.5 range with the higher Rm. In case of the ISO 
function (for dw = 5 · t ) this decreasing trend can still be 
observed, but at a smaller extent from approx.  2–1.5 range 
to 0.5–1.5 range. The values computed with the New  2 
function (Eq. (8)) scatter in the whole Rm range, homoge-
neously in the 0.5–1.5 range. 

TRIP steel grades are in the 500 MPa < Rm < 1300 MPa 
range (Fig. 8(b)). The STSmeasured  / STSfunction values for the 
AWS model are approx. 15–2.5 in the whole tensile 
strength range. In case of the ISO function (for dw = 5 · t ) 
this range is significantly narrower approx. 0.5–1.5. In 
the New 2 function (Eq. (8)), this range is slightly smaller 
approx. 0.4–1.4, and even smaller for Rm < 700 MPa.

Martensitic steel grades are in the 700  MPa  <  Rm < 
1900 MPa range (Fig. 8(c)). The STSmeasured   / STSfunction val-
ues for the AWS model are continuously decreasing from 
approx. 2.1–2.8 range to 1.8–2.5 range at the higher Rm. 

Fig. 7 Graphical representation of the different STS models 
(Eqs. (1)–(4) and 8) for t = 1 mm sheet thickness

Fig. 8 Measured STS values from the literature and experimental work 
divided with the different STS functions (Eqs. (1)–(3) and Eq. (8)) in 

similar joints for: DP steels a), TRIP steels b) and martensitic steels c)
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Above Rm = 1340 MPa, this ratio starts to increase again till 
~ 2.6–3 range. These values for the New1 function (Eq. (2)) 
do not increase but are in the approx. 1.3–2.5 range. In the 
case of the ISO function (for dw = 5 · t ), this range is sig-
nificantly narrower but the STSmeasured  / STSfunction values are 
continuously decreasing from the approx. 1–1.5 range to 
the 0.5–0.9 range at higher Rm. This means that this for-
mula first underestimates the real STS values, than from 
approx. Rm > 1200 MPa it overestimates them. 

In case of the New 2 function (Eq. (8)), STSmeasured  / STSfunction 
range is smaller approx. 0.4–0.6 and the values are more 
homogeneously distributed in the whole Rm range.

In Fig. 9 the measured STS values from the literature 
and from the experimental work are divided by the devel-
oped STSNew2 function (Eq. (8)) for similar and dissimilar 
joints. As it can be seen, the values scatter around 1, a fit-
ted line with fixed intercept at 1 had a minimal slope of 
3 × 10–5 MPa–1, with the R2 of 0.9.

Therefore it can be concluded, that the new function 
approximates better the measured STS values in the whole 
Rm range for similar and dissimilar joints than the existing 
literature and standards equations. Moreover, the equation 
has the advantage to be only dependent on the base mate-
rials tensile strength and the sheet thickness, and not on 
the weld nugget size.

5 Conclusions
In this current research, a large amount of literature and 
experimental data have been investigated to better predict 
the shear tension strength (STS) of resistance spot welded 
high and ultra-high strength thin steel sheets. From the 
available data, the following conclusions can be drawn:

•	 The standardized AWS  D8.1M function underes-
timates the measured STS values, and the ratio of 
STSmeasured  / STSAWS decreases with the material ten-
sile strength, and due to the nature of this function it 
starts do increase again above 1340 MPa.

•	 The standardized ISO 14373:2015(en) [168] and the 
Radakovic D. and Tumuluru M. functions underesti-
mate the measured STS values at lower base materials 
tensile strength, and the ratio of STSmeasured  / STSfunction 
decreases with the material tensile strength. At cer-
tain tensile strength (depending on the function and 
the required weld nugget size), this ratio is below 1 
meaning that the functions start to overestimate the 
STS values.

•	 A new formula has been proposed (Eq.  (8)), which 
gives a homogeneous STSmeasured  / STSfunction ratio 
(0.5–1.5 range) over the 400–1900 MPa base mate-
rial tensile strength range. It also gives a narrower 
range of STSmeasured  / STSfunction values at any selected 
base materials strength. It also works better for DP, 
TRIP and martensitic steels. This formula is depen-
dent on the base materials tensile strength and the 
sheet thickness, and not on the weld nugget size.

•	 The proposed new function can be a loocrative tool 
for the designers in the planning stage of resistance 
spot welded components made of thin sheets (approx. 
< 3 mm) under tensile-shear load.
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