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Abstract

The main focus of the current paper is the detection of vortices in fluid flow around a circular cylinder and a square cylinder, with 

an emphasis on the identification of the parameters used for vortex detection. The authors aim to enhance the practicality of an existing 

vortex detection method (Lagrangian-averaged vorticity deviation) by providing recommendations for the settings of the vortex 

detection parameters. The simulations were carried out using ANSYS Workbench 2022 R2, encompassing Reynolds numbers between 

12 and 140, and angles of incidence from 0° to 45°. The vortex detection was performed using MATLAB R2020b. The paper provides 

a comprehensive description of the parameters involved in the detection process and their significance, as well as the implementation 

of the parameter identification. The study results in the determination of the suggested parameter ranges, and a comparative analysis 

of different vortex detection methods is also presented for the case of the circular cylinder.
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1 Introduction and objectives
Extensive research has been conducted on the flow charac-
teristics around various solid objects, driven by their wide 
range of practical applications. These objects are typically 
divided into two categories: streamlined bodies (such as 
airfoils) and bluff bodies (such as cylinders and spheres).

In the case of bluff bodies, within a specific range of the 
Reynolds number, an interesting phenomenon, known as 
the von Karman vortex street occurs. This phenomenon 
is characterized by symmetric and periodic vortex shed-
ding [1]. The periodic nature of these flows can sometimes 
lead to undesirable structural vibrations. This becomes 
particularly dangerous when the frequency of the vortex 
shedding aligns with the natural frequencies of the bod-
ies [2]. Consequently, engineers must carefully consider 
vortex shedding effects when designing structures such as 
skyscrapers and chimneys to mitigate potential risks.

Vortex shedding from streamlined bodies can be observed 
in the case of low-speed fans for instance. One of the most 
prominent noise sources of these fans originates from the 
so-called profile vortex shedding [3, 4]. This phenomenon 

is still in the focus of current research, thus, the thorough 
description and understanding of it is desirable.

The primary objective of the current study is to 
detect vortices in fluid flow around bluff bodies, utiliz-
ing the Lagrangian-averaged vorticity deviation (LAVD) 
method [5]. Specifically, the investigation focuses on a cir-
cular cylinder and a square cylinder with various angles 
of incidence, serving as representative examples for bluff 
bodies. Additionally, the study includes the identification of 
the vortex detection parameters associated with the LAVD 
procedure. This is crucial as the original publication  [5], 
which serves as the foundation for the LAVD vortex detec-
tion method, does not provide recommended values for 
these parameters. The current paper seeks to enhance the 
practicality of the LAVD vortex detection method by offer-
ing suggestions for the values of its parameters.

Vortex detection methods can be divided into two 
groups, local and global detection methods. Local iden-
tification methods obtain some characteristics based on 
the physical properties of the flow field, whereas global 

https://doi.org/10.3311/PPme.22874
https://doi.org/10.3311/PPme.22874
mailto:balla.esztella@gpk.bme.hu


294|Kovács and Balla
Period. Polytech. Mech. Eng., 67(4), pp. 293–302, 2023

methods are usually based on the global topological prop-
erties of the flow field [6].

For local detection methods (e.g., Δ-criterion, λ2-cri- 
terion, Q-criterion) one has to prescribe a threshold 
value, which makes these methods highly subjective. This 
threshold value is different for every case, and a recom-
mendation for a general, optimal threshold value cannot 
be given. Global vortex identification methods are more 
objective, however, at the same time they are more com-
putationally complex, and intensive also. The tested new 
detection method offers the possibility of obtaining quan-
titative parameters (the exact location and size) of the 
shed vortices. These parameters allow us to quantitatively 
characterize the evolved vortical structures. In addition, 
by using an objective vortex detection method, the process 
of vortex identification can be highly automatized com-
pared to local methods.

According to [5] the definition of coherent vortices 
remains a subject of ongoing debate. Nevertheless, there 
are two key characteristics that are widely accepted. 
Firstly, vortices are concentrated regions exhibiting high 
vorticity. Secondly, they are typically perceived as evolv-
ing domains displaying a significant level of material 
invariance. It is important to acknowledge, however, that 
the precise interpretation of high vorticity lacks objectiv-
ity. Therefore, in the pursuit of establishing a clear vortex 
definition, material invariance can serve as a good starting 
point [5]. In [5] an objective vortex criterion is proposed, 
known as the Lagrangian-averaged vorticity deviation.

The construction of the geometry, the meshing of the 
flow field, and the simulations were carried out using 
ANSYS Workbench 2022 R2 [7]. The simulations were 
run for various Reynolds numbers and angles of incidence. 
The Reynolds number is a dimensionless value which is 
the ratio of the inertial forces and the viscous forces. It can 
be determined in the following way [1]:

Re ,�
� �v l
�

	 (1)

where v is the velocity (m / s), ϱ denotes the density (kg / m3), 
l is the characteristic length (m), and μ denotes the dynamic 
viscosity (kg / (m × s)). In the current paper the characteris-
tic length for the circular cylinder is taken as the diameter 
of the cylinder (d ), and for the square cylinder it is the pro-
jected frontal height (h).

The simulation results were validated by comparing 
basic flow characteristics (e.g., lift coefficient, drag coef-
ficient, Strouhal number) with values taken from the 

literature [8–10]. Furthermore, a mesh sensitivity analysis 
was performed to ensure that the results were independent 
of the grid resolution, thus, establishing the grid indepen-
dence of the results.

The vortex detection was conducted using MATLAB 
R2020b [11]. Initially, the vortex detection and the param-
eter identification were carried out for the case of the cir-
cular cylinder at a Reynolds number of 120. This spe-
cific Reynolds number was chosen because it corresponds 
to the flow structure where vortices are periodically 
detached, thus, forming a von Karman vortex street  [1]. 
For a von Karman vortex street, in the literature, there exists 
a theoretical value for the distance between the neighbor-
ing vortices [12]. By calculating these distances, the accu-
racy of the vortex detection method can be assessed, thus, 
providing insight into the quality of the detection method. 
After having found the preferred intervals of the parame-
ters for this case, the identification was carried out for the 
other simulation results as well. As a final step, the vortex 
detection results were compared with two other methods: 
the instantaneous vorticity distribution and the λ2-criterion.

The current study can be helpful in the following prac-
tical manners. As a basic idea, through vortex detection 
one can observe the structure of the flow, and the effect 
of neighboring bodies (e.g., buildings) on one another. 
Moreover, vortex detection through measurements is 
a  really time-consuming procedure, thus, the detection 
time can be substantially decreased by applying the cur-
rent numerical method.

2 Lagrangian-averaged vorticity deviation
LAVD is defined as the integral of the normalized differ-
ence between the vorticity and its spatial mean over a tra-
jectory [5]. Mathematically, it can be expressed as:

LAVDt
t

t

t
s s s ds

0
0

0 0
x x x� � � � �� � � � �� �� ��; , , 	 (2)

where t0 is the starting time instant of the integration (s), t is 
the final time instant of the integration (s), x0 vector denotes 
the initial particle positions (m), ω(x,  s) matrix is the vortic-
ity (1 / s), x(s;  x0 ) matrix denotes the instantaneous particle 
positions (m), s is the variable of integration, and �� s� �  vec-
tor is the instantaneous spatial mean of the vorticity (1 / s).

The use of LAVD allows for the objective detection of 
material tubes, along which small fluid volumes exhibit 
the same bulk rotation compared to the mean rotation of 
the fluid [5]. The initial positions of these tubes correspond 
to tubular level surfaces of the LAVDt

t
0 0

x� �.  In 2D, these 

..
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tubular sets can be interpreted as closed convex curves, 
while in 3D, they can be understood as convex, cylindri-
cal, cup-shaped, or toroidal sets [5].

Fig. 1 [5] depicts a rotationally coherent Lagrangian 
vortex, showing the initial and current states on the left 
and right sides, respectively. L( t ) represents a rotational 
Lagrangian coherent structure, along which fluid vol-
umes maintain the same rotation throughout the examined 
time interval. According to [5], a rotationally coherent 
Lagrangian vortex must satisfy the following conditions:

1.	 it is an evolving material domain D( t ) where D( t0 ) 
is filled with tubular level surfaces of LAVDt

t
0 0

x� �  
and the LAVD values are decreasing as one moves 
outwards;

2.	 the boundary B( t ) of D( t ) is a material surface where 
B( t0 ) is the outermost tubular level surface (mini-
mum) of LAVDt

t
0 0

x� �  in D( t0 );
3.	 the center C( t ) of D( t ) is a material set where C( t0 ) is 

the innermost member (maximum) of LAVDt
t
0 0

x� �  
in D( t0 ).

The numerical implementation and the detailed descrip-
tion of the LAVD method can be found in [5].

3 Simulation setup
Two-dimensional simulations were run throughout the 
study. Overall, four different geometries were constructed, 
one circular cylinder (based on [13]), and three square cyl-
inders (based on [10]). The domain sizes differ for the cir-
cular and for the square cylinder in [10] and [13]. In order 
to be able to compare the simulation results with the lit-
erature data the same domain sizes were utilized as in the 
publications. In the case of the square cylinder, only the 
angle of incidence (θ ) was varied with regard to the dif-
ferent geometries (θ = 0°, 5°, 45°). The θ = 0° case is when 
the upper and lower boundaries of the square cylinder are 
parallel with the flow.

The diameter (d ) of the circular cylinder and the side 
length (a) of the square cylinder have the same length: 
d = a = 0.0127 (m). As for the square cylinder, there is one 
additional important characteristic which is the projected 
frontal height (h). The projected frontal height can be cal-
culated as follows:

h a� � � � � � �� �cos sin .� � 	 (3)

The geometries were constructed using SpaceClaim [7]. 
For the circular cylinder, the physical domain has a dimen- 
sion of thirty diameters in the streamwise direction: 
−8d < x < 22d, and sixteen diameters in the lateral direc-
tion: −8d < y < 8d. As for the square cylinder, the simulation 
domain has the following parameters: −33.5h < x < 36.5h 
and −50h < y < 50h.

The meshing was performed in the Ansys Workbench 
Mesher [7]. In each case a structured, quadrilateral mesh 
was generated. For the circular cylinder the smallest cell 
size in the domain was approximately 4 × 10−4 (m), as for 
the square cylinder it was 8 × 10−5 (m).

A mesh sensitivity study was also performed with the 
help of the Richardson extrapolation to ensure the grid 
independency of the results. Differently refined grids were 
created for two cases (circular cylinder: Re = 120, square 
cylinder: θ = 0°, Re = 120). Both for the circular and for 
the square cylinder, a coarse, a medium, and a fine mesh 
was created. For the circular cylinder, the time-averaged 
value of the drag coefficient, as for the square cylinder the 
time-averaged root mean square (RMS) value of the lift 
coefficient was examined. With the help of the Richardson 
extrapolation the discretization error was estimated:

�h circ,
. ,� � � �
6 4425 10

4 	 (4)

�h square,
. .� � � �
4 7665 10

3 	 (5)

Another sensitivity study was carried out for the circu-
lar and the square cylinder geometry, involving the vor-
ticity. The vorticity was monitored at different locations 
(the time-averaged value of it was taken), and afterwards, 
relative, and absolute errors were calculated between the 
coarse – fine and medium – fine mesh results. The relative 
errors were mostly below 10%, in the case of the single 
higher values, the absolute error was not significant com-
pared to the maximum vorticity values occurring in the 
computational domain.

After the sensitivity studies, appropriately refined grids 
were chosen (circular: coarse grid, square: medium grid), 
so that the simulations would produce accurate results.Fig. 1 Initial and current positions of a Lagrangian vortex D(t); 

(reproduced from [5])
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In Fig. 2 the generated local mesh can be seen with 
regard to the circular cylinder geometry, and in Fig. 3 the 
local mesh can be seen in the case of the square cylinder 
with a 0° angle of incidence.

The simulations were run for various Reynolds num-
bers using Ansys Fluent 2022 R2 [7]. The authors aimed 
to obtain distinct flow patterns by choosing appropriate 
Reynolds numbers. In the case of the circular cylinder the 
chosen Reynolds numbers were based on the findings in [8], 
and for the square cylinder the chosen Reynolds numbers 
and angles of incidence were based on [10]. The aim was 
to visualize basic flow patterns while staying in the lami-
nar flow regime, for the circular cylinder these are the fol-
lowing [8]: steady, symmetric separation; laminar, unsta-
ble wake; von Karman vortex street. In [10] it is stated that 
in the case of a square cylinder there are three main dis-
tinct flow patterns in the laminar regime: main separation 
( MS ) (which has two subpatterns: single secondary vor-
tex ( SSV ), and dual secondary vortices ( DSVs)), vortex 

merging ( VM ), and steady ( S  ). The investigated cases can 
be seen in Table 1. The appropriate time step values were 
determined based on the definition of the Courant number.

The simulations were run using the Viscous Laminar 
model and applying second-order numerical schemes.

The boundary conditions were set based on [13], and 
they are identical in each simulation case. For the inlet and 
the outlet a velocity inlet, and a pressure outlet boundary 
condition were prescribed, respectively. For the upper and 
lower boundaries symmetry boundary condition was set. 
The wall of the cylinder was specified as no-slip wall in 
order to bound fluid and solid regions. The applied bound-
ary conditions can be seen in Fig. 4.

4 Results and discussion
4.1 Validation of the simulations
In the case of the circular cylinder, different flow behav-
iors were observed at different Reynolds numbers. 
At a Reynolds number of 12 steady symmetric separation, 
and for a Reynolds number of 60 a laminar unstable wake 
could be observed. When the Reynolds number increased 
to 120, symmetric periodic vortex shedding occurred, 
commonly known as the von Karman vortex street phe-
nomenon. These findings align with the expectations doc-
umented in the literature [8, 9]. As an illustrative example, 
Fig. 5 shows the contour plot of the velocity at a Reynolds 
number of 120.

Table 1 The investigated simulation cases

Cylinder type Angle of 
incidence

Reynolds 
number Time step size (s)

Circular −

12 Steady

60 0.005

120 0.002

Square

0°

40 Steady

100 0.0007

140 0.0005

5° 100 0.0007

45° 120 0.0008

Fig. 2 The local mesh for the circular cylinder

Fig. 3 The local mesh for the square cylinder (θ = 0°)

Fig. 4 The applied boundary conditions (figure not to scale)
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As it was already mentioned, for the square cylinder 
the angle of incidence and Reynolds number pairings were 
chosen based on [10]. The occurrence of the flow patterns 
which were already mentioned ( MS, SSV, DSVs, VM, S ) 
varies with the Reynolds number, and the angle of inci-
dence. The aim was to visualize these distinct flow pat-
terns. The simulation results revealed that the observed 
flow patterns aligned with the anticipated outcomes. 
A representative example can be seen in Fig. 6 with regard 
to the vortex merging pattern (θ = 45°, Re = 120).

Apart from the flow structure (for the validation of the 
simulation results), different flow characteristics were 
examined. The flow characteristics under examination 
were the following: time-averaged lift and drag coeffi-
cient, and the Strouhal number. The simulation results 
(subscript: sim) for the different cases, as well as the val-
ues taken from the literature [8–10] (subscript: lit ) can be 
seen in Tables 2 and 3. There are some cases when the 
Strouhal number is not presented, this applies for steady 
cases of fluid flow. For stationary flows vortex shedding is 
not observable, thus, the Strouhal number (which depends 
on the vortex shedding frequency) is not defined.

In the case of a symmetric flow the time-averaged value 
of the lift coefficient is zero. One can see that this has been 
fulfilled in each symmetric case. As for the obtained drag 
coefficients, and Strouhal numbers, these are also in accor-
dance with the expected results.

4.2 Vortex detection
As stated in the introduction, the initial focus of the study 
involved vortex detection and parameter identification 
for the case of the circular cylinder at a Reynolds number 
of 120. This choice was driven by the presence of a the-
oretical value for the ratio of the coordinate differences 
between neighboring vortices for a von Karman vortex 
street [12], this value is 0.281.

Referring back to Eq. (2), it is required to set the tem-
poral length of the integration. The LAVD method is able 

to detect vortices from a minimum of two time steps. 
By increasing the integration time, the accuracy of the vor-
tex detection also increases. However, the integration time 
is bounded by the size of the domain, since above a certain 
maximal integration time the fluid particles leave the com-
putational domain, and the LAVD values cannot be inter-
preted. According to our investigations, between the min-
imum and maximum integration time there is a time range 
in which the result of the method is not sensitive to the 
change in the integration time. The integration times were 
selected within this range so that the fluid would cover 
approximately the same path in each case (separately for 
the circular and the square cylinder).

The identification was performed for the following three 
vortex detection parameters: Nct, DeficiencyThresh  (%), 
MinLength (%). Nct denotes the number of LAVD contour 
levels intended to extract. The DeficiencyThresh parame-
ter is the maximum allowable convexity deficiency of the 
detectable vortices. The convexity deficiency of a  closed 
curve in the plane is defined as the ratio of the area between 
the curve and its convex hull to the area enclosed by the 
curve [5]. At last, the MinLength parameter is the minimum 

Fig. 5 Contour plot of velocity at Re = 120

Table 2 Simulation results for the circular cylinder

Re [–] c̄L, sim [–] c̄ L, lit [–] c̄ D, sim [–] c̄ D, lit [–] Srsim [–] Srlit [–]

12 0 0 2.81 2.53 − −

60 0 0 1.49 1.38 0.14 0.14

120 0 0 1.40 1.31 0.18 0.17

Fig. 6 Pathlines for the vortex merging pattern (θ = 45°, Re = 120)

Table 3 Simulation results for the square cylinder

θ [°] Re [–] c̄ L, sim 
[–]

c̄ L, lit 
[–]

c̄ D, sim 
[–]

c̄ D, lit 
[–]

Srsim 
[–]

Srlit 
[–]

0°

40 0 0 1.68 1.66 − −

100 0 0 1.48 1.43 0.14 0.14

140 0 0 1.48 1.40 0.15 0.16

5° 100 −0.04 −0.02 1.41 1.38 0.15 0.15

45° 120 0 0 1.84 1.76 0.18 0.18
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required perimeter of a vortex. If the perimeter of a given 
vortex falls below this threshold value, then it is going to 
be omitted. It is also important to note, that MinLength is 
expressed as a percentage of the cylinder diameter and the 
projected frontal height for the circular cylinder, and the 
square cylinder, respectively. Meaning, if MinLength is set 
to 20%, then the minimum required perimeter of a vortex 
is 20% of the diameter/projected frontal height.

At the beginning of the identification procedure the 
effect of the Nct parameter was examined, while keeping 
the other two parameters at a constant value. Afterwards, 
with a chosen preferred value for Nct the identification 
was performed for the other two parameters as well.

During the parameter identification the tested values 
were the following: Nct = 1, 10, 50, 100, 200, 400, 600, 
800, 1000; DeficiencyThresh = 0, 1, 2, 5, 10, 15, 20, 40, 50, 
60, 80, 100%; MinLength = 1, 10, 20, 40, 60, 65, 70, 75, 80, 
100, 110, 120, 130, 150, 180, 185, 190, 200, 1000%.

The identification was carried out through the visual 
inspection of the results. It was vital that there would be 
no detected vortices before the cylinder. In addition, the 
parameter values were chosen so that a complete vortex 
row would be detected.

The suggested intervals were determined for each 
parameter, these are the following: Nct ∈  [100; 200]; 
DeficiencyThresh ∈  [1; 10]%; MinLength ∈  [75; 180]%. 
Within these intervals, the obtainable vortex detection 
results are in great accordance with each other. After hav-
ing finished the identification process, the vortex detec-
tion with preferred parameter values was performed, and 
the realization of the theoretical 0.281 value was also 
inspected. The outcome of the vortex detection can be 
seen in Fig. 7, which is the contour plot of the calculated 
LAVD values. The red dots denote the centers, and the 
red, closed curves denote the boundaries of the vortices. 
Given that two-dimensional simulations were conducted, 
the applied reference system is the x-y coordinate system, 
with the origin positioned at the center of the cylinder.

After calculating the ratios of the coordinate differ-
ences between the neighboring vortices, the following 
results were received:
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From Eq. (6), it is evident that the calculated values 
closely approximate the conceptual value. Moreover, as the 
flow progresses downstream from the cylinder, these cal-
culated values converge towards the theoretical value.

Afterwards, the parameter identification was performed 
for the other simulation results as well. As a representa-
tive example, in Fig. 8 one can see the result of the vortex 
detection for the square cylinder with θ = 45° at Re = 120. 
The detection was not successful for two of the cases: cir-
cular cylinder at Re = 12, and square cylinder with θ = 0° 
at Re = 40. The unsuccessful vortex detection is a result 
of the fact that in these cases the flow is steady, thus, the 
vortices are at a fixed place, they are not shed.

The determined intervals, and their sections for every 
examined case are summarized in Tables 4 and 5. One can 
see that though the suggested intervals are not exactly the 
same for every case, each parameter has values which are 
appropriate for all of the cases. It is also important to note, 
that the value of MinLength is in accordance with the cyl-
inder diameter/projected frontal height, this is why it was 

Table 4 Summary of the suggested intervals for the circular cylinder

Re = 60 Re = 120 ∩

Nct [–] [100; 200] [100; 200] [100; 200]

DeficiencyThresh [%] [1; 10] [1; 10] [1; 10]

MinLength [%] [60; 495] [75; 180] [75; 180]

Fig. 7 Vortex detection with suggested parameters at Re = 120

Fig. 8 Vortex detection with suggested parameters at θ = 45°, Re = 120
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beneficial to express MinLength as a percentage of these 
characteristic values.

Furthermore, the ratios of the coordinate differences for 
each examined case were also determined. Starting with 
the circular cylinder, the ratios for Re = 60 were deter-
mined (this can be seen in Eq. (7)), and a few deductions 
were made.

�
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x
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34
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0 4922 0 4738

0 4938
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� �

. , .

. .

,

	 (7)

For a Reynolds number of 60, Eq. (7) demonstrates that 
the vortex shedding exhibits symmetry, with alternating 
positive and negative signs in the ratios, and the abso-
lute values of the ratios being relatively similar. However, 
unlike the Re = 120 scenario, the ratios do not converge 
but rather immediately become uniform (the 0.281 theo-
retical value is not valid for this case, since it only holds 
for a von Karman vortex street).

With respect to the square cylinder, the theoretical 
0.281  value was realized in almost all of the examined 
cases. The only exception was the θ = 0°, Re = 140 case. 
This occurrence might be due to the fact that in this case 
the Reynolds number is close to the critical value above 
which the flow transitions to three-dimensional [10, 14]. 
If this occurs a two-dimensional simulation cannot capture 
the effect of three-dimensional structures on the flow field, 
and this explains why the 0.281 criterion was not met.

4.3 Comparison of different vortex detection methods
As it has already been mentioned, the literature is still 
lacking an exact vortex definition. Consequently, there 
exists a vast number of different vortex detection methods, 
and there is no general agreement with respect to which of 
these methods is the best.

In the upcoming paragraphs the detection results 
obtained with methods other than the LAVD will be pre-
sented, these methods are the following: instantaneous 
vorticity distribution, and the λ2-criterion. The vortex 
detection was performed for the circular cylinder case at 
a Reynolds number of 120. The comparison of the results 

is conducted by calculating the differences of the coordi-
nates of the detected vortex centers (only those vortices 
are considered which have been found by each method).

The first applied method is based on the instantaneous 
vorticity distribution. The vorticity data from Fluent 
was exported for a given time instant (which is the start-
ing time instant of the integration in the LAVD method) 
and the vortex detection was performed by finding local 
maxima in MATLAB. As it was mentioned beforehand, 
a threshold value has to be prescribed, which was based 
mostly on the visual inspection of the results. This value 
is the following: ωthresh = 10 (1/s), all values below ωthresh 
were omitted from further examination. The outcome of 
the vortex detection based on the vorticity distribution can 
be seen in Fig. 9. The red dots denote the centers of the 
detected vortices (local maxima), and only those vortices 
were numbered which were found by the LAVD method as 
well (all in all 12 vortices were detected).

As for the second method, the λ2-criterion was chosen, 
which is also a local vortex identification criterion. The λ2 
data from Fluent was exported, and in MATLAB the vortex 
identification was performed by setting a threshold value, 
and by finding local minima. Similarly to the previous case, 
the threshold value was set based on visual inspection, 
and it is the following: �

2

2
35 1

thresh
� � � �/ ,s  all values above 

λ2thresh
 were omitted from further examination. The vortex 

detection based on the λ2-criterion can be seen in Fig. 10. 
The same things apply as for the previous case, the red dots 
denote the centers of the detected vortices, and only those 
vortices were numbered which were found by the LAVD 
method too (all in all 9 vortices were detected).

Table 5 Summary of the suggested intervals for the square cylinder

θ = 0° and Re = 100 θ = 0° and Re = 140 θ = 5° and Re = 100 θ = 45° and Re = 120 ∩

Nct [–] [100; 200] [100; 200] [100; 150] [100; 200] [100; 150]

DeficiencyThresh [%] [6; 10] [5; 10] [5; 10] [1; 10] [6; 10]

MinLength [%] [80; 145] [60; 135] [110; 125] [95; 260] [110; 125]

Fig. 9 Vortex detection based on vorticity
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After performing the detection with these other two 
methods as well, coordinates of the centers of the vortices 
were exported, and the absolute differences were deter-
mined with respect to the LAVD results, and also between 
the vorticity and λ2 results. This can be seen in Table 6.

It can be seen from Table 6 that the absolute differences 
in the x and y directions are not significant (it falls within 
the order of magnitude of the mesh size), especially in 
the case of vortices further down in the cylinder's wake. 
However, it can be seen from Figs. 9 and 10 that the num-
ber of detected vortices is higher than in the case of the 
LAVD method. Some of these vortices are artificial vor-
tices (e.g., vortices in front of the cylinder) which can be 
a  result of numerical noise in the velocity data. Partly, 
this is why the LAVD method is a better solution, because 
through the adjustable parameters these occurrences can 
be eliminated. In addition, the required convexity can also 
be ensured by setting the DeficiencyThresh parameter to an 
appropriate value, thus, also considering the shape of the 
vortices. On the other hand, it is much easier to implement 
the presented local detection methods, and the computa-
tional cost is also relatively low compared to the LAVD.

5 Summary of results
The main aim of the study was the parameter identifica-
tion of an existing vortex detection method, and the detec-
tion of the evolved vortices in fluid flow around a circular 
cylinder and a square cylinder.

The identification was at first performed for the circu-
lar cylinder geometry at Re = 120. After performing the 
detection with the preferred parameters, the calculated 
distances between the neighboring vortices were close 
to the theoretical value characteristic of the von Karman 
vortex street. The identification was performed for the 
other cases as well, and except for the steady case of fluid 
flow (Re = 12), it was successful. As for the square cyl-
inder, the identification was also successfully performed, 
except for the stationary case (θ = 0°, Re = 40). For the 
Nct and MinLength parameters, there is a common section 
with respect to the two geometries, these are the follow-
ing: Nct ∈  [100; 150], MinLength ∈  [110; 125]%. As for 
the convexity deficiency threshold, it is advisable to set 
a DeficiencyThresh between 1% and 10% of the character-
istic size of the investigated body. Further tuning within 
this range may be required to obtain appropriate results 
for the vortex detection.

The vortex detection results obtained with the (global) 
LAVD method were compared with other (local) vortex 
detection results. The applied additional vortex identifi-
cation methods were the following: detection based on the 
instantaneous vorticity distribution, and detection based on 
the λ2-criterion. The comparison was performed by deter-
mining the absolute differences between the coordinates 
of the centers of the detected vortices. Even though the 
differences were insignificantly small, it was also deduced 
that these local methods detected artificial vortices, which 
can be eliminated by the application of the LAVD method. 
Moreover, with the help of the LAVD method the required 
convexity can also be set. On the other hand, the imple-
mentation of the local detection methods is easier than that 
of the LAVD method, and the computational cost is also 
lower while applying local detection methods.

In conclusion, the parameter identification of the LAVD 
vortex detection method has successfully been carried out 
within the study. By providing the suggested values for 
the vortex detection parameters, the usage of the LAVD 
method has been made easier. Through the comparison 

Table 6 Comparison of the different vortex detection results

Absolute difference LAVD (Vorticity) Absolute difference LAVD ( λ2 ) Absolute difference ( Vorticity - λ2 )

Serial number |Δx [m]| |Δy [m]| |Δx [m]| |Δy [m]| |Δx [m]| |Δy [m]|

1 0.0028 0.0014 0.0028 0.0014 0 0

2 0.0007 0.0003 0.0012 0.0003 0.0019 0

3 0.0002 0.0013 0.0002 0.0013 0 0

4 0.0001 0.0007 0.0011 0.0007 0.0010 0

5 0.0005 0.0006 0.0005 0.0006 0 0

6 0.0009 0.0008 0.0009 0.0003 0 0.0011

Fig. 10 Vortex detection based on the λ2-criterion
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with other detection methods, the advantages, and the dis-
advantages could be observed of each method (LAVD: 
accurate, the preferred vortex shape can be set, but also 
time-consuming and it is harder to implement; vortic-
ity, λ2-criterion: less accurate, the vortex shape cannot 
be regulated, but relatively fast, and easy to implement). 
However, further work is needed to perform the identifi-
cation for more cases (e.g., three-dimensional simulations, 
other geometries), and to compare the suggested param-
eter values for the different setups. These studies would 
offer further possibilities for the evaluation of the LAVD 
method's performance against other methods.
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Nomenclature
Latin letters Name Unit

a Side length m

B(t) Boundary of a 
rotationally coherent 
Lagrangian vortex

–

cD Drag coefficient 1

cL Lift coefficient 1

C(t) Center of a rotationally 
coherent Lagrangian 
vortex

–

d Diameter m

D(t) Rotationally coherent 
Lagrangian vortex

–

h Projected frontal 
height

m

l Characteristic length m

L(t) Lagrangian coherent 
structure

–

Re Reynolds number 1

s Variable of integration –

Sr Strouhal number 1

t Final time instant of 
the integration

s

t0 Starting time instant 
of the integration

s

v Velocity m × s−1

x(t, x0) Instantaneous particle 
positions

m

x0 Initial particle 
positions

m

|Δx| Absolute difference in 
the x-direction

m

|Δy| Absolute difference in 
the y-direction

m

Greek letters Name Unit

εh Discretization error 1

θ Angle of incidence °

μ Dynamic viscosity kg × m−1 × s−1

ρ Density kg × m−3

ω(x, t) Vorticity s−1

Instantaneous spatial 
mean of the vorticity

s−1

Abbreviations

DeficiencyThresh Convexity deficiency 
threshold

DSVs Dual secondary 
vortices

LAVD Lagrangian-averaged 
vorticity deviation

MinLength Minimal arc-length 
threshold

MS Main separation

Nct Number of contour 
levels

S Steady

SSV Single secondary 
vortex

VM Vortex merging

ωω( )t
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