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Abstract

The presented work focuses on the development of a novel method that can numerically describe the properties of metal matrix 

syntactic foam (MMSF) with low memory requirements and short computational times without losing the properties of the interior 

structure. In this paper, we propose a novel method that avoids using the homogenization technique and instead rearranges stiffness 

matrices and constructs specific substructures to perform the overall construction. The two-dimensional cases are discussed in order 

to focus on the methodology itself. First, the reductions and structural design with solid mesh structures were performed, and then the 

model was applied on structures filled with iron hollow spheres. So far, the method has been used to evaluate small deformations to 

see how suitable the subspace technique is for describing metal foams. Aluminum was used as the matrix material, as it is one of the 

most common materials for MMSFs. The optimal parameters were searched that resulted in the shortest running time for the given 

construction. Since in the proposed substructure technique only the displacement values at the boundary points are computed, a back-

calculation step for each selected substructure was performed to see the interior deformations in the vicinity of an iron hollow sphere.
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1 Introduction
One of the main problems with the modelling of metallic 
foams lies in their stochastic structure. The solutions for 
this problem are:

• to investigate representative elements of the cell struc- 
ture, or

• to model the whole random foam structure.

The first case is a strong simplification that may lead 
to a poor agreement with the measured properties, espe-
cially in the case of more complex structures like metal 
matrix syntactic foams (MMSFs), in which the porosity 
is ensured by embedded porous second-phase particles. 
In the second case, the calculation time can reach days 
even on high-performance computers. In this paper a new, 
so-called substructure technique is proposed, to solve the 
task and problems mentioned before. The main goal of this 

work is to create an accurate, reduced-order model. This 
way the running time can be drastically decreased, which 
is a common problem in modelling of metal foams. This 
paper is based on mechanical models, but it is also import-
ant to briefly describe models based on other principles 
(e.g., numerical calculations) to get a more complex pic-
ture of the modelling methods in the field of MMSFs.

Besides the low density of metal foams, a very favor-
able property is their high energy absorption capacity. It is 
difficult to formulate generalized properties to describe 
the behavior of the metal foams [1]. Their elastic mod-
ulus is a property that allows the foams to be modelled 
relatively well, within certain limits. Several parametric 
modelling techniques have been developed that can give 
good estimates of compressive curves and elastic modu-
lus. From previous studies, it can be seen that some papers 
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process and compare several different modelling tech-
niques (e.g., numerical, finite element, analytical) [2–5]. 
The most commonly used modelling process is the homog-
enization technique, which is often combined with the 
representative volume elements (RVE) [5–9]. This method 
has advantages but disadvantages too. In many cases, 
the models do not even consider the interior foam struc-
ture but assign foam properties to compact models. This 
method is commonly found in commercial finite element 
software. Neglecting or simplifying the marrow struc-
ture often causes differences, to a lesser or greater extent, 
between calculated values and experimental results [10]. 
Some researchers have found that preserving the interior 
defects and accurately representing the disordered interior 
structure lead to significantly improved results. [11–13]. 
In  any cases, CT-based models are prepared for finite-ele-
ment calculations, which often show exact agreement with 
experimental results, but their extremely time-consuming 
preparation makes calculations with larger-scale models 
nearly impossible [8, 13]. However, CT scanning is often 
used on its own as an examination of the response to exter-
nal loads [9, 14–16]. Occasionally special, more manage-
able interior structures are created to try to replicate the 
interior assembly behavior. However, these usually only 
give good results for certain load cases. The capabilities 
of the different methods are often presented on two-di-
mensional structures and in the case of satisfying results, 
the methods are extended to spatial models [17, 18]. A fur-
ther step forward from the use of conventional metal foams 
is the use of MMSFs, where the foam structure is provided 
by filling with hollow spheres. With MMSFs better prop-
erties can be achieved than with conventional closed-cell 
foams, but their accurate modelling is a more difficult task 
(due to the second phase filler) [19]. In this case, modelling 
the chemical interaction at the interface between the hol-
low spheres and the matrix becomes an important factor. 
The calculations will be greatly improved if the interfa-
cial separation can be simulated [11]. Another important 
factor is the distribution of hollow spheres in the matrix. 
It has been shown that the Gaussian distribution provides 
the closest result to the experiments [20]. In the last couple 
of years, the porosity in the matrix has been getting atten-
tion, regarding how it can be a negligible factor or a signif-
icant influence under external loads [21].

To improve the modelling of MMSFs, the applica-
tion of the substructure technique is proposed. The basic 
idea of the substructure technique was conceived a long 
time ago for the reason that large models (e.g., airplanes) 
could be treated as separate units and then reunited along 

the joining perimeter [22]. This paper builds on this basic 
idea but applies it to a very different set of problems. This 
work is based on the creation of so-called super finite ele-
ments. In general, model reduction procedures based on 
the substructure technique are commonly used for studies 
involving model updating (e.g., modal analysis) [23, 24]. In 
addition, if the program is parallelized, the runtime can be 
reduced even more drastically. Fortunately, this method is 
easy to parallelize [25]. In this way, the substructure tech-
nique can reduce computation time by up to three orders 
of magnitude [25, 26]. In the modal analysis of large struc-
tures (such as bridges), it has been shown that if many iden-
tical substructures can be formed, then the calculations can 
be run faster. This finding will be an important reference 
later in this paper [27]. Regardless of whether the substruc-
ture technique is used for dynamic or quasi-static cases, 
the stiffness matrix is always decomposed in a similar way. 
The nodes are clustered in the connection points of the sub-
structures and other points. From this separation, a reduced 
matrix of stiffnesses will be derived that combines the stiff-
ness of all points into connection nodes. This will give sig-
nificantly lower degrees of freedom (DoF) system [28, 29]. 
Often, large structures are divided into completely peri-
odic, repeating parts to form substructures. In some cases, 
2D models are used to test the efficiency of the methods, 
as their effectiveness is already becoming apparent [30]. 
Several studies compare different numerical and analytical 
techniques, but it is clear from all of them that no universal 
formula exists, and that each method must be optimized for 
each problem [31, 32].

The main goal of this work is to use the substructure 
technique to provide a reduced DoF model that considers 
the disorder of the interior structure of MMSFs while keep-
ing the model treatable at runtime. The presented program 
is based on the displacement method within finite element 
calculations. To develop the methodology, a two-dimen-
sional model was used to make the presentation of the 
subsequent steps even easier to follow. The method was 
mainly developed for small deformations and static loads.

2 Introduction of the substructure technique
Describing the real geometry of metal foams and solv-
ing its mechanical behavior is a challenging task even for 
a high-performance computer. To improve the effective-
ness of the finite element method (FEM) various tech-
niques can be applied such as reduced ordered model 
(ROM) or sub-structuring. The inhomogeneous interior 
structure of metal foams is usually treated as homogeneous 
with generalized material properties, but much interior, 
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strength-relevant information is lost. The foundation of 
these techniques, assuming that dynamic effects are disre-
garded, is the discretized equation of equilibrium (Eq. (1)):

Ku f= ,  (1)

where K is the stiffness matrix of the structure, u is 
the nodal displacement vector, and f is the load vector. 
Here, only small displacements and stains are taken into 
account. An example of a plane strain problem is shown 
in Fig. 1, which in this case shows a rectangular geome-
try for simplicity. But it can be any other two-dimensional 
geometry. Fig. 1 shows a quadrilateral mesh, but these can 
be replaced by triangular elements too. Displacements are 
fixed in the x-y directions at the left side of the meshed 
region and the upper right side is loaded. The primary 
problem with this approach is that for models with a ris-
ing number of DoF the memory usage and computation 
time also increases significantly. The basic idea of the sub-
structure technique is to decompose the mechanical model 
into parts and incorporate their interior stiffness values 
into to the boundary points. While preserving the original 
geometry this method results in a mechanical model that 
behaves under external loads in the same way as the origi-
nally meshed model, but with a significantly reduced DoF.

To demonstrate the sub-structuring consider a bit more 
complex model (Fig. 2) with FE mesh than the previous 

one. The substructures are marked with a big yellow num-
ber which can be called super finite elements. The black 
dots represent the inner nodes and the green dots the 
edge nodes. The boundary nodes lie on both common and 
non-common edges of the substructures. Interior nodes are 
eliminated, and their effect is taken into account through 
a modified stiffness matrix.

The method is illustrated on a 2 × 2 substructure with 
mesh and then extended to more complex structures. 
The stiffness matrices of the adjacent substructures, grouped 
into the interior and external nodes, look like Eq. (2):
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where ub is the boundary and ui is the interior column vec-
tor of the displacements in the directions of x and y, Kbb is 
the stiffness matrix concerning the boundary points, Kib 
and Kbi describe the connection between the boundary and 
the interior points, and Kii is the stiffness matrix concern-
ing the interior points. Finally, fb and fi denotes the load 
vectors of the boundary and interior points. The lower 
indices indicate the interior (i) and boundary (b) points, 
and the upper indices indicate the number of substruc-
tures. Since only tractions are considered, load vectors 
that come from body force f f f fi i i i

1 2 3 4
, , and� �  are 

equal to zero, fb including the load given for all the perim-
eter points. Because the stiffness matrix Kbb needs to be 
split into four separate parts, each substructure has its own 
boundary point, several of which coincide. Then, the load 
fb and displacement ub vectors must also be decomposed 
into as many pieces as many substructures exist. Each of 
them must be considered separately with its traction and 
displacement on the surface. The matrix equation is:
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Fig. 1 Boundary conditions of the meshed plate

Fig. 2 Partitioning and reduction steps using the structure technique
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Performing the matrix multiplication and expressing 
the first and last two lines in terms of the displacements of 
the interior nodes results in the following algebraic system 
of Eqs. (4) to (7):

u K K ui ii ib b
1 1 1 1 1� �� �� ,  (4)

u K K ui ii ib b
2 2 1 2 2� �� �� ,  (5)

u K K ui ii ib b
3 3 1 3 3� �� �� ,  (6)

u K K ui ii ib b
4 4 1 4 4� �� �� ,  (7)

After explaining the remaining third row, Eq. (8) is:
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Here it can be seen that Eqs. (4), (5), (6) and (7) result in 
the back-transforming matrices:

T K Kn
ii
n
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n� �� ��1
,  (9)

where n = 1, 2, 3, 4. It will be indispensable later. 
Substituting back Eqs. (4)–(7) into Eq. (8), factor out ub 
and multiplying both sides from left by the inverse of the 
stiffness matrices, the following result is obtained:

u K K K K fb bb
n

bi
n

ii
n

ib
n

k r
b
r� � � ��

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�
� �

1

1

4 1

1

4

.  (10)

The new, generalized formula of Eq. (11) is the follow-
ing for n substructures and m substructure loads:
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where n denotes the number of substructures and m the 
number of load vectors. Based on Eq. (11), it is easy to see 
that if the given part is divided into many substructures, 
the stiffness values of the same substructures do not need 
to be calculated from scratch but can be stored in memory 
and simply added to the stiffness values in the next step. 
The effectiveness of the substructure technique depends 
largely on the ratio of the edge points to the interior points. 
If this ratio is as small as possible, the running time can be 
significantly reduced.

3 Application of substructure technique to metal foams
Modelling conventional metal foams is a challenging task 
due to their internal random porosity. For MMSFs, this 
is even more complicated. The problem with CT-based 
mechanical models or other techniques describing the 

internal structure is that the created models have too high 
DoF, which is extremely time-consuming to solve. For this 
reason, the substructure technique was used, but in a way, 
it had never been applied before. The aim was not to develop 
a new homogenization technique, but to maintain the inter-
nal inhomogeneous structure. The first step was to create 
a few differentiating substructures. An important criterion 
is that the boundary points of all substructures (super finite 
elements) must be the same, as in the case of conventional 
finite elements. In the following, it will be weighty to take 
into account the fact that the more identical substructures 
are in the whole structure, the more efficient the memory 
usage will be. In addition, if the points on the edges are 
equivalent, then one super finite element can be replaced 
by another. Compared to the solid structure, the only mod-
ification required about the foams is to remove the corre-
sponding finite elements from the model with their appro-
priate stiffness values. Exactly how many finite elements 
should be left out of a given substructure is determined by 
what percentage of the volume of the foam to be modelled 
as a cavity. The hollow parts are filled with gas in the real 
case, but the existence of gas is mechanically negligible. 
In the case of MMSFs, this is complemented by the need 
to substitute a different material constant matrix around 
the cavity in a given layer when calculating the stiffness 
matrix. Fig. 3 shows a substructure where the filler hol-
low sphere is shown in green. 63% of the internal part of 
the substructure is removed, because this is the theoretical 
maximum gas percentage of metal MMSFs [7].

Prefabrication of substructures with different internal 
spherical geometries is the key to this method. The effi-
ciency of the method is that the whole structure is built 
by producing and assembling the predefined finite number 
of pieces of different substructures (e.g., Fig. 3). The stiff-
ness matrices of these small substructures can be easily 

Fig. 3 Representative MMSF unit for substructure technique
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generated. Thus, the external geometry and stiffness of 
the whole model are the same as that of the conventional 
model, but with a much smaller number of DoF. Finally, 
only summarizing stiffnesses the substructures is needed 
to produce the stiffness matrix of the reduced structure. 
The connectivity matrix of the super finite elements 
will provide information on the summing of stiffnesses. 
The geometry of the resulting model and the displacement 
values calculated on the external surface are completely 
consistent with the conventional method. The advantage 
will be the faster solvable algebraic equation system due 
to the smaller number of unknowns.

An example of this method can be seen in Fig. 4, where 
nine substructures with different interiors have been pre-
defined. In such a case, only the stiffness of the nine dif-
ferentiating super finite elements is calculated and sepa-
rated into boundary and interior points. Then the matrix 
operations behind the first sum of Eq. (11) must be per-
formed for the nine cases. Afterward, the matrix opera-
tions behind the first sum of Eq. (11) must be performed 
for the nine cases. An important criterion is that the sub-
structures must be identical at the edges, as the nodes must 
overlap for continuity when joining. As an analogy, this is 
understood in the same way as in the rules of dominoes 
that only pairs of identical elements can be joined. A nor-
mal distribution is the best way to approach real inhomo-
geneity. Thus, it is only needed to insert the calculated 
stiffness values of the nine cases into the corresponding 
positions. In this way, it is possible to construct inhomo-
geneous random internal structures in a memory-efficient 
way using a few different sub-structures.

The irregularity of the internal structure of the model 
can be further increased by varying the diameters of the 
hollow spheres. This method is applied in the same way 
to the three-dimensional case, but with three-dimensional 
substructures.

4 Demonstrating the effectiveness of the substructure 
technique on different MMSF structures
Consider a practical implementation of the two-dimen-
sional foam structure. The model built from substructures 
is subjected to loading. The 10 × 10 mm model substructure 
partitioning and specifying boundary conditions are shown 
in Fig. 5. Each substructure includes a mesh spacing of 
0.0125 mm edge length. The internal structure of the super 
finite elements includes a 63% space-filling of the spherical 
cavities, but this is no longer visible on the reduced struc-
ture. Equation (11) was used to calculate the displacements 
of the boundary points in the full substructure model.

The displacements of the boundary points were inter-
polated to produce the reduced displacement field shown 
in Fig. 6. For better visibility of displacements and line 
widths the scale factor is ten.

The resulting plots will usually show the largest dis-
placements, since the accurate displacements of the full 
contours of the models will always be known. However, 
this method does not yet provide information on the 

Fig. 4 Preserving internal inhomogeneity with predefined substructures

Fig. 5 Defining the boundary conditions of a model divided into 
substructures

Fig. 6 Model displacement field built from substructures
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internal points at this stage. Equation (9) gives the pos-
sibility to determine the complete displacement field of 
the selected substructure. The entire displacement field of 
such a super finite element is shown in Fig. 7.

The key to the effectiveness of the method lies in the 
minimized use of memory. Previously, it was mentioned 
that the geometry of the model is described by predefined 
and reduced-size substructures, but the memory efficiency 
of this was not discussed. These predefined super finite 
elements just need to be stored in the memory to build up 
the whole model with them. Relative efficiency increases 
with the larger model size and when the number of types 
of substructures is fixed. Consider a bar diagram (Fig. 8.) 
where a predefined substructure is used to describe mod-
els of increasing size. Two pre-defined substructures were 
used to determine the values of the diagram. The vertical 
axis shows the ratio of memory allocation of the stiffness 
matrix between the predefined substructures and the total 
reduced structure.

MUR =
m
M

 (12)

Equation (12) is used to calculate the memory uti-
lization rate (MUR), where m denotes the pre-defined 

substructures and M denotes the total reduced memory 
allocation. It can be seen, that the preallocated memory 
requirement decreases exponentially as the number of 
required substructures increases (see Table 1 and Fig. 8).

The proportion of predefined substructures that allo-
cates memory becomes smaller compared to the total 
structure. Since a real model will consist of many sub-
structures, it is easy to see that the initial memory alloca-
tion will converge to zero.

Increasing the internal mesh density of the substruc-
tures will not affect the rate of run-off, as it will increase 
the size of the overall reduced structure. The only param-
eter affecting the ratio reduction is the number of pre-
defined substructures. Increasing this number reduces the 
convergence efficiency. Since the vertical axis is a ratio of 
the memory allocations, increasing the number of pre-de-
fined substructures would increase the values of the ratios 
in direct proportion as shown in Fig. 9. Each color rep-
resents an increasing number of predefined substructures.

One method to achieve more accurate results in FE cal-
culations is to increase the density of the mesh. But this 
increases the size of the system of equations to solve. 

Table 1 Memory usage rate as a function of the number of 
substructures, if the number of substructures is two

Number of all substructures Memory usage rate

4 2.400

9 1.066

16 0.622

25 0.401

36 0.237

49 0.010

64 0.158

81 0.126

100 0.102

Fig. 7 The complete displacement field of a substructure

Fig. 8 Reduced memory requirements for predefined substructures

Fig. 9 The rate of convergence decreases for an increasing number of 
predefined substructures
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Regardless of the way the system of equations is solved, 
this significantly increases the computation time.

If the number of substructures in a model is fixed, but 
the basic mesh is continuously densified, the effectiveness 
of the method becomes apparent which can be clearly seen 
in Table 2. This difference can be illustrated in Fig. 10. 
In the case where the number of substructures is not fixed 
the interpretation of running times becomes more com-
plex. In such cases, the shortest running time can be found 
by varying the reduction ratio of the boundary points 
(Eq. (12)) and the number of substructures.

If the calculation is performed on models with a fixed 
number of DoF at multiple points, the colored curves can be 
seen in Fig. 11 are obtained. The reason for including these 
two data on the horizontal axes is that their mutual interac-
tion will clearly influence the running time. An important 
aspect of Fig. 11 is that since data on horizontal axes inter-
act with each other, the value of one axis must always be 
fixed when searching for the optimum. The interaction of 
the horizontal axes can be easily seen from the fact that if 
the number of substructures is increased, the reduction ratio 
will obviously change and vice versa. Side views 1 and 2 in 

Fig. 11 show how the running time increases dramatically 
with the reduction ratio and slightly with the number of sub-
structures. From the top view, it can be seen that the curves 
with a constant number of DoF take on a hyperbolic shape.

Each curve has a minimum point associated with the 
minimum running time. It can be found that the minimum 

Table 2 Comparison of conventional and substructure techniques in 
terms of running time

DoF [–] Running time of 
conventional method [s]

Running time of 
substructure technique [s]

162 1.36 0.54

338 1.74 0.69

574 2.09 0.87

882 2.70 1.16

2738 6.20 3.01

6498 14.00 6.79

13122 33.53 13.61

29282 99.95 31.71

Fig. 10 The advantage of the substructure technique over the 
conventional method in terms of running time

Fig. 11 Variation of running time of constant degree of freedom curves 
as a function of reduction ratio and the number of substructures
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points of curves with increasing DoF belong always to 
higher reduction ratios (Eq. (12)). The reduction ratios for 
the minimum running time are summarized in Table 3.

This optimal ratio shows a slowly increasing trend, 
as shown in Fig. 12. The implication for models with 
larger memory allocation sizes or denser meshes is that 
more substructures can be used to achieve minimum 

runtimes. However, this trend is not directly proportional 
to the number of DoF, but only slightly increasing.

5 Conclusions
The substructure technique has been presented for calcu-
lating small deformations of MMSFs. The conventional 
finite element computation method for the plane defor-
mation problem has been compared with the substructure 
technique in 2D. The substructure technique can signifi-
cantly reduce the running time, which is becoming more 
pronounced as the size of the model increases. This work 
has shown that homogenization techniques or CT-based 
meshing are not the only methods to describe metal foam 
structures. The substructure technique can combine the 
beneficial features of both methods and neglect their dis-
advantages. An important finding is that with pre-de-
fined substructures it is possible to build the internal foam 
structure in a memory-efficient way without increasing the 
runtime as in CT-based methods. The other major result is 
that as the number of DoF is increased, the reduction ratio 
associated with the minimum running time shows a slight 
increase. This slightly increasing reduction trend shows 
the number of substructures that, depending on the size of 
the model, can achieve the minimum running time.
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Table 3 Reduction ratios for the minimum of the DoF curves

DoF Reduction ratios for minimum running time

2738 2.9

13122 4.8

20402 4.9

29282 5.2

33282 5.5

65522 5.9

80802 6.1

116162 7.3

132098 7.8

191202 9.7

321602 12.0

502002 12.2

Fig. 12 The trend of the minimum running time points with increasing DoF
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