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Abstract

Degradation and failure prediction has become more and more crucial for maintenance planning and scheduling, the decision-

making process, and many other areas of manufacturing systems. This paper presents an approach where different artificial neural 

network models were developed to predict the degradation path of a machine component using different architectures, including 

fully connected networks (FCN) and arbitrarily connected networks (ACN). These models were trained using the Neuron-by-Neuron 

(NBN) training algorithm with forward-backward computations, where NBN is an improved form of the Levenberg-Marquardt (LM) 

algorithm, combined with FCN and ACN architectures, which can be trained efficiently, it can give more accurate predictions with 

a fewer number of neurons used. The developed models were evaluated using the statistical performance measure of the sum of 

squared error (SSE). The results show that the used networks are successfully able to predict the degradation path; the 8-neurons 

model of FCN architecture and the 3-neurons model of ACN architecture with tanh (mbib) hidden layers activation function and linear 

function (mlin) of the outputs have the lowest prediction error (SSE) among all the developed models. The use of such architectures 

combined with NBN training algorithm can easily model manufacturing systems with complex component structures that provide 

a vast amount of data.
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1 Introduction
Nowadays, industries are directed toward the Fourth 
Industrial Revolution or the so-called "Industry 4.0", 
which aims at integrating the physical and cyber parts 
of the production systems, including maintenance activi-
ties through different technologies such as Cyber-Physical 
Systems (CPS), Artificial Intelligence (AI), Internet of 
Things (IoT), Big Data, Cloud Computing, and others, 
leading to smart and autonomous production systems [1]. 
Hence, new trends of maintenance planning and schedul-
ing, including predictive maintenance (PdM), prognostic 
and health management (PHM), condition-based main-
tenance (CBM), and smart decision-making, have been 
introduced in many related research areas, utilizing differ-
ent approaches of AI [1–3]. Machine learning (ML) is one 
of the most researched areas of AI, which comprises pre-
diction and optimization methods to discover knowledge 

and make smart decisions [4]. ML, or the "data-driven 
approach", uses historical data to learn the system's behav-
ior [3]. ML approaches are commonly used in mainte-
nance planning and scheduling where the required histor-
ical data is highly available [3, 5].

Many different algorithms have been used in ML, such 
as support vector machines (SVM), random forests, logis-
tic regression, artificial neural networks (ANN), Naive 
Bayes, genetic algorithms, and much more. Paturi and 
Cheruku [6] showed that through the past two decades, 
ANN algorithms had gained significant importance in the 
field of maintenance planning; ANN has been proven to 
work with high accuracy and low level of error, proving its 
applicability in manufacturing operations. Consequently, 
neural networks are currently widely used in manufac-
turing systems applications, especially in maintenance 
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planning and scheduling, condition-based maintenance, 
predictive maintenance, and degradation and failure 
prediction [7]. 

This paper presents the research work where a newly 
used training algorithm "Neuron-by-Neuron (NBN)" with 
backward-forward computation has been applied to predict 
the degradation path of a machine component leading to 
failure and replacement of the component then. Different 
models with various architectures of artificial neural net-
works, mainly fully connected networks (FCN) and arbi-
trarily connected networks (ACN), have been developed 
to predict the degradation path within the available range 
of the given data set. It is the first step toward predicting 
the degradation and failure data and developing a com-
prehensive predictive maintenance framework. Then the 
prediction results can be used to conduct simulations for 
better maintenance planning and scheduling. The NBN 
algorithm has been used here due to its well-known ability 
to train these ACN and FCN neural network architectures 
with lower prediction errors, less training time, less mem-
ory consumption, and fewer neurons.

2 Literature review
Training neural networks is a complicated process. 
Selecting the proper training algorithm can determine the 
success of an application. Different training algorithms 
are used to train the developed neural networks. The most 
popular one is the error-back propagation algorithm 
(EBP) which is an inefficient algorithm [7]. Li et al. [8] 
and Hamid et al. [9] indicated that EBP has many gen-
eral shortcomings in terms of training speed, the com-
plexity of the required activation functions, getting stuck 
at local minima, and the slow convergence speed. Among 
the usually used algorithms, EBP works with many 
errors; it is slower and inefficient compared to the other 
newly developed second-order training algorithms such 
as Levenberg-Marquardt (LM) and Neuron-by-Neuron 
(NBN) algorithms [10, 11]. The LM algorithm is efficient 
and very fast, but it can only train multi-layer perceptron 
(MLP) networks architecture, and a limited number of 
patterns can be handled [7]. These issues were solved by 
improving the LM algorithm with the recently developed 
NBN training algorithm. In addition, the NBN algorithm 
shows improvements in computation time and memory 
consumption [7, 12, 13].

The forward and backward computations can be per-
formed based on the NBN routings; this makes the algo-
rithm suitable for arbitrarily connected networks (ACN) 

and offers a proper method for modeling the complicated 
connections in manufacturing systems resulting from the 
tremendous amount of data provided by their complex 
machines.

Previous studies used EBP algorithms for prediction 
purposes; Rajmohan and Palanikumar [14] modeled and 
predicted the surface roughness in the drilling process of 
hybrid metal matrix composites using an artificial neural 
network based on an EBP training algorithm where MLP 
architecture was used to design the network. The results 
showed an efficient surface roughness prediction with a 
9-4-1 MLP architecture. Similarly, Leh et al. [15] devel-
oped a model with EBP to detect failures in a power trans-
mission line. The results show a tolerable accuracy in fail-
ure detection. 

On the other hand, Hunter et al. [7] conducted a com-
parative study to select the proper network architecture 
and the size using different training algorithms, including 
the LM, EBP, and NBN algorithms. The study concluded 
that, as the NBN and LM are second-order algorithms, 
they are 100 to 1000 times faster than the EBP algorithm. 
Besides this, the NBN algorithm has some advantages 
against the LM algorithm: 

1. The LM algorithm can handle only MLP networks, 
while the NBN algorithm can handle any feed-for-
ward and arbitrarily connected neural networks. 

2. The NBN method can be used for problems with an 
unlimited number of patterns. 

3. The NBN method is more accurate, with a better 
success rate than LM. 

4. Finally, the NBN algorithm can use both for-
ward-backward or forward-only computational 
scheme for faster training and consume less memory. 

The NBN training algorithm combined with FCN archi-
tecture was used by Hussain et al. [16] to develop estima-
tors from an aircraft's sensor measurements. The devel-
oped estimator based on the NBN method was able to 
predict with high accuracy and few neurons.

3 Neural network architectures
Multi-layer perceptron (MLP) is considered as the most 
popular neural network (NN) architecture. However, MLP 
is inefficient and not powerful due to the high number of 
the required neurons to solve problems with a limited 
number of patterns [7, 12, 17, 18]. Thus, ACN and FCN are 
better and more efficient than the MLP [12, 16, 18]. Fig. 1 
shows examples of FCN and ACN architectures.



246|Shaheen and Németh
Period. Polytech. Mech. Eng., 66(3), pp. 244–252, 2022

3.1 NBN training algorithm
The NBN training algorithm is an improved version of the 
second-order LM algorithm [11]. The updated rule of the 
LM algorithm is the following [11, 12, 19]:

w w en n
T TJ J I J�

�
� � �� �1

1
� , (1)

where wn+1 is the new vector of weights; wn is the old vector 
of weights; J is the Jacobian matrix; I is the matrix of iden-
tity; e is the vector of error, μ is the coefficient of combi-
nation. The size of the Jacobian matrix is (P × M) × N and 
the vector of error is (P × M) × 1, where P is the training 
patterns number, M is the network outputs number, and N 
is the weights number [17]. 
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Equation (2) shows how the Jacobian matrix is built, 
with p denoting the training pattern (p = 1…P), j denoting 
the neuron index, wj,x denoting the xth connection weight to 
neuron j, and m denoting the network output neuron index 

(m = 1…M). For training pattern p at network output neu-
ron m, the error ep,m is calculated as follows:

e d op m p m p m, , ,� � , (3)

where dp,m is the targeted output and op,m is the actual output 
for the training pattern p at the network output neuron m.

Usually, the Jacobian matrix is generated and then 
stored in order to update the weights using Eq. (1). This 
is useful for problems that just require a few training pat-
terns. Due to the massive size of the Jacobian matrix [20], 
memory restriction may become a major challenge to 
be addressed for larger numbers of training patterns. 
The weights in the NBN algorithm are updated using the 
following update rule:

w w gn n Q I�
�

� � �� �1
1� . (4)

The gradient vector is g, and the quasi-Hessian matrix 
is Q. This represents an updated form of the LM rule [12], 
where

Q J JT=  (5)

g e= J T . (6)

The matrix Q is created in the NBN algorithm by add-
ing the quasi-Hessian sub-matrix Θp,m for pattern p and 
network output neuron m:

Q p m
m

M

p

P

�
��
�� �

,

11

. (7)

Summing the gradient sub-vectors ηp,m for pattern p and 
network output neuron m yields the gradient vector g:

g �
��
�� � p m
m

M

p

P

,

11

. (8)

(a) (b)

Fig. 1 Neural network architectures – (a) FCN / 2 inputs, 1 output and (b) ACN / 3 inputs, 2 outputs
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The number of patterns and outputs has no bearing on 
the size of the matrix Q, which is N × N.

The NBN algorithm, unlike the LM algorithm, directly 
calculates the matrix Q and vector g when the patterns are 
applied. As a result, the Jacobian matrix (J) does not need 
to be computed or stored [11]. The vector jp,m is calculated 
as the patterns are applied to achieve this. The Jacobian 
row for pattern p and network output neuron m is repre-
sented by this vector. The matrix Q and vector g can be 
updated using this vector as each pattern is applied using 
Eq. (9) and Eq. (10):

� p m p m
T

p m, , ,� j j  (9)

��p m p m p me, , ,� j . (10)

NBN combined with FCN and ACN architectures are 
chosen here due to their highly accurate capabilities in 
prediction, a fewer number of neurons in each network, 
less training time, and less memory consumption [7, 12, 
17, 18, 21]. Hence, the NBN training algorithm with for-
ward-backward computations has been used to predict the 
degradation levels of a machine component of a manufac-
turing system. Its analysis and results are discussed in the 
below sections.

4 Models design and implementation
4.1 Tools and software
Models were developed using a laptop with the following 
specifications: 

• Processor: Intel(R) Core (TM) i7-8750H CPU @ 
2.20 GHz (12 CUs), 2.2 GHz

• Memory: 12288 MB RAM.

The used training software is NBN trainer 2.08 devel-
oped based on the C++ programming language by Yu and 
Wilamowski [22], in addition to other statistical software 
for data pre-processing and data visualization.

4.2 Data
Failure datasets with high reliability are scarce [23]. Here 
in this study, a simulated dataset has been used to inves-
tigate the applicability of the ANN algorithms for deg-
radation modeling and prediction. The simulated dataset 
represents the degradation of a mechanical component, as 
depicted in Fig. 2. 

The assumptions for the data simulation process are 
based on Bagdonavičius and Nikulin's methods [23] for 
simulating (lifetime data) degradation models and degra-
dation characteristics from data with covariates. The data 

set includes the degradation of a single component, includ-
ing 6323 points (patterns). The failure occurs once the 
degradation measure exceeds the pre-set threshold of 0.3. 
Then the component is replaced with a new one, and the 
degradation starts from zero. The parameters in the deg-
radation dataset should be monotonic and trendy [23, 24]. 
This means that identification of the increasing or decreas-
ing trajectories of the parameters is needed. The data-
set was pre-processed; suspicious data and outliers such 
as the extremely deviated or non-monotonous values, if 
existing, were cleaned.

In the training process, it is essential to split the pri-
mary dataset into training and testing datasets to avoid 
overfitting and to check the performance of the trained 
models. According to Gholmany et al. [25], many recent 
studies indicated that the best training results are achieved 
when using 70–80% of the data for training and the 
remaining 20–30% for testing the models. The most com-
monly used split percentage is 80% for training and 20% 
for testing [25, 26]. 

Table 1 shows the main characteristics of the simulated 
degradation dataset.

4.3 Models evaluation
The developed models were evaluated using the sum 
squared error (SSE) statistical performance measure, 
as follows:

SSE � � �� �
�
� y yi i
i

n
2

1

, (11)

Table 1 Descriptive statistics of the simulated dataset

Total 
count Mean Standard 

deviation Min Max Range

6323 0.09445 0.09967 0.00000 0.37083 0.37083

Fig. 2 The overall degradation dataset
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where n is the number of patterns, ′yi  is the predicted 
value, and yi is the target value.

5 ANN design and implementation
The selected network architecture strongly affects the train-
ing success [27]; the use of the NBN algorithm could solve 
the problem of the inability to handle other types of archi-
tectures rather than the most common one (MLP) such as 
BMLP (Bridged multi-layer perceptron), FCN, ACN and 
multi-layer perceptron with linear neurons (MLPL) [28].

Thus, different numbers of neurons and two types of 
network architectures (FCN and ACN) were used to model 
and predict the degradation path.

Table 2 shows the used topologies and architectures for 
the developed models.

Random weights in the range of −1 to 1 are used to ini-
tialize the neural networks. The bipolar hyperbolic tangent 
(tanh) activation function symbolized as "mbib" is used 
for hidden layers (used by neurons), knowing that bipolar 
neurons have positive or negative outputs.

Likewise, the linear activation function "mlin" is used 
to be the output neurons, where linear activation functions 
are used if the desired output is larger than 1 [22]. Table 3 
shows the numbers of input patterns for the used train-
ing and testing datasets according to the 80% training and 
20% testing schema. Refer to Table 3 for more details.

The output of neuron j is defined as

out gain derj j jnet net� �� � � �tanh . (12)

As seen in Fig. 3, netj is the summation of the weighted 
inputs to neuron j and outj is the output of neuron j.

The "gain" and "der" are parameters of the activation 
functions. The parameter "der" is introduced to adjust 
the slope of the activation function, where the slope is 
approaching zero [22]. The activation functions' parame-
ters are "gain" and "der". When the slope of the activation 
function approaches zero, the parameter "der" is intro-
duced to adjust it [22].

These parameters are set to be gain = 0.50 and der = 0.01 
for the "mbib" neurons, while gain = 1.00 and der = 0.01 
for the "mlin" neurons.

The degradation measurements, which should be the 
output of the training, are normalized using the min-max 
normalization process using Eq. (13):

x b a
x x
x x

an
o� �� ��
�
�

�min

max min

, (13)

where the normalized value denoted by xn and the value to 
be normalized denoted by xo ; the minimum and maximum 
values of the range to be normalized to are a and b; xmax 
and xmin are the max and min range values from which xo 
has been normalized, knowing that the normalization pro-
cess speeds up learning and leads to quicker convergence.

6 Results and discussion
Table 3 shows the summary of the conducted experiments 
with the six ANN models presented above to predict the 
degradation path of the component.

The sum squared errors (SSE) of the training and test-
ing degradation data sets and using a different number of 
neurons for the six ANN models are depicted in Fig. 4.

The adequacy of the ANN models is validated using 
the SSE performance measure. The selected (close to opti-
mal) best-trained models are those with the least SSE. 
According to Table 3 and Fig. 4, model no. 3 (8 neurons - 
FCN) and model no. 6 (3 neurons - ACN) are the best-
trained models.

The NBN algorithm was able to train the network 
to a small error SSETraining = 0.000299 and 0.000204 for 
FCN and ACN, respectively. The results are acceptable 
with SSETest = 0.000101 and 0.000055 for FCN and ACN, 
respectively. 

Fig. 5 shows the training curve of the best two models.
Table 4 shows the training results: the success rate 

(success rate for multiple times training from 0–100%), 
the average number of iterations, and average time. From 
Table 3 and Table 4, it can be seen that the used NBN 
training algorithm is able to successfully train both FCN 
and ACN architectures and achieve significant results 
(low prediction error) with a fewer number of neurons and 
iterations. It is worth mentioning that the average training 
time of ACN is greater than FCN due to the complexity of 
such architecture.

Figs. 6 and 7 show the degradation path prediction 
results of models 3 and 6, respectively. It can be noticed 
that there is a high correlation between the target and pre-
cited values in both models (red and blue values). The "tar-
get-test dataset" is 20% of the whole simulated data set, 
which was used to test the accuracy of the trained models, 
as mentioned in Table 3. The "predicted-test dataset" con-
tains the predicted values by the trained model compared 
to the "target-test dataset", which are highly correlated due 
to the very low prediction error.
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Table 2 Topologies and architectures of the developed models

Model Type Topology ANN architecture

1 FCN
n 2 mbip 1

n 3 mbip 1 2
n 4 mlin 1 2 3

 

2 FCN

n 2 mbip 1
n 3 mbip 1 2

n 4 mbip 1 2 3
n 5 mbip 1 2 3 4

n 6 mlin 1 2 3 4 5

 

3 FCN

n 2 mbip 1
n 3 mbip 1 2

n 4 mbip 1 2 3
n 5 mbip 1 2 3 4

n 6 mbip 1 2 3 4 5
n 7 mbip 1 2 3 4 5 6

n 8 mbip 1 2 3 4 5 6 7
n 9 mlin 1 2 3 4 5 6 7 8

 

4 ACN

n 2 mbip 1
n 3 mbip 1 2

n 4 mbip 1 2 3
n 5 mbip 1 2 3

n 6 mbip 1 2 3 4 5
n 7 mbip 1 2 3 4 5 6
n 8 mbip 1 2 3 4 5 6

n 9 mlin 1 2 3 4 5 6 7 8

 

5 ACN

n 2 mbip 1
n 3 mbip 1 2

n 4 mbip 1 2 3
n 5 mbip 1 2 3

n 6 mlin 1 2 3 4 5

 

6 ACN
n 2 mbip 1
n 3 mbip 1

n 4 mlin 1 2 3
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Table 3 Summary - "training and testing" processes of the ANN models

Parameter ANN models

Architecture FCN FCN FCN ACN ACN ACN

Variable's normalization Min-max normalization

Hidden layers activation function mbib (tanh)

Output activation function mlin

No. neurons 3 5 8 8 5 3

No. nodes 4 6 9 9 6 4

Training algorithm NBN-forward backward

No. patterns / training (80%) 5058

No. patterns / test (20%) 1265

Error function Sum squared error (SSE)

Maximum error 0.001

Maximum no. iterations 50

SSE / training 0.000345 0.000919 0.000299 0.000280 0.000467 0.000204

SSE / test 0.000093 0.000228 0.000101 0.000083 0.000109 0.000055

Fig. 3 Neuron j connections

Fig. 4 SSETraining vs SSETest - FCN and ACN for all models

Fig. 5 Training curves of the best-trained models

Table 4 Training results

Success rate (%) Avg no. iterations Avg time (ms)

No. neurons FCN ACN FCN ACN FCN ACN

3 100 100 2.55 2.07 0.62 9.22

5 100 100 2.14 2.09 6.45 13.11

8 100 100 2.22 2.28 34.86 35.49
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7 Conclusion and future work
In this research work, different artificial neural net-
works were developed to model the degradation path of 
a mechanical component based on combinations of FCN 
and ACN architectures and a second-order Neuron-by-
Neuron (NBN) training algorithm with forward-backward 
computations. The ANN models were analyzed, com-
pared, and discussed. The results show that the used NBN 
training algorithm and the FCN and ACN architectures 
can precisely predict the degradation path of the machine 
component with a high correlation for the values of the tar-
get degradation path. Furthermore, the developed models 
can produce reasonable predictions with 3 and 8 neurons.

Results also confirmed the effect of choosing a proper 
architecture on the success of the training process. In addi-
tion, the use of ACN architecture combined with NBN con-
nects the network neurons arbitrarily; thus, a manufactur-
ing system (consisting of several independent machines) 
can be modeled easily despite its complexity by using this 
type of neural network. 

Future research work aims to develop advanced mod-
els (combination of ACN architecture and NBN training 
algorithm) and estimate the remaining useful life (RUL) of 
the components based on the historical degradation data. 
This type of prediction is the first step to developing a pre-
dictive maintenance framework (PdM), including a health 
monitoring and diagnosis system, failure detection, fail-
ure prediction, and failure identification algorithms to 
boost the maintenance planning and scheduling system 
and reduce downtimes and maintenance associated costs. 
More research opportunities could be addressed by utiliz-
ing this approach to develop probabilistic models which 
are able to predict the failure rate and the failure proba-
bility to be exploited in a discrete event simulation sys-
tem to improve the maintenance planning and schedul-
ing as required to be integrated into the industry 4.0 era. 
Moreover, extended comparative studies of the perfor-
mance of different training algorithms for such applica-
tions can be an opportunity for future research.
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