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Abstract

The dynamics of the 1.5-degree-of-freedom model of towed wheel is investigated. Dry friction at the king pin is considered, leading to 

a non-smooth dynamical system. Beyond analytical and numerical linear stability analysis, the nonlinear vibrations are investigated 

by numerical bifurcation analysis with smoothing and by numerical simulations with event handling. The effect of dry friction at 

the king pin on the birth of separated periodic branches is presented on bifurcation diagrams. The presence of bistable parameter 

domains is also shown. The effect of smoothing is investigated by comparing bifurcation diagrams of the smoothed and the original 

non-smooth systems.
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1 Introduction
Wheel shimmy, the lateral vibration of towed wheels [1–9] 
is under investigation in this study. This interesting phenom-
enon may cause serious accidents of motorcycles [10–11], 
trailers [12–15], articulated buses, airplane landing nose 
gears [16], shopping trolleys and even baby strollers.

Even though the shimmy phenomenon has been widely 
investigated in several studies, it has not been fully 
explored yet. One of the reasons is that the system of 
towed wheels is a complex dynamical system. The other 
reason is originated in the complicated nature of the 
wheel-ground contact. In this study, a single contact point 
model is used with a rigid caster, a rigid wheel and a lat-
erally elastic king pin. Studies show that having dampers 
is an effective technique to avoid wheel shimmy; however, 
dry friction at the king pin was not investigated in the lit-
erature yet. Therefore, in this study we aim to analyze the 
effect of the non-smooth nature of dry friction.

The rest of the paper is organized as follows. In Section 2, 
the mechanical model of the towed wheel is introduced 
together with the governing equations derived by the basic 
law of dynamics. In Section 3, analytical and numerical 
results of the linear stability analysis are presented. The non- 
linear analysis is performed and the effect of dry friction 

is shown in Section 4, using numerical bifurcation analy-
sis and numerical simulations. Numerical results and the 
effect of smoothing are presented in Section 5. We summa-
rize our results and give conclusions in Section 6.

2 Mechanical model and governing equations
The mechanical model of the towed wheel is shown in 
Fig. 1. The model consists of a rigid wheel with a sin-
gle contact point connected to a rigid caster with caster 
length l. The system is towed with constant velocity V in 
the X direction in the horizontal ( X, Y  ) plane. The mass 
and the rotation of the wheel is not taken into account, i.e., 
the rolling wheel is considered as a mass-less skate. It can 
be shown, that the kinematic constraint for the center point 
of the wheel is the same as for the rigid rolling wheel [17].
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Fig. 1 The mechanical model of shimmying wheel
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The overall mass of the system is m, the mass moment 
of inertia for the center of gravity C with respect to the 
axis of rotation Z is denoted by JC. The distance between 
the king pin A and point C is lC .The king pin is supported 
by a lateral spring with stiffness k and a lateral damping 
with damping factor b. Dry friction is also considered in 
the bearings of the king pin with the resultant torque Ms.

Since the speed of the king pin in the X direction is pre-
scribed, a geometric constraint manifests in the following 
equation:

X Vt X
A
� �

0
,  (1)

where XA is the X coordinate of the king pin and X0 relates 
to the initial state.

To describe the motion of the system, one can use the yaw 
angle ψ and the lateral position of the king pin q as general-
ized coordinates. As mentioned before, in our study we do 
not take into account the rotation of the wheel about its rota-
tional axis, which would be a so-called cyclic coordinate of 
the system when the pure rolling of the wheel is considered.

According to the kinematic constraint of pure rolling, 
the velocity of the center point of the wheel T is parallel 
to the caster, i.e.
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By means of a transport formula, this velocity can be 
calculated as:
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where vA is the velocity of point A, ω is the angular veloc-
ity of the caster and rAT is the position vector from point A 
to point T. Based on Eqs. (2) and (3):

v V l
T
cos sin ,� ��� �   (4)

v q l
T
sin cos .� ��� �   (5)

By performing algebraic manipulations with Eqs. (4) 
and (5), the velocity of point T can be calculated as:

v V q
T
� �cos sin ,� �  (6)

and the kinematic constraint of pure rolling can be formu-
lated as:

 q l V� �
cos

tan .
�
� �  (7)

The free body diagram of the wheel-caster system, 
modelled as a mass-less skate, can be seen in Fig. 2. 
The lateral spring force can be calculated as Fs = kq, the 
lateral damping force as Fd = bq̇. The dry friction at the 
king pin is taken into account with the non-smooth nature 
of torque Ms = −M0 sgn ψ. Note that a more complex fric-
tion model could also be investigated instead of this sim-
ple Coulomb-friction law. Since the aim of this study is to 
gain basic knowledge about the non-smooth nature of dry 
friction at the king pin of shimmying wheels, this assump-
tion is reasonable. The study can be later expanded with 
more complex friction laws.

The equations of motion can be derived by using the 
basic law of dynamics:

ma F FXC A T
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From Eq. (9), the constraining force at point T can be 
expressed as:
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from Eq. (8), the longitudinal constraining force at the 
king pin is:
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The velocity of the center of gravity can be calculated as:
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Thus, the acceleration of point C is:
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Substituting the above calculated accelerations and 
forces into Eq. (10) leads to the following second-order 
differential equation:

̇
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The first and second derivatives of the lateral position 
q can be expressed with ψ, Ω and Ω, i.e. q̇ = q̇(ψ, Ω) and 
 
 

q̈ = q̈ (ψ, Ω, Ω) therefore q̇ is not a state variable anymore. 
By substituting q̇ and q̈ into Eq. (15), we obtain:

J ml mll m l m l

m l V m

C C C
� � �

�

�
�

�

�
� �

� �

2

2

2

2

3

2

3

2
cos

sin

cos

cos

�
�

�
�
�

�

 

ll
V b l

k l q b l V M

C

s

cos cos

cos

sin

cos
.

� �
�

�
�
�

�
�

�
�

�

�
�

� � � �

2

2

2
0



 (16)

This together with Eq. (7) provide the governing equations 
of our system. Thanks to the considered frictional torque at 
the king pin, the mathematical model of the system is non-
smooth for M0 ≠ 0. We introduce and rewrite the governing 
equations into a system of first order differential equations 
(Eqs. (17)–(19)):
� � �,  (17)
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Fig. 2 The free body diagram of the mechanical system
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Since the system of equations of motion (Eqs. (17–19)) 
consists of three first-order differential equations, the state 
space is three-dimensional and thus, the mechanical mod- 
el has 1.5 DoF. The vector of state variables is:

x � � �� q � T
.  (20)

3 Linear stability analysis
For linear stability analysis of the rectilinear motion, the 
equations of motion are linearized around the trivial solu-
tion x(t) ≡ 0. The linearized governing equations for the 
dry friction-free case (M0 = 0) can be written as:

x Ax= ,  (21)

with coefficient matrix:
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where the mass moment of inertia for the center point of 
the wheel T with respect to the axis of rotation Z is:

J J m l l
T C C
� � �� �2 .  (23)

Using the exponential trial solution of the system, the 
characteristic equation can be obtained as:
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The linear stability can be investigated by the Routh-
Hurwitz criteria [18]. The so-called Routh-Hurwitz matrix 
has the form:
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The rectilinear motion is linearly stable if each princi-
pal minor of the Routh-Hurwitz matrix is positive:
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H a
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H H a
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0� � .  (28)

Unfortunately, no closed-form formula can be calcu-
lated for the damped case. However, if the lateral damp-
ing is neglected, namely b = 0, the stability criteria can 
be simplified to the following three conditions: l > lC, 
l J ml ml� �� � � �C C C

2  and l > 0. All in all, the strictest cri-
terion means that the rectilinear motion is linearly stable if 
the caster length is larger than the critical value lcrit, namely:

l l
J ml
ml

� �
�crit C C

C

2

.  (29)

Note that for this undamped case, the critical caster 
length does not depend on the towing speed, which is 
against our physical sense.

On the other hand, linear stability can be analyzed nu- 
merically in the damped case too. The critical caster length 
for the damped case is shown for different towing speeds 
in the stability chart of Fig. 3 together with the analytical 
result of the undamped case. The parameter values of the 
system are summarized in Table 1.

In the linear stability chart of Fig. 3, the light gray and 
the white areas correspond to the linearly unstable and 
stable rectilinear motions for the undamped case, respec-
tively. The dark gray area corresponds to the linearly 
unstable rectilinear motion for the damped case.

As can be seen in Fig. 3, the rectilinear motion is stable 
for all towing speeds if the caster length is slightly above 

0.015 m. For the investigated caster length l = 0.015 m 
(indicated by the horizontal black dashed line), the recti-
linear motion is unstable approximately between 2.14 m/s 
and 7.83 m/s, see the stability boundaries (i.e., the Hopf 
bifurcation points) plotted with red dots.

4 Nonlinear analyses
In nonlinear systems, some phenomena may be undiscov-
ered if only linear stability analysis is performed. Due to 
the complexity of the non-smooth nature originated in dry 
friction, the nonlinear analysis of the shimmying wheel 
needs special attention. As a first step, the non-smooth 
nature is omitted by using a smoothing function, and we 
perform numerical bifurcation analysis with a Matlab 
package called DDE Biftool [19], which tracks the periodic 
solutions with collocation, using the pseudo-arclength 
method. As a second technique, we do numerical simula-
tions with event detection to handle the non-smoothness of 
the original system and verify the results. 

Based on the characteristics of the dry friction (Ms = 
−M0 sgn  Ω), there is a qualitative change in the dynamics 
when Ω = 0. Hence, it is the switching surface of the non-
smooth system.

4.1 Numerical bifurcation analysis with smoothing
To handle the non-smooth characteristic of the friction 
torque Ms, a smoothed step-function can be formulated as:

H �
�� � � �
�
�

�
�
�tanh ,


 (30)

with smoothing parameter ϵ. The smoothness depends on 
the smoothing parameter, i.e., the smaller the value of ϵ is, 
the more sudden the switching is. Using the above men-
tioned function, the torque originated from dry friction is 
considered as:

M M H
s
� � � �0

� .  (31)

By implementing the governing equations into Matlab, 
numerical bifurcation analysis is performed with the help 
of DDE Biftool [19]. Namely, Hopf bifurcations at the lin-
ear stability boundaries are located and the emerging peri-
odic solutions are followed using continuation.

Bifurcation diagrams for the amplitude Ωmax of the yaw 
rate are plotted versus the towing speed V, see Fig. 4. In the 
bifurcation diagrams, the stable and the unstable rectilinear 
motion are marked with thin solid blue and dashed red lines, 
respectively. The stable and the unstable branches of periodic 
orbits are depicted with thick solid blue and thick dashed 

Table 1 Parameter values of the system

Notation, unit Parameter value

m [kg] 0.0672

l [m] 0.015

lC [m] 0.012

JC [kg m2] 3.48 × 10−6

k [N/m] 1000

b [Ns/m] 0.5

l crit(b = 0)

linearly unstable (b=0)

linearly stable

linearly unstable (b>0)

l 
[m

]

V [m/s]

Fig. 3 Linear stability chart for the undamped and the damped cases
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red curves, respectively. Fold bifurcations of periodic orbits 
are marked by white circles, while red circles refer to Hopf 
bifurcations at the linear stability boundaries. Some parame-
ter points are also plotted for which the time histories of peri-
odic motions are shown in Section 5. Note that the bifurca-
tion diagrams are only shown for the yaw rate, but they could 
be depicted for the other state variables, as well.

For the parameter setup specified in Table 1, the recti-
linear motion is linearly unstable approximately between 
2.14 m/s and 7.83 m/s, see panel (a) of Fig. 4. This agrees 
with the result of the linear stability analysis described 
in Section 3. At the linear stability boundaries, the Hopf 
bifurcations are subcritical, that is, unstable periodic orbits 
emerge from the Hopf-points. Unsafe bistable parameter 
ranges can be also seen, where stable stationary rolling and 
large amplitude stable oscillations coexist. This means that 
for small perturbations, the oscillations decay but for large 
enough perturbations large amplitude vibrations occur.

In the presence of dry friction (namely for M0 > 0), a so- 
called isola is born, i.e., a separated periodic branch can be 
discovered over the stable rectilinear domain, see panels 
(b)–(e) of Fig. 4. This means that the stationary rolling is 
stable for all towing speeds, but shimmy motion may still 
occur. The importance of nonlinear analysis is justified by 
the fact that the existence of such isolas cannot be shown 
with linear analysis.

The greater the value of M0 is, the smaller the size of the 
isola is, see panel (e) of Fig. 4. Consequently, the domain 
of attraction of the rectilinear motion is also larger. For 
the investigated parameter values, the isola vanishes when 
M0 = 0.10835 Nm, and the rectilinear motion becomes the 
only stable solution within the state space.

4.2 Numerical simulations with the non-smooth nature 
of the system taken into account
For the numerical simulations, the ODE45 Matlab routine 
was used with initial conditions:

x t �� � � � �0 0 0
0

� T
,  (32)

which refer to an impact-like perturbation of the sys-
tem. This initial condition is chosen due to the fact that 
it can be easily realized in experiments. The simulations 
are run for 50 different initial yaw rate values (namely, 
1 rad/s < Ω0 < 1000 rad/s) and for 50 different towing 
speed V values (namely, 0 m/s < V < 12 m/s). In case of 
M0 > 0, the non-smooth nature of the system is taken into 
account by event handling. Namely, the sign of the yaw 
rate Ω is investigated and two kind of events are detected: 
when Ω becomes positive and when Ω becomes negative.

Since for parameter values described in Table 1, the 
transient vibrations die out typically in 5 s, a maximum 
simulation time of 10 s is set for each simulation. In addi-
tion, if the tendency in the time histories of the yaw angle 
or the yaw rate clearly shows where the solution is con-
verging, the simulation is stopped in order not to waste 
computational time for simple cases. To detect the events 
with a larger precision, a tolerance Ωtol = 10−2 rad/s is 
used, and the time step of the simulation is reduced close 
to the switching surface Ω = 0 until the achieved toler-
ance is reached. At the end of each simulation, the max-
imum amplitude of the yaw rate is determined based on 
the time graphs. Namely, if the solution converges to the 
large amplitude vibrations, the amplitude of the last cou-
ple of periods of the solution is read out. If the solution 
converges to the stable rectilinear motion, zero amplitude 
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Fig. 4 Bifurcation diagrams for the amplitude Ωmax of the yaw rate for different dry friction values: (a) M0 = 0; (b) M0 = 0.0001 Nm; (c) M0 = 0.001 Nm; 
(d) M0 = 0.01 Nm; (e) M0 > 0.01 Nm
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is noted. On the 50 × 50 mesh of the towing speed and 
the initial yaw rate, the boundary between the domain of 
attraction of the stable periodic solution and the domain of 
attraction of the rectilinear motion can be depicted.

The results of the numerical simulations can be seen in 
Fig. 5. For different amount of dry friction, the thick black 
curve shows the boundary between the domain of attrac-
tion of the stable periodic solution (see the gray areas) and 
the domain of attraction of the stable rectilinear motion 
(see the white areas). The amplitudes of the stable limit 
branches are marked with black pluses.

On the one hand, large amplitude oscillations may ap- 
pear even for small perturbations for M0 > 0, see panels 
(b)–(e) of Fig. 5. On the other hand, dry friction helps in 
a way that the domain of attraction of the stable rectilin-
ear motion gets larger for larger values of M0. The gray 
area disappears abruptly at approximately M0 = 0.073 Nm. 
Note that the numerical simulation results are only shown 
for the yaw rate, but they could be depicted for the other 
state variables, as well.

5 Results and comparison
In Fig. 6, the amplitudes of the stable limit cycles obtained 
by the numerical simulations and the boundary of the 
domain of attraction are plotted with black pluses and with 
a solid black curve, respectively. The stable and unsta-
ble branches of periodic orbits obtained by the numeri-
cal bifurcation analysis of the smoothed system are also 
shown with thick solid blue and thick dashed red curves, 
respectively. The two types of results differ signifi-
cantly for higher towing speeds. Namely, the Fold point 
at approximately 11 m/s does not coincide with the point 
which separates the boundary of the domain of attraction 
and the stable limit cycle.

In Fig. 6, the results are depicted for the dry friction free 
case. Similar discrepancy can be observed here, hence, the 
difference may not be originated in the smoothing, but it is 
resulted by the fact that the initial condition used in the sim-
ulations may not be located on the center manifold of the 
nonlinear system. Namely, for M0 = 0, the tangent of the cen-
ter manifold [20] can be calculated based on the eigenval-
ues and the eigenvectors of the linearized system. The initial 
condition given by Eq. (32) does not fit to this tangent plane. 
The domains of attraction presented in Fig. 5 relate to a cer-
tain section of the state space while amplitudes in Fig. 4 cor-
respond to the limit cycles belonging to the center manifold.

The numerical simulation and bifurcation analysis results 
are also compared for M0 = 0.01 Nm, see Fig. 7. A qualita-
tive agreement can be seen, i.e., a separated periodic branch 
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coexist with the stable rectilinear motion. As mentioned 
above, the unstable periodic orbit obtained by the bifurca-
tion analysis differs significantly from the boundary of the 
domain of attraction shown with the black curve.

For parameters points A, B, C and D marked in Fig. 4, 
the stable and unstable oscillations of the yaw angle ψ (t ), 
the lateral displacement of the king pin q (t ) and the yaw 
rate Ω(t ) are plotted versus time t ϵ [0, T] with solid blue 
and solid red curves respectively, see Fig. 8. Here, T is 
the time period of the periodic solutions, namely T = 1 / f 
where f is the vibration frequency. The dry friction, the 
towing speed, the maximum values of the state variables 
and the vibration frequencies f for parameter points A, B, 
C and D are summarized in Table 2.

In case of M0 = 0.01 Nm (see panel (D) in Fig. 8), we are 
not close to the switching manifold, i.e., the yaw rate Ω 
does not stay in the vicinity of zero. Therefore, these time 
graphs confirm that the difference in the results of the two 
methods are not originated in the smoothing.

In panel (a) of Fig. 9, the time graphs obtained by 
the two different methods are compared to each other 
for parameter point A. The stable oscillations obtained 
by the numerical simulations of the non-smooth system 
and the bifurcation analysis of the smoothed system are 
marked by solid blue curves and black stars, respectively. 
The two methods give qualitatively the same results, but 

some discrepancy can be observed, which may result 
from the numerical errors of the two methods. The rel-
ative errors are calculated based on the difference of the 
signals and the amplitude of the limit cycle. As can be 
seen in Fig. 9(b), they do not exceed 2%.

Note that the periodic motion has similar characteris-
tics as in [5], but the vibration frequencies are somewhat 
larger. However, for the parameter setup in investigation, 
larger vibration frequencies can be feasible for the vibra-
tion amplitudes summarized in Table 2.

Table 2 Results for the parameter points, obtained by the numerical bifurcation analysis of the smoothed system

# M0 [Nm] V [m/s] ψmax [rad] qmax [m] Ωmax [rad/s] f [Hz]

A 0 2.0 1.39 0.089 795 22.8

B 0 0.8 0.79 0.014 211 28.9

C 0 9.7 0.35 0.015 100 40.0

D 0.01 5.1 0.39 0.011 103 36.9
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