
Cite this article as: Mihályi, L., Takács, D. "Linear Stability of Reversing a Car-trailer Combination", Periodica Polytechnica Mechanical Engineering, 67(2), 
pp. 87–93, 2023. https://doi.org/10.3311/PPme.18971

https://doi.org/10.3311/PPme.18971
Creative Commons Attribution b |87

Periodica Polytechnica Mechanical Engineering, 67(2), pp. 87–93, 2023

Linear Stability of Reversing a Car-trailer Combination

Levente Mihályi1*, Dénes Takács2

1 Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 
Műegyetem rkp. 3, H-1111 Budapest, Hungary

2 MTA-BME Research Group on Dynamics of Machines and Vehicles, Műegyetem rkp. 3, H-1111 Budapest, Hungary
* Corresponding author, e-mail: mihalyi@mm.bme.hu

Received: 21 July 2021, Accepted: 27 March 2023, Published online: 05 April 2023

Abstract

In this paper, we investigate the reverse motion of a car-trailer combination. The single track model of the vehicle is used with quasi-

static tire model to design a simple linear feedback controller that can achieve stable reversing motion along a straight path. The linear 

stability of the closed-loop system is analyzed by constructing stability charts in the plane of the control gains. The effect of the 

reversing speed of the vehicle on the stability is also shown. In order to validate the theoretical results, laboratory experiments are 

carried out using a small-scale vehicle and a conveyor belt.
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1 Introduction
The development of autonomous vehicles turned the field 
of vehicle dynamics to be even more relevant. As the 
level of automation develops, the applied control algo-
rithms start to operate in such formerly avoided parameter 
domains where the nonlinear properties of the vehicle sys-
tem are relevant, see [1]. These enhanced motion controls 
also realize different path-following tasks that could not be 
or could hardly be done by human drivers [2]. Reversing 
a truck having trailers is one of these tasks.

The stability problem of trailers often leads to road acci-
dents. Since badly chosen payload positions or the high tow-
ing speed may generate violent vibrations (so-called snaking 
motion) of the trailer, the dynamics of the car-caravan and 
truck-trailer combinations are deeply analyzed in the litera-
ture [3]. The critical speed corresponding to the linear sta-
bility boundary of the straight-line forward motion can be 
increased using optimal system parameters, while the stabil-
ity of the reverse motion requires feedback control [4].

In this paper, we analyze the reverse motion of a car-
trailer combination [5, 6]. The equations of motion of the 
single track vehicle model are derived by means of Kane's 
method, and a simple linear feedback controller is designed 
to stabilize the straight-line reverse motion. For the sake of 
simplicity, the time delay of the control loop is neglected 
in our study. Stability charts are constructed to analyze 
the effect of the reversing speed on the stable domain of 

the control gains. A small-scale experimental rig is intro-
duced, where the theoretical results can be validated and 
a more sophisticated path following control algorithm can 
be tested in the future.

2 Mechanical model
The single track model [7] is applied to analyze the lat-
eral dynamics of the car-trailer combination (see Fig. 1). 
We investigate an in-plane motion, where (X,Y) denote 
the ground-fixed coordinate system and (x,y) are local 

Fig. 1 Mechanical model with notations
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coordinates fixed to the towing vehicle at its center of grav-
ity C1 . Point C2 refers to the center of gravity of the trailer. 
The towing car and trailer are connected via a joint at 
point I. The geometric parameters are the following: ef and 
er are the distances between C1 and the front and the rear 
axles respectively; b denotes the distance between C1 and 
the joint at I. The lengths lc and l2 are defined between the 
center of gravity C2 and the joint I, and between the center 
of gravity C2 and the axle at T, respectively. The mass and 
the mass moment of inertia are represented by m1 , J1 for the 
car, and m2 , J2 for the trailer. The lateral forces FF , FR , and 
FT are the tire forces, where subscripts refer to the points 
of actions. In our model, the self-aligning moments of the 
tires are neglected. The generalized coordinates of the sys-
tem are the positions X and Y of the center of gravity C1 , 
the yaw angle ψ1 of the towing car, and the angle ψ2 of the 
trailer relative to the towing car, respectively. The steering 
angle of the towing vehicle is denoted by δ, which is con-
sidered as a time-dependent input variable.

For the sake of simplicity, we set the longitudinal speed 
of the towing vehicle to be equal to the constant value V. 
This can be expressed as a kinematic constraint:

 X Y Vcos sin ,� �
1 1
� �  (1)

where dots refer to the derivatives with respect to time. 
Due to the presence of this kinematic constraint, the sys-
tem is nonholonomic, and the equation of motion is deter-
mined using Kane's method [8]. The configuration of the 
system can be uniquely defined by four generalized coor-
dinates, while the kinematic constraint reduces the num-
ber of variables that uniquely describe the velocity state by 
one. So, three suitably chosen pseudo velocities are needed:
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which are the lateral speed of the center of gravity C1 , 
the yaw rate of the towing vehicle and the yaw rate of the 
trailer. Expressing the generalized velocities from the lin-
ear system composed by Eq. (1) and Eq. (2), we obtain:
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Besides them, three dynamic equations complete the 
equations of motion of the system based on Kane's method:

F Fs s� �* ,0  (4)

where the subscript s = 1, 2, 3 refers to the sth pseudo veloc-
ity. Fs and Fs

* are the nonholonomic generalized active 
forces and the nonholonomic generalized inertia forces. 

In the case of a car-trailer combination these general-
ized forces are 
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In these formulas, the velocities read as
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The second and third pseudo velocities (cf. Eq. (2)) are 
defined as the angular velocities of the car and the trailer, 
thus, the partial derivatives can be easily expressed as:
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The forces and moments in Eq. (5) are
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Substituting these back to the first expression of Eq. (5), 
the generalized active forces simplify to
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According to the second expression of Eq. (5), the accel-
erations and angular accelerations of the car and the trailer 
are needed in order to calculate the generalized inertia 
forces. By definition, acceleration is the first derivative of 
velocity with respect to time, thus
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For the sake of brevity, we do not spell out the formulas 
of the accelerations. But substituting the derivatives back 
to the second expression of Eq. (5), we obtain the general-
ized inertia forces:
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In summary, the nonlinear equations of motion – 
expressed by the generalized coordinates and the three 
pseudo velocities – are as follows:
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where the lateral forces FF , FR and FT are calculated based 
on the tire model.

We use a quasi-static tire model [7] considering small 
side slip angles ( αF , αR , αT ), namely:
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where the constants CF , CR and CT represent the so-called 
cornering stiffness of the tires. The side slip angles can be 
calculated via the lateral and longitudinal velocities of the 
wheel's center points, which read:
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Here, the sign function is applied for the longitudi-
nal speeds of the wheel center points to handle both the 
forward and the reverse motions of the vehicle (positive/
negative value of longitudinal speed V) with the same 
mathematical formulas. For example, see Fig. 2 for the 
interpretation of the side slip angle of the car's rear wheel 
in forward (Fig. 2 (a)) and in reverse (Fig. 2 (b)) motions.

Note, the so-called kinematic model, which considers 
rigid wheels with point contact, could be an alternative 
model for the analysis. However, in the case of a fully 
loaded truck–trailer combination, the dynamic model is 
more appropriate due to the relatively large tire deforma-
tions evolving when the vehicle turns. Accounting the tire 
deformations may have even more importance when the 
truck and/or the trailer have multiple axles.

3 Control
Since the reverse motion along a straight path is linearly 
unstable without control, a controller is designed in this 
section. The yaw angle of the car ( ψ1 ) and the relative 

    (a)   (b)

Fig. 2 Side slip angles in forward (a) and reverse (b) motions
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angle of the trailer ( ψ2 ), and the lateral position of the 
car (Y) are utilized as feedback:

� � �� �� � � �P P P YY1 21 2
,  (15)

where P Pψ ψ1 1
,  and PY denote the control gains.

First, we linearize the equations of motion about the 
straight motion of the car-trailer combination. As we want to 
analyze the closed-loop system, the equations of motion are 
arranged into the general state-space representation form:

x A x B u� � � � ,  (16)

where

u K x� �  (17)

is the input vector, A denotes the system matrix, B is 
the input matrix, and x means the state vector:

x � � �� � � � �
1 2 3 1 2

Y T
.  (18)

The system matrix can be expressed as A = M−1D. 
Detailed M, D, B and K matrices are given in the Appendix. 

Using the state-space representation, we can examine 
the linear stability of the system by means of the charac-
teristic roots of the characteristic equation

det ,I M D B K� � � � �� �� �� � ��� 1
0  (19)

where I denotes the identity matrix. The straight motion 
of the vehicle is unstable if and only if the real part of the 
rightmost characteristic root becomes positive. We distin-
guish two types of instability [9]: static loss of stability hap-
pens if the imaginary part of the critical root is zero (λ = 0), 
which is at PY = 0. Dynamic loss of stability takes place 
for nonzero imaginary part (λ = ±iω). In this latter case, 
Hopf bifurcation may happen and stable or unstable peri-
odic solutions occur around the straight motion depending 
on the sense (supercritical/subcritical) of the Hopf bifurca-
tion. To detect the stability boundary, we use the bisection 
method [10], by which we determine the critical parameter 
setups, for which, characteristic roots are situated on the 
imaginary axis of the complex plane. These calculations 
can be done analytically, but the relatively high-dimen-
sional matrices would lead to excessive algebraic complex-
ity. Therefore, stability charts are constructed by numerical 
calculations in our paper. The parameter values in Table 1 
belong to a common car-trailer combination.

The stability charts are shown in Fig. 3, where stabil-
ity boundaries are plotted in the separated panels for four 
different values of the Pψ 2

 gain. For each of these setups, 
three different values of longitudinal speed are considered. 

The blue areas denote the parameter domains of the con-
trol gains for which the straight reverse motion of the 
vehicle system is stable. As it can be observed, both the 
reversing speed V and the control gain Pψ 2

 of the trailer's 
relative angle have significant effects on the area of the sta-
ble domain: faster reversing speed, and lower gain values 
lead to smaller stable domains. 

Tuning feedback gains can be achieved by different 
procedures. Linear Quadratic Regulator (LQR) is a com-
monly used method, which would have been applied in our 
case as well. However, constructing stability charts is 
a suitable method for investigating the effect of different 
parameters on stability, e.g., the geometrical parameters, 
the longitudinal speed, or the time delay occurring in the 
feedback control loop.

A possible measure of the performance of the control is 
the real part of the rightmost characteristic root. Namely, 
the more negative this real part is, the more stable the 

Fig. 3 Stability charts with different fixed gains of the second 
proportional term

Table 1 Numerical values of the system parameters

Parameter Value Unit

m1 1300 kg

m2 400 kg

J1 1500 kg m2

J2 160 kg m2

ef 1.4 m

er 1.6 m

b 1.8 m

lc 0.7 m

l2 1.3 m

CF , CR , CT 20000 N/rad
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system is. For the Pψ 2
 = 10, V = 1 m/s case (left top panel 

in Fig. 3), the most stable parameter point is marked with 
black dot at PY = −0.6566 rad/m and Pψ1

 = 6.182.

4 Experimental test
In order to validate our theoretical results on the stabil-
ity of the controlled reverse motion of the vehicle, labo-
ratory experiments were carried out. The small-scale test 
rig of [11] was used, in which a 1:10 vehicle model can be 
controlled on a treadmill. The car-trailer system was con-
structed as shown in Fig. 4. The car is attached to the frame 
of the treadmill by a 5 degrees-of-freedom suspension that 
only constrains the longitudinal speed of the car. The posi-
tions and orientations of the car and trailer are measured 
via linear encoders and magnetic rotary sensors. These sig-
nals are acquired by a NI cRIO unit, and the steering of the 
car is controlled based on the control law in Eq. (15).

The parameter values of the small-scale vehicle model 
are shown in Table 2. We present the experimental results 
for the speed of 0.3 m/s and for Pψ 2

 = 10. The comparison 
between the theoretical stability boundary and the experi-
mental test results is shown in Fig. 5.

The blue area is the theoretically stable domain. 
According to the test results, unstable points are marked 
with red crosses, and stable points refer to green dots.

Although measurements provide a somewhat smaller 
stable domain, a good qualitative agreement can be estab-
lished. The shape of the practical stability boundary sug-
gested by the measurement points follows the theoretical 
one. However, some reasons can be mentioned related 
to the quantitative mismatch. Dry friction is not mod-
eled in this research, so this phenomenon would modify 
the stable area, especially in the low-gain domain. On the 
other hand, time delay affects stability as well. Although 
the static stability boundary remains at PY = 0 – since time 
delay has no effect on the λ = 0 case –, another dynamic 
stability boundary may appear due to the delay, shrinking 
the area. The exponential filtering of the measured sig-
nals may introduce relevant time delay in the control loop 
of our experiment, but accounting for this time delay is 
planned to be a future task of our research.

Stability charts in Fig. 3 show that it would be consid-
erable to raise the fixed control gain to reach better per-
formance. However, small-scale tests proved that using 
extremely high gains causes unstable motions. This fact 
also suggests that the time delay may have a relevant effect. 

The straight reverse motion of the vehicle can be stabi-
lized by the designed controller using control gains chosen 
from the middle of the theoretically predicted stable domain.

5 Conclusion
A simple linear feedback controller was presented for revers-
ing a car-trailer combination. The controller was designed 
based on the single-track vehicle model of the car-trailer com-
bination considering quasi-static tire model. It was shown 
that the straight reverse motion of the vehicle can be stabi-
lized by feeding back the lateral position of the car, the yaw 

Fig. 4 Experimental setup

Fig. 5 Measurement points compared to the theoretical (blue curve) 
stability boundary

Table 2 Numerical values of the system parameters of the test

Parameter Value Unit

m1 0.92 kg

m2 0.4 kg

J1 0.009 kg m2

J2 0.0013 kg m2

ef 0.1 m

er 0.14 m

b 0.19 m

lc 0.2 m

l2 0.02 m

CF , CR , CT 50 N/rad
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angle of the car and the relative angle of the trailer. We exam-
ined the effects of the vehicle speed on the stability, and vali-
dated our results via small-scale laboratory experiments.

The constructed mechanical model of the paper and 
the designed small-scale experimental rig serve as a good 
basis for our future analyses on the effect of the feedback 
delay of the controller [12]. It is also intended to realize the 
path-following of the vehicle system [13, 14] in order to 
extend the straight-line motion to more complicated ones, 
e.g., making a lane change smoothly.
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Appendix
The matrices mentioned in Section 3 are 
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where 
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