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Abstract

Flow problems are solved using so-called fundamental equations and the corresponding initial and boundary conditions. The 

fundamental equations are the motion equation, the continuity equation, the energy conservation equation, and the state equations. 

In our paper, we extend the validity of the equation of motion used to describe one-dimensional, steady-state tubular flow to a case in 

which the mass flow of the medium changes along the tubular axis during the flow. Such flows occur in perforated and/or porous pipes 

and air ducts. The research in this direction was motivated by the fact that the extension and formulation of the equation of motion 

in this direction has not been carried out with completely general validity. In the equation of motion used to solve the problems, the 

isochoric and isotherm nature were assumed. In our paper, we present fundamental equations that formulate differential equations 

to describe polytrophic and expanding flows.
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1 Introduction
Space theory for one-dimensional flows within tubes has 
only been analyzed for the constant mass flow case. In 
this paper, we extend the basic equations to mass source 
spaces. This expansion is necessary to solve problems that 
occur during the design of ventilation and air duct sys-
tems, as well as to complete the theoretical study of such 
problems. The description should be applied for tubes with 
uniform porosity and perforation.

The basic equations consist of the equation of motion, the 
energy equation, the continuity equation and the state equa-
tion of the medium. We regard the flow in the tube as one-di-
mensional, and disregard the radial and tangential velocity 
components. We regard the flow to be uniform across the 
entire cross section of the tube. We assume that the flow 
is steady. We describe the motion equation as a balance of 
momentum flow rates. The reaction forces at the boundary 
surface are cancelled out by the compression forces. The 
enthalpy, translational kinetic energy and external heat con-
vection appear in the energy equation. The flow is horizontal. 

The momentum loss or momentum gain is accounted for in 
the axial direction velocity component of the mass outflow. 
Mass outflow usually happens in the direction normal to the 
boundary surface. The translational kinetic energy is calcu-
lated from the absolute value of the mass outflow velocity. 
The geo-metric models appear in Fig. 1.

Related literature is available by Wang [1], Wang et al. [2], 
Garbai [3] and Czétány [4–7]. The application of the devel-
oped model can be utilized e.g. in the further development 

Fig. 1 Reaction force on the lateral surface
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of the transpired solar collector's mathematical modeling, 
described by Fawaier et al. [8] Distributed mass flow source 
has also been described by Sánta [9] during the energy anal-
ysis of heat pump systems with different refrigerants.

2 Fundamental equations characterizing flow in tubes 
with mass and momentum sources
2.1 Motion equation for momentum flow rate and 
momentum source
The motion equation is a modified balance of momentums. 
The flow momentum balance is the sum of the work of nor-
mal forces, the change in momentum flow rate, the mass 
inflow or outflow momentum through the lateral surface 
of the tube, and the energy dissipation due to tube friction.

Therefore, the balance of momentum is as follows:
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In a different form:
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Dividing by Aρ:
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Rearranging the equation:
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Finally:
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Special cases can be written as:
1.	 If

m = constant;
A = constant;
ρ ≠ constant;
m = Aρw.

In this case the motion equation is Eq. (8):
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that's the typical form of the equation.
2.	 If

m = constant;
A ≠ constant;
ρ ≠ constant.
Then the motion equation is the same as in case 
of   '1.' in the start of this listing:
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3.	 If
m = constant;
A = constant;
ρ = constant.
Then we again get case of '1.' in the start of this 
listing:
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4.	 If
m ≠ constant;
A ≠ constant;
ρ = constant.
Then the motion equation is:
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If ρ = constant:
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After the differentiating:
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After simplification:

A dp
dx

w dA
dx

A w dw
dx

dm
dx
w A

D
wpx� � � � �� �

�
�2 2

2
2



. 	 (19)

Finally:
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If dm/dx = Ap × wpy  /L then we obtain Wang's formula. 
However, we can define a function for dm/dx, such as 
dm/dx = u = constant for uniform loss.

If:
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If the momentum flow rate source = 0, because wpx ≈ 0,  
and ρ = constant, then:
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In engineering practice, the above equation is the basic 
equation for sizing airducts for perforated tubes. If we 
want isobar flow then we can determine the change in the 
cross section along the tube by using this equation.

2.2 Deriving the energy equation
The energy equation for infinitesimal space in steady state 
is the balance of enthalpy and translational kinetic energy. 
The equation accounts for energy inflows and outflows at 
the front and rear of the space segment, as well as through 
the lateral surface. When the enthalpy of the inside flow 
and outflowing medium is the same h, the balance of the 
infinitesimal energy according to Fig. 1. is the following:
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After multiplication:
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Further:
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Rearranging the equation:
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After simplification:
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After further simplification:
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Further:
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Furthermore:
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This is the typical energy equation, because usually 
flows exit rather than enter the air duct.

Developing the energy Eq. (35) further:

˙
˙

˙
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After differentiation:
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If there is heat intake or heat loss through the lateral 
surface, then the energy equation is Eq. (38):
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3 Deriving the state equation for polytrophic flow
Our goal is to extend the validity of the pvκ state equation 
from adiabatic and frictionless flow to polytrophic and 
frictional flow via the appropriate transformations.

Substituting motion Eq. (5) into motion Eq. (38):
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After substituting this into the energy equation:
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Multiplying each element by (k-1):
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After expansion:
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Multiplying both sides by v k−1:
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Rearranging the equation:
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Finally:
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Alternatively:
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3.1 Polytrophic flow in porous tube with friction, other 
forms based on the previous equations
The following equations can be derived from Eq. (46) 
which are useful in engineering practice.
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For uniform loss:
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3.2 Special cases
If the flow m = constant, and there is no source, then the 
state equation of the flow is Eq. (51):
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Alternatively:
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If the flow is adiabatic, but frictional:
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If the flow is adiabatic, frictionless and isentropic:
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If the flow is politropic, frictional but isentropic:
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4 Isobar flow in airduct with uniform loss
Initial conditions are the following for isobar flow:
dp/dx = 0, v = constant, A ≠ constant.

The velocity component of the outflow in the axial 
direction is zero, therefore:
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The motion equation with these parameters from Eq. (7):
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After simplification:
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dx

� �� � � � � �� � 

0 0 2

1
. 	 (58)

Substituting into Eq. (57):

� � �� � �

� � �� �

u v
A

m ux v
A
dA
dx

u v
A

D
m ux v

A





0 2

0

1

1

2
� .

	 (59)

After simplification:

�
�
�dA

dx D
A�

2
. 	 (60)

For an air duct with a circular cross section:

dA
dx

A�
�� �
4

. 	 (61)

The differential equation can be solved by direct 
integration.

4.1 Proceeding from the energy equation
The state equation can be derived from the energy equa-
tion with the following assumptions:

dp
dx

dV
dx

= =0 0, . 	

Therefore the energy equation from Eq. (35):

m d
dx
w u w uv p
2 2

2 2
� � � . 	 (62)

˙

˙ ˙ ˙˙
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Since m = m0−ux, let m0−ux = x*, dx = −dx*1/u.
With these equations, Eq. (63) becomes:

� � � �x u d
dx

w u w uv p*

*
.

2 2

2 2
� 	 (63)

After simplification:
d
dx

w
x

w uv p
x* * *
.

2 2

2

1

2

1�
�
�

�
�
� �

�
�
�

�
�
� � � �� �� 	 (64)

The linear, inhomogeneous differential equation can be 
solved for (w2/2).

For a known velocity w, the equation for the required 
cross section A is the following:

A x x v
w

m ux v
w

� � � �
�� �*

.


0 	 (65)

Consider whether the results calculated from Eq. (61) and 
Eq. (65) are in agreement or differ.

4.2 Isobar air duct with non-constant specific volume, 
and non-constant A
Without deriving it, the Eq. (66) is the following:

dA
dx A A V

dV
dx

� �
�

�
�
�

1 1� �
. 	 (66)

The coupled energy equation:

 m p dv
dx

mw dw
dx

u w wn�
� �

� � � �
�
�
�

�
�
�

1 2 2

2 2

. 	 (67)

The velocity of the outflowing air:

w p
w

v p pn
n� � � � �

2

2

2

�
� � �, , .constant 	

Introducing a new variable, see Eq. (68):

�
�

�
�
�

�
�
� �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�

up dv
dx

u x v
A

d
dx

x v
A

u
x

x v
A

�
� 1

1

*

*

*

*

*

*

�� �
2

v p
x
�
*
,

	 (68)

with:

x v
A

W m m ux x
*

*
, .� � � �

 

0

	

The sizing of the airduct can be determined using Eqs. (66) 
and (68).

5 Summary
In this paper we extend the adiabatic state equation for 
politropic flow in tubes with varying cross sections and 
contiguous mass source by deriving the simultaneous dif-
ferential equation system for the flow, the motion equa-
tion, the energy equation, the continuity equation, and the 
thermodynamic state equation. From these equations flow 
types without mass source can be derived. The politropic 
state equation together with the motion equation provide 
new computational possibilities for determining the state 
parameters of frictional, steady and politropic flows.

Nomenclature
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˙ ˙ ˙

A cross section [m2]
p pressure [Pa]
x, z space coordinates
m mass flow [kg/s]
h enthalpy [J/kg]

w, wn
velocity, the absolute value of the 

outflow [m/s]

wpx

the outflow's velocity component in 
axial direction through the lateral 

surface
[m/s]

D tube diameter, equivalent tube 
diameter [m]

V volume flow [m3/s]
ρ density [kg/m3]
P perimeter [m]
κ adiabatic exponent [1]
ν kinematic viscosity [m2/s]

˙

˙
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