
6|https://doi.org/10.3311/PPme.22045
Creative Commons Attribution b

Periodica Polytechnica Mechanical Engineering, 68(1), pp. 6–17, 2024

Cite this article as: Yadav, M., Singh Yadav, R., Makinde, O. D., Mathur, P. "Lattice Boltzmann Simulation of Incompressible Fluid Flow in Two-sided 
Converging and Diverging Lid-driven Square Cavity", Periodica Polytechnica Mechanical Engineering, 68(1), pp. 6–17, 2024.
https://doi.org/10.3311/PPme.22045

Lattice Boltzmann Simulation of Incompressible Fluid Flow in 
Two-sided Converging and Diverging Lid-driven Square Cavity

Mahendra Yadav1, Rajendra Singh Yadav1*, Oluwole Daniel Makinde2, Pankaj Mathur3

1 Department of Mathematics, University of Rajasthan, JLN Marg, 302004 Jaipur, Rajasthan, India
2 Faculty of Military Science, Stellenbosch University, 7602 Matieland, P.O.B. X1, South Africa
3 Department of Mathematics, Government College, Baheer Road, 304001 Tonk, Rajasthan, India
* Corresponding author, e-mail: rajendrauor@gmail.com

Received: 12 February 2023, Accepted: 18 December 2023, Published online: 01 February 2024

Abstract

The present study focuses on the predictions of flow behavior, streamlines and some other factors of a two adjacent-sided converging 

and diverging lid-driven square cavity filled with fluid. In the diverging case, the top wall of the cavity is considered to be in motion 

from left to right, and the left wall is considered to be in motion from top to bottom simultaneously with identical speeds. It is 

found that for a low Reynolds number, the flow behavior seems to be symmetric with respect to one of the diagonals of the cavity, 

and at a critical Reynolds number 1121, the symmetry of the flow behavior blows up, and an asymmetric form is obtained due to the 

increased inertia and turbulence effects. Any increment in the Reynolds number above the critical Reynolds number develops this 

asymmetry gradually more and more. In the second phenomenon, the converging phenomenon, the top wall of the cavity is assumed 

to be in motion from left to right, and the right wall is assumed to be in motion from bottom to top simultaneously with identical 

speeds so that they converge at the corner of the cavity. This case gives rise to two critical Reynolds numbers Re = 969 and Re = 2053 

and the flow behavior for both asymmetric states was found to be opposite. Furthermore, the rate of convergence of the present 

methodology, lattice Boltzmann methodology, for various Reynolds numbers is found to be very high except for the critical and their 

nearby Reynolds numbers.
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1 Introduction
The study of numerical simulations of Navier-Stokes equa-
tions has been a versatile topic of interest among research-
ers for the past century. Many numerical approaches have 
succeeded so far in simulating Navier-Stokes equations 
under certain limiting conditions. The analytic solutions 
of Navier-Stokes equations are still the most significant 
undiscovered problem in the history of fluid dynamics. 
The present work uses the application of the Navier-Stokes 
equation in the form of a vorticity-streamline function to 
simulate and validate two adjacent-sided lid-driven square 
cavities using the lattice Boltzmann approach.

The lid-driven square cavity problem is an all-time pre-
ferred problem for testing and validating new numeri-
cal methodologies. Many studies in the field of the one-
sided lid-driven square cavity and two-sided (parallel and 
anti-parallel) lid-driven square cavity have been carried out 

experimentally and numerically. Aidun et al. [1] interpreted 
the global stability of single-sided lid-driven cavity flow. 
Later, Shankar and Deshpande [2] compared the experimen-
tal and computational results for one-sided lid-driven cav-
ity flow. In which they computed corner eddies, longitudi-
nal vortices, non-uniqueness, transition, and turbulence of 
the flow. Wahba [3] discussed the behavior of two-sided and 
four-sided lid-driven cavity flow for low Reynolds numbers 
using the finite difference method, and concluded that the 
choice of the sweeping direction line determines the solu-
tions' state. Mendu and Das [4] simulated lid-driven cavity 
flow with a periodically oscillating lid. Biswas and Kalita [5] 
gained some physical insights of the topology of corner vor-
tices in 2D vis a 3D vis driven cavity. Dalai and Laha [6] 
interpreted the conservative solutions of Navier-Stokes 
equations (NSEs) in the stream function-vorticity form. 
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Sikdar et al. [7] discussed the inertia effect at different mov-
ing lengths of the top lid. However, all these studies were 
based on the traditional numerical methods.

Abedini et al. [8] addressed a new computational 
technique for NSEs with time-fractional order in the 
Caputo sense. Álvarez Hostos et al. [9] proposed a cou-
pled improved element free Galerkin reduced integration 
pentaly method (IEFG-RIPM) to simulate steady state lid 
driven cavity phenomenon. Azzouz and Houat [10] numer-
ically demonstrated the fluid flow inside a three-sided lid 
driven square cavity. They used the finite volume method 
on a fine mesh resolution with pressure-velocity coupling. 
Patel et al. [11] performed a different kind of study using 
the same finite volume method on a four-sided lid driven 
square cavity. Turkyilmazoglu [12] divided the upper wall 
into two parts of equal lengths. The right part of the wall 
is left for freely to move with constant velocity whereas 
left part of the wall is attached with an adjacent wall to 
maintain its velocity. Zhang et al. [13] used the lattice 
Boltzmann method (LBM) to study the fluid flow struc-
tures in multi sided lid driven sqaure cavities for eight dif-
ferent cases. The results found to be very much accurate 
comparing to the exiting literatures and that proves the 
robustness and accurateness of the LBM technique.

Therefore, the quality of being a highly accurate 
method proves the importance of the lattice Boltzmann 
method over traditional computational methods in vari-
ous literature. Due to its simplicity and easy implemen-
tation, the lattice Boltzmann method (LBM) has become 
a well-liked and widely used computational fluid dynam-
ics (CFD) simulation tool. This method is based on the 
macroscopic model and uses the kinetic theory of gases 
to develop mesoscopic equations for particle distribution 
function [14–16], which makes this method to be macro-
scopically accurate and hence, this method directly sim-
ulates the behavior of fluid flow instead of solving mac-
roscopic equations. Initially, this method originated from 
the theory of lattice gas cellular automata (LGCA) by 
Hardy et al. [17, 18] for hydrodynamic models (also known 
as HPP models). After a decade, Frisch et al. [19] derived 
a hexagonal grid model (FHP model), which uses six or 
seven velocities (one is at rest) to reach neighboring nodes, 
to acquire the correct Navier-Stokes equations. Chen 
et al. [20] obtained the correct Navier-Stokes equations 
through the pressure corrected lattice Boltzmann equation. 
He and Luo [21, 22] obtained lattice Boltzmann equation 
explicitly by the discretization of continuous Boltzmann 

equation in both time and phase space, and that is how this 
methodology was developed. This LB method has been 
successfully demonstrated for the many applications of 
fluid flows so far, such as complex and turbulent flows, 
Rayleigh-Taylor instability between two fluids, multiphase 
flows, porous media flow, viscoelastic fluid flows, mag-
neto hydrodynamics, etc.

The Lattice Boltzmann Method is a two-step method: 
streaming and collision. In streaming, particles propa-
gate from one lattice site to another, and then collision 
takes place. Many approximations for the collision pro-
cess have developed in the theory of the Lattice Boltzmann 
method [14]. The simplest and most used approximation for 
the collision operator is the LBM-BGK [23] approximation, 
which is based on a single relaxation time (SRT) scheme.

This article chooses two-adjacent-sided diverging and 
converging lid-driven square cavities to study fluid behav-
ior at various Reynolds numbers and their properties. 
Lattice Boltzmann method (LBM) with a single relax-
ation time scheme is adapted for simulation with a two-di-
mensional nine velocities (D2Q9) square model, and the 
bounce-back boundary conditions are introduced for the 
moving walls as well as for the stationary walls.

2 Problem statement
The schematic diagram of the two adjacent-sided diverg-
ing lid-driven square cavity and two adjacent-sided con-
verging lid-driven square cavity with appropriate bound-
ary conditions are shown in Figs. 1 and 2. In the diverging 
case (Fig. 1), the walls diverge from point A and in the con-
verging case (Fig. 2), the walls are considered to be con-
verging at point B. The other non-moving two walls are 
kept stationary in both cases. Initially, at t = 0, the veloc-
ity components (u, v) are chosen to be zero at all grid 
points except on the boundaries for the cavity. Moreover, 

Fig. 1 Two adjacent-sided diverging lid-driven square cavity
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a uniform incompressible fluid flow is considered for both 
phenomena, which is governed by the following Navier-
Stokes (N-S) equations (Eqs. (1)–(3)):
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where u, v are the velocity components, ρ refers to fluid 
density, p is pressure, and ϑ refers to the kinematic vis-
cosity. Additionally, for incompressible 2D flows, the 
above mentioned N-S equations can be simplified in 
terms of stream function (ψ) and vorticity (ω) as depen-
dent variables. The vorticity (ω) at any point in the 
plane is expressed as � � ��u.  Here u = uî + vĵ + wk̂ . 
For x-y plane, � �� � � � � � � �� �k v x u y .  Moreover, 
for 2D incompressible fluid flows (x-y plane), we define 
a scalar function (ψ), which identically satisfies the conti-
nuity Eq. (1) as u � ��� k.  This gives us u = ∂ψ/∂y and 
v = −∂ψ/∂x. Now, by differentiating Eqs. (2) and (3) and 
using the above definitions, the Navier-Stokes equations in 
the form of a vorticity-streamline function, under steady-
state conditions, can be expressed as:
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where Re = uy/ϑ is the Reynolds number and (u, v) are the 
velocity components of the macroscopic velocity.

3 Numerical methodology
3.1 Lattice Boltzmann method with BGK 
approximation
The present study uses the lattice Boltzmann (LB) tech-
nique [25–27] with the D2Q9 model to simulate the flow 
field behavior. This technique is based on a mesoscopic 
approach and relies on the theory of the particle distri-
bution function, which numerically solves the equation 
of kinetic theory for the particle distribution function 
f (x, c, t), where x denotes the particle's location with lat-
tice velocity c at time t. Generally, the LB equation [15] 
is solved in two key steps: streaming and collision. In the 
first step, fluid particles move along the lattice links with 
specific lattice velocities. Then collision of fluids parti-
cles and their redistribution is followed in the second step. 
The evolution equation for the lattice Boltzmann method 
is defined as follows in Eq. (6):
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where fα is the particle distribution function at lattice node 
xα with lattice velocity or discrete particle velocity cα. 
Ωα is the collision operator. The collision operator Ωα can 
be simplified by Bhatnagar-Gross–Krook (BGK) approx-
imation [23] based on a single relaxation time (SRT) 
approximation. The accuracy of the LBGK model is of 
second order in both space and time. The discretized form 
of Eq. (6) with BGK approximation can be written as:
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where τ is referred as the relaxation time and f x teq
� ,� �  as 

the equilibrium distribution function.

3.2 Two-dimensional nine velocity (D2Q9) square 
lattice model
As shown in Fig. 3, the D2Q9 model uses a square lattice 
in which each node point has eight neighbors connected by 
eight lattice links. The fluid particles stream via these lat-
tice links to neighbor nodes with given lattice velocity or 
discrete particle velocities. The zero location in the above 
figure refers to the zero lattice velocity, which means the 
fluid particle does not move anywhere inside the lattice. 
Moreover, the discrete particle velocities for the D2Q9 
square lattice model are defined as follows in Eq. (8):

̂

̂

Fig. 2 Two adjacent-sided converging lid-driven square cavity
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where c = Δx/Δt is the lattice speed.
The recovery of the Navier Stokes equation for the 

LB equation can be ascertained by following these two 
relations between macroscopic and microscopic states, 
obtained by Chen at al. [20].
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The pressure can be directly calculated from here using 
P cs� � 2

,  where cs � �1 3  is the speed of sound. Further, 
the equilibrium distribution function, given by Maxwell-
Boltzmann, which is expressed as Qian et al. [24]:
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where wα denotes the weights for the D2Q9 model.
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Using the Chapman-Enskog analysis [14], the kine-
matic viscosity of the fluid can be related to the relaxation 
factor as:
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3.3 Boundary conditions
The need for the boundary conditions in the numerical 
simulations of any physical fluid dynamics phenomena is 
as essential as the need for carbon dioxide in the trees. 
As there are many sources of carbon dioxide for the trees, 
there are several types of boundary conditions for the 
LBM in the same manner. In the present study bounce-
back scheme is employed on the stationary and non-sta-
tionary walls [16]. In this scheme, when a fluid particle 
hits the stationary wall, it streams back in the opposite 
direction, and when it hits the moving wall, it streams 
back carrying a small amount of momentum. For a sta-
tionary bottom wall of the cavity, it is defined as:

f f f f f fn n n n n n2 4 1 5 7 1 6 8 1, , , , , ,
, , .� � �� � �  

3.4 Skin friction coefficient and kinetic energy density 
function
The non-dimensional form of skin friction coefficient for 
moving horizontal and vertical walls is calculated as:
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respectively. Here U and V are the non-dimensional hor-
izontal and vertical components of velocity, respectively. 
Subscripts H and V denote to the skin friction coefficient 
on the horizontal and vertical solid walls, respectively. 
Furthermore, the kinetic energy density function for 
inserted fluid inside the cavity is calculated as:

E U V
i j

� �� ��1
2

2 2

,

.  

Fig. 3 Two-dimensional nine-velocity (D2Q9) model for lattice 
Boltzmann method
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4 Numerical experiments
4.1 Grid independence test
To select an optimum grid for the numerical simulations 
of the present phenomenon, the authors have carried out 
a study of horizontal velocity profile and vertical veloc-
ity profile with vertical centerline and horizontal center-
line, respectively, for a one-sided lid-driven cavity for 
four different types of grids 51 × 51, 101 × 101, 151 × 151, 
201 × 201. The obtained results are displayed in Fig. 4. 
It is highlighted from Fig. 4 that both the velocity profiles 

obtained with grids 101 × 101, 151 × 151, and 201 × 201 
are almost identical, whereas the velocity profiles obtained 
with grid size 51 × 51 are slightly deviated at some places 
compared to the other three higher-order grids. Hence, 
in view of computational cost, a grid size 101 × 101 is 
selected for all further simulations. 

4.2 Validation of the code
To verify the present methodology, a comparison of the 
horizontal and vertical velocity profiles have been carried 
out with the existing literature by Ghia et al. [28] for a one-
sided lid-driven square cavity (Fig. 5). The Reynolds num-
ber and the grid size are chosen to be 400 and 101 × 101 
for the comparison. One can conclude that the results 
obtained with the present methodology are in remarkable 
agreement with the existing ones, which shows the present 
methodology's accuracy.

5 Results and discussion
Numerical simulations are carried out to examine the 
behavior of fluid flow formed by two adjacent-sided lid-
driven square cavities. Inside the cavity, the inserted fluid 
has kinematic viscosity and density around 10−6 m2/sec 
and 1000 kg/m3 at 20 °C respectively, but when we intro-
duce matching principle between the physical domain and 
the lattice domain [15], the lattice kinematic viscosity 
calculates to be 0.01. The Reynolds number is varied for 
a wide range starting from 100. All the results are simu-
lated up to an accuracy of 10−8 using the following relative 
error condition:
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q i j
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where qn(i, j) denotes the net velocity of the fluid particle at 
(i, j) coordinate and at the time step tn = nΔt.

5.1 Two adjacent-sided diverging lid-driven square 
cavity
The geometry of the two-adjacent-sided lid-driven square 
cavity is shown in Fig. 1. The fluid flow is driven by the 
top wall being moved rightwards and the left wall being 
moved downwards simultaneously with identical speeds. 
The streamlines for various Reynolds numbers for the pres-
ent phenomena are plotted in Fig. 6. It is noted that stream-
lines for Re = 100, 400, and 1000 are found to be symmetric 
with respect to one of the diagonals of the cavity, and this 

Fig. 4 Grid independence test for; (a) Horizontal velocity at vertical 
centerline for Re = 400 at various grid sizes; (b) Vertical velocity at 

horizontal centerline for Re = 400 at various grid sizes

(a)

(b)
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symmetry is preserved up to a maximum Reynolds num-
ber of 1120 (Fig. 6 (d)). At a critical Reynolds number of 
Re = 1121 (Fig. 6 (e)), the streamlines start to tend to obtain 
an asymmetric form, and this asymmetry in flow develops 
continuously further with the increment of the Reynolds 
number (Fig. 6 (f)–(i)). At Re = 2500, the asymmetry 
becomes so high that among the two primarily counter-ro-
tating vortices, one primarily vortex dominates the flow 

region (Fig. 6 (j)), whereas, in the case of a low Reynolds 
number (near Re = 1120), such phenomenon is lesser.

There are two reasons behind the development of this 
asymmetry:

1. The turbulence flow starts to develop with the 
increase of Re;

2. The inertia effect, due to the motion of fluid particles, 
is increased to a great extent dominating over vis-
cous nature of fluid at the higher Reynolds number.

Re = 1121 is such a critical Reynolds number where the 
flow starts to take asymmetric form because of these two 
reasons. Moreover, at Re = 100 (Fig. 6 (a)), only two primar-
ily counter-rotating vortices appear, whereas, for Re = 400 
or higher (Fig. 6 (b) and (c)), two secondary vortices can 
also be seen developing at the right bottom of the cavity. 
It is informed that a dark diagonal black line in the stream-
line plots up to Re = 1121 is manually drawn. That line 
should not be considered a streamline because that line is 
drawn to represent only symmetry.

We know that due to the existence of large velocity 
gradients near the solid moving walls, the frictional force 
gets generated. In fluid dynamics, this frictional force is 
expressed in terms of skin friction coefficient. Table 1 rep-
resents the distribution of total skin friction coefficient for 
horizontal top wall and vertical left wall. Initially, we note 
that the total skin friction coefficient at the top and left 
wall are identical and it remains identical until the sym-
metry of streamlines breaks down. At Re = 1121, the two 
values of total Cf start to alter, and the primary vortex 
starts to dominate inside the cavity resulting in a shrink 
of another vortex at the left wall, which induces the large 
velocity gradients near the left wall.

Hence an increased frictional force can be observed 
from Table 1 above Re = 1121 near the left wall. Table 1 
also shows the distribution of the total kinetic energy den-
sity function, which can be used as verification of mathe-
matical models. In the present study, the Reynolds number 
is increased by increasing the lid velocities and keeping 
viscosity constant. Therefore, whenever Reynolds number 
is increased, fluid particles start to accelerate inside the 
cavity, and this acceleration of particles boosts the over-
all kinetic energy, which can be illuminated from Table 1.

Fig. 7 displays the convergence rate of the present meth-
odology for various Reynolds numbers for the present phe-
nomena. Note that this convergence rate is not displayed 
for all those Reynolds numbers which were chosen above 

Fig. 5 Velocity profiles for code validation at the grid size 101 × 101 for 
Re = 400; (a) Horizontal u-velocity; (b) Vertical v-velocity

(a)

(b)
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Fig. 6 Streamlines of fluid flow inside the two adjacent-sided diverging lid-driven square cavity at various Reynolds numbers; (a) Re = 100; 
(b) Re = 400; (c) Re = 1000; (d) Re = 1120; (e) Re = 1121; (f) Re = 1125; (g) Re = 1200; (h) Re = 1500; (i) Re = 2000; (j) Re = 2500

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)
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to obtain flow behavior that is due to the overlapping of 
the graphs of some Reynolds numbers, but that should not 
be an issue because a well accurate convergence rate be 
shown in the Fig. 7 (a).

The results are displayed on a logarithmic scale for 
both the axes, and the plotting is carried out between the 
required number of time steps and the desired accuracy. 
The higher the number of time steps required to achieve the 
desired accuracy refers to the lesser methodology's conver-
gence rate. It is concluded that the number of time steps 
required to achieve the desired accuracy for Re = 100 is 
minimum. In other words, the convergence rate of Re = 100 
is maximum, and with the increase of the Reynolds num-
ber, the convergence rate starts to reduce, and at the critical 
Reynolds number, it becomes minimum (Fig. 7 (b)). 

But, after surpassing the critical Reynolds number, the 
converse process starts to take place, i.e., now, with the 
increment of the Reynolds number, the convergence rate 
also starts to increase, and for the Re = 2000, the conver-
gence rate eventually becomes almost equal to the conver-
gence rate of Re = 1000.

5.2 Two adjacent-sided converging lid-driven square 
cavity
The geometry of the two-adjacent-sided converging lid-
driven square cavity is shown in Fig. 2. The fluid flow is 
driven by the top wall being moved rightwards and the 
right wall being moved upwards simultaneously with iden-
tical speeds so that they seem to converge at point B of 
the cavity. The streamlines for various Reynolds numbers, 
starting from 100, are displayed in Fig. 8 with some sur-
prising results this time as the symmetry of the streamlines 
breaks two times. For low Reynolds numbers, the stream-
lines were found to be symmetric with respect to another 

diagonal of the cavity (Fig. 8 (a) and (b)), and this symme-
try in flow preserves itself up to Re = 968 (Fig. 8 (c)).

The Re = 969 is the first critical Reynolds number where 
the asymmetry state starts to occur (Fig. 8 (d)). Above 
this first critical Reynolds number, the asymmetry devel-
ops continuously more and more inside the cavity, and 
at Re = 1199, this first asymmetric state ends (Fig. 8 (e)). 
After surpassing this range of Reynolds numbers 

Table 1 Skin friction coefficient on left and top wall, and total kinetic 
energy distributions against the Reynolds numbers for diverging 

driven cavity

Re (Cf)H (Cf)V Kinetic energy distribution (E)

100 0.4748 0.4748 0.0577

400 0.5420 0.5420 1.0033

1000 0.6252 0.6252 6.8260

1121 0.6328 0.6421 8.6716

1125 0.6330 0.6432 8.7366

1200 0.6340 0.6581 10.0056

1500 0.6485 0.7071 15.9565

2000 0.6786 0.7576 29.2307

2500 0.7006 0.8000 46.9756

Fig. 7 Convergence rate of the lattice Boltzmann method; 
(a) relative error vs. time; (b) time steps vs. Reynolds number

(a)

(b)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Fig. 8 Streamlines of fluid flow inside the two adjacent-sided converging lid-driven square cavity; (a) Re = 100; (b) Re = 400; (c) Re = 968; 
(d) Re = 969; (e) Re = 1199; (f) Re = 1200; (g) Re = 1500; (h) Re = 2000; (i) Re = 2052; (j) Re = 2053; (k) Re = 2100
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(Re = 969–1199), the flow behavior stabilizes itself and 
streamlines occupy symmetric form with respect to the 
same diagonal along with a secondary vortex at the top left 
corner of the cavity(Fig. 8 (f)) and then this time, with the 
increment of Reynolds number, symmetry of streamlines 
preserves itself up to Re = 2052 with two secondary vorti-
ces (Fig. 8 (g)–(i)).

The second critical Reynolds number is found to 
be 2053, where streamlines again lose their symmetry 
(Fig. 8 (j)), and the second asymmetric state comes into 
account. Moreover, the asymmetry obtained in the stream-
lines for the second critical Reynolds number defers from 
the asymmetry obtained in the streamlines for the first 
critical Reynolds number. This difference can be under-
stood as the streamlines for the first critical Reynolds 
number divert to the right side of the cavity, whereas in 
the second case, they divert to the top side of the cavity.

Note that the simulations for this case are carried 
out up to Re = 2100. That is because this methodology 
starts to provide unstable solutions for this case at higher 
Reynolds numbers. However, the streamlines obtained up 
to Re = 2100 have already proved the importance of the 
present methodology (Fig. 8 (k)).

Table 2 represents the total skin friction coefficient 
distribution at the horizontal top wall and vertical right 
wall for converging driven cavity. We again note that, up 
to the formation of symmetry of streamlines (Re = 968), 
the total skin friction coefficient at the top and right walls 
remains identical. During the first asymmetric state 
(Re = 969–1199), we see that dominating vortex is the vor-
tex generated by the top wall, and this dominating vortex 
shrinks the vortex generated by the right wall. Hence, it is 
expected that, due to the existence of large velocity gra-
dients at the right wall, Cf at the vertical right wall must 
increase. However, Table 2 shows that the Cf at vertical 
right wall decreases for the first asymmetric state. This 
occurs because, in the present study, the vertical wall is 
considered to be positive in the vertical downward direc-
tion and negative in the vertical upward direction (Figs. 1 
and 2). The same phenomena can be illuminated for the 
second critical stage from Table 2. The total kinetic energy 
of fluid particles was again observed to be as expected 
(increasing with the increase of Reynolds number).

The rate of convergence of the present methodology 
for this case is the same as the previous one, the criti-
cal Reynolds numbers take much time to reach the given 
accuracy, whereas the Reynolds numbers, which provide 
a symmetric form of streamlines, reach the given accu-
racy in a less time.

6 Conclusion
The present study explores the configurations of numerical 
simulations for a two adjacent-sided converging and diverg-
ing lid-driven square cavity. The simulation results are per-
formed by the lattice Boltzmann method with an SRT scheme 
using the D2Q9 model. The LBM code used in the study is 
validated by comparison with existing benchmark results.

The following conclusions have been drawn in the pres-
ent study:

• In two adjacent-sided diverging lid-driven square 
cavity, besides two primary vortices, a pair of 
counter-rotating secondary vortices form for above 
Re = 100, and only one critical Reynolds number 
(Re = 1153) is observed, which differs the symmetric 
and asymmetric state of the streamlines;

• Two critical Reynolds numbers are recorded in two 
adjacent-sided converging lid-driven square cavity, 
resulting in two asymmetric states of streamlines;

• The streamlines, in the converging case, were 
found to be diverting in opposite directions for the 
two asymmetric states, and the secondary vortices 
started to form after surpassing the first asymmetric 
state (Re = 1200);

• The distribution of total kinetic energy is inde-
pendent of the formation of streamlines and criti-
cal stages as expected, it always increases with the 
increase of the Reynolds number;

• The smaller primary vortex imposed wall has 
a higher value of skin friction coefficient than the 

Table 2 Skin friction coefficient on left and top wall, and total kinetic 
energy distributions against the Reynolds number for converging 

driven cavity

Re (Cf)H (Cf)V Kinetic energy distribution (E)

100 0.4741 0.4741 0.0687

400 0.5559 0.5559 1.4693

800 0.6395 0.6395 6.4445

900 0.6568 0.6568 8.2516

950 0.6650 0.6650 9.2386

968 0.6679 0.6679 9.5075

969 0.7027 0.6131 9.5559

1000 0.7084 0.6164 10.2086

1199 0.7437 0.6348 14.8890

1200 0.7027 0.7027 14.9939

1500 0.7410 0.7410 23.6425

2000 0.8960 0.7960 41.9717

2052 0.8015 0.8015 44.1322

2053 0.7121 0.8529 46.9626

2100 0.6572 0.8810 48.5440



16|Yadav et al.
Period. Polytech. Mech. Eng., 68(1), pp. 6–17, 2024

one large primary vortex imposed wall if velocity is 
chosen to be positive;

• The rate of convergence was recorded to be least for 
the critical Reynolds numbers.
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