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Abstract

Several correlations from the professional literature describing the shear and cross tension strength (STS and CTS) of resistance spot 

welded (RSWed) thin steel sheets were investigated. Some of them need chemical composition or weld nuggets strength hardness 

as input parameters, making them hardly applicable in the planning stage of the joints. Using STS and CTS data collected from over 

250 papers, selected correlations were tested, whether they are applicable to predict the STS and CTS of the RSWed joints at the 

planning stage to help designers plan their static-loaded welds strength. Most correlations had limitations in the applicable base 

materials' tensile strength range. Therefore, new equations for STS and CTS are proposed, which can be used to plan in the 300–

18900 MPa base metals tensile strength range for similar and dissimilar RSWed joints of thin steel sheets.

Keywords

resistance spot welding (RSW), thin steel sheet, shear tension strength (STS), cross tension strength (CTS)

1 Introduction
Resistance spot welding (RSW) is a prevalent technology 
for fast joining thin metal sheets. Due to the versatility of 
the process, it is applicable for various materials from alu-
minum, copper, or nickel-based alloys and different steel 
types and material combinations. Depending on the mate-
rial combinations to be joined, the weldable sheet thickness 
ranges from thin foils to several millimeter-thick sheets [1]. 

The most prominent usage of RSW is in the automo-
bile industry, where primarily thin steel sheets need to 
be welded in various thickness and strength combina-
tions. Thus, different car body parts need different mate-
rial properties and therefore different steel types. In the 
automobile industry, there is also a strong strive to save 
the self-weight of the vehicle to reduce fuel consumption, 
thus, higher and higher strength steels are used, and need 
to be welded [2–4]. With the increasing trend towards 
electric vehicles however, the usage of high strength steels 
is more pronounced, to compensate the high weight of 
the battery pack and improve safety and drive dynam-
ics. Therefore, the usage of advanced high-strength steels 
(AHSSs) or ultra-high-strength steels (UHSSs) is nowa-
days pretty common in car bodies. Of course, this striving 

to reduce self-weight and use high-strength steels is also 
present in many different industry branches [5–8].

To produce sound parts high quality spot welds are 
needed. There are a lot of standardized and non-standard-
ized testing methods to qualify and quantify the sound-
ness of the joints, like shear tension, cross tension, coach 
peel, fatigue, and also different dynamic tests [1]. 

For design purposes at least some strength values should 
be estimated beforehand. Therefore, in our work we try to 
find some prediction models to estimate the shear tension 
strength (STS) and the cross tension strength (CTS) for 
static-loaded joints to help designers at the planning stage 
of the RSWed joints.

2 Literature research
There are lots of works in the literature for RSW of steel, 
where the different mechanical properties of the joint were 
investigated. Some correlations were found between the 
properties of base materials or weld materials (e.g., hard-
ness, tensile strength etc.) and the different joint strength 
types (e.g., STS, CTS, coach peel strength, etc.). Most are 
developed for a narrow range of steel types in thickness, 
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chemical composition, or tensile strength. Those empiri-
cal correlations for STS and CTS will be investigated here 
to determine whether they are applicable in the planning 
stage of RSWed joints strength if only the desired base 
material strength and the thickness is known.

2.1 Prediction of the shear tension strength
In the literature, there are several types of research to pre-
dict the achievable STS of the RSWed steel joints. 

Heuschkel [9] investigated more than 4000 RSWed 
joints of manganese alloyed plain carbon steels in differ-
ent sheet thicknesses. He made a mathematic model for 
predicting the STS Eq. (1)1,

STS lb C Mn� � � � � � � � � �� �� �t d Rm � � 0 05.  (1)

where t is the sheet thickness (here in inch), d is the weld nug-
get diameter (here in inch), Rm is the base materials tensile 
strength (here in psi), α (1.5–3.5), and β (0.5–4.5) (depend-
ing on the sheet thickness) are components of shear ten-
sion strength formulas without dimension and C, Mn are the 
carbon and manganese content in mass %. The correlation 
worked well in the investigated Rm range 320–880 MPa and 
sheet thickness (0.2–12.7 mm) and chemical compositions 
in the range of 0.01 < C% < 0.58 and 0.29 < Mn% < 0.87. 
But obviously, previous knowledge of chemical composi-
tion is needed to be able to use this function.

Sawhill and Baker [10] found a simple equation 
(Eq. (2)) for re-phosphorized steel for a low Rm range 
(350–550 MPa),

STS � � � �A t d Rm  (2)

where A is a coefficient. It was determined A = 3, and 
for low carbon equivalents A = 2.5–3.0. This equation 
would be a simple tool if there were a narrow range of 
coefficient A for all steel compositions.

Defourny et al. [11] investigated 1–2 mm thick mild 
steel and high strength low alloy steel (HSLA) and devel-
oped their correlation for STS (Eq. (3)). This correlation is 
promising and thus does not consider the chemical compo-
sition, only the base metals' strength and sheet thickness.

STS daN� � � � �9 5
1 26 0 76

.
. .t Rm  (3)

Many researchers compared the different type of joint 
failure under shear-tensile load. For shear type or inter-
facial fracture e.g., [12, 13] (Eq. (4) and Eq. (5)), [14] 
(Eq. (6)), and [15] (Eq. (7)),

1 Note for the other formulas if not indicated otherwise SI units are 
used STS is given in N, t and d in mm, Rm in MPa.

STS
nugget

� � � � �B d Rm2 3 4
2�  (4)

STS
nugget

� � � �9 8 4 3
2 1 5

.
.� d HV  (5)

STS � � �D d Rm
2  (6)

STS daN
nugget

� � � � �1 1
2

. d HV  (7)

where Rm nugget and HVnugget are the weld nuggets tensile 
strength and Vickers hardness, respectively. B and D are 
coefficients D ~ 0.6. In most engineering applications, 
interfacial fracture of the weld nugget is to be avoided. 
Therefore, these correlations were not investigated 
in detail. Another difficulty with Eqs. (4)–(6) is that 
Rm nugget and HVnugget are measurable but hardly predictable 
in the planning stage. Some models are developed for their 
prediction (e.g., [16–21]), mostly based on the chemical 
composition of the base material, but their usage is limited 
to selected steel groups.

Kuo and Chiang [22] investigated steel grades in 
400 MPa < Rm < 1000 MPa strength range, and for inter-
facial fracture they proposed a correlation; where STS is 
proportional with the weld nugget size, the hardness ratio 
between nugget and base material ( Hard. = HVnugget / HVBM ) 
and the shear strength of the base material (Eq. (8)). 

STS Hard.
nugget BM

� � � � � �d HV HV dm m
2 2
4 4� �  (8)

Where HVBM is the base materials Vickers hardness and 
τm is the shear strength of the base material.

Of course, as mentioned earlier the favorable failure 
type for most engineering applications under shear load is 
the plug type or pull-out fracture, there are several equa-
tions for that as well.

Oikawa et al. [12, 13] found the same equation as Eq. (2) 
to be applicable and other correlations too (Eqs. (9)–(12)).

STS
plug

� � � �E t d Rm  (9)

STS � � �F t Rm
1 26 0 76. .  (10)

STS � � �36 4
1 42 0 84

.
. .t Rm  (11)

STS kN El.� � � � � � �� � � � �� �2 05 2 09 1 0 0059. . .t R dm
 (12)

Where E, F are coefficients, dplug is the diameter of the 
pulled-out plug after pull-out fracture, and El. is the elon-
gation of the base metal sheets. The diameter of the plug is 
measurable, but the prediction is hardly applicable. Also, 
the elongation of the selected steel group is might not been 
known in the planning stage of the welded part, there-
fore Eq. (9) and Eq. (12) will not be investigated further. 
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Equation (10) and Eq. (11) donot consider the weld nugget 
size, but they could be easy to use for planning.

Sakuma and Oikawa [23] and Sakuma et al. [24] also 
proposed a correlation for STS either from the weld nugget 
strength and size (Eq. (13)), 

STS
nugget

� � � �G d Rm� 2
4  (13)

where G is a constant. The investigated steels were in the 
Rm = 400–800 MPa strength range and t = 1–2.6 mm thick. 
Again, the weld nuggets strength is hard to forecast, there-
fore this correlation is hardly applicable in the planning 
stage. They also investigated Eq. (2) and determined fac-
tor A = 2.5–3.3, and found it is also dependent on the sheet 
thickness, base materials' strength, and the chemical com-
position mainly the carbon and silicon content, which 
makes the application of a relatively simple correlation 
a lot more complicated.

Radakovic and Tumuluru [14] and Tumuluru [25] 
investigated the spot welds strength of various steel 
types (interstitial free (IF), dual phase (DP), and trans-
formation induced plasticity (TRIP) steels) in the 
Rm = 300 – 880 MPa strength range in t = 1–1.6 mm thick-
nesses. They found for pull-out fracture mode Eq. (2) to be 
sound with A = 2.2–2.25.

There are of course, standardized correlations for 
the minimum acceptable STS for uncoated and coated 
low carbon steels, e.g., International Organization for 
Standardization (ISO) and British standards (BS). Both 
the ISO 14373:2015 [26] and the BS 1140:1993 [27] stan-
dard requires a minimum STS according to Eq. (2) where 
A = 2.6. The BS 1140:1993 standard [27] also gives cor-
relations for dissimilar joints according to Eqs. (14)–(16),

if STSt t t t d Rm1 2 1 1 1
2 5 2 7� � � � � � �. .  (14)

if STSt t d Rm2 1

2

1
2 5 0 691� � � � �. .  (15)

if STSt t t d Rm2 1 1 1
2 5 3 08� � � � � �. .  (16)

where t1 , t2 are the thicknesses and Rm1 , Rm2 are the tensile 
strength of the steel sheets.

These listed equations (Eqs. (1)–(16)) give their correla-
tion mostly in the Rm < 900 MPa strength range, but the 
newly developed AHSS and UHSS grades can have more 
than two times this tensile strength. The AWS D8.1M:2013 
standard [28] made for automotive applications fills this 
gap and gives a correlation for the minimum acceptable 
STS (Eq. (17)). Equation (17) already covers the whole 
strength range from normal strength steels till AHSSs. 

There is one interesting property though, namely above 
1340 MPa Rm the required STS values start to decrease.

STS � � � � � � � �� �
� � �

� �
6 36 10 6 58 10 1 674

4

7 2 4

1 5

. . .

.

R R

R t
m m

m

 (17)

Previously the authors [29] analyzed STS data from 
approx. 80 papers in the professional literature, and found, 
that this decrement in the STS values in the UHSS range is 
not necessarily right (at least not that severe) and proposed 
a new correlation above 1340 MPa base materials tensile 
strength (Eq. (18)).

STS � �

� �

� � �
�

�

�

�
�
�

�

�

�
�
�
�

� �

�
3788 77

6 36 10

6 58 10

1 674

7 2

4
.

.

.

.

R
R R
m

m m

��

�
�
�

�

�

�
�
�
� �4 1 5t .  (18)

This was a basic concept, which increased the STS val-
ues of the AWS D8.1M:2013 standard [28] with the same 
amount as it was below its maxima (at Rm = 1340 MPa). 
After extended literature and experimental research, data of 
approx. 160 papers were analyzed [30] and a prediction for 
the STS values was given in a wide tensile strength range 
(Rm = 400–2000 MPa), for thin steel sheets (t = 0.3–4 mm) 
(Eq. (19)). This correlation suggests that STS keeps increas-
ing in the whole Rm range even if Rm > 1340 MPa. The com-
parison between the Eq. (1) according to Radakovic and 
Tumuluru [14] and Tumuluru [25], according to the ISO 
standard [26] and the Eq. (18) according to the AWS stan-
dard [28] was also presented here [30].

STS kN� � � � � � � �10 10 15 80 0 0088. . .t Rm  (19)

Xu et al. [31, 32] conducted many experiments in 
a wide tensile strength range of Rm = 250–1600 MPa steel, 
t = 0.6–1.6 mm thickness in similar and dissimilar com-
binations. They made a standardized shear strength func-
tion which multiplied with the sheet thicknesses (Eq. (20)) 
gave a good correlation with their experimentally mea-
sured STS values. According to this function (Eq. (20)), 
STS monotonously increases in the UHSS range too: 

STS � � �
� � � � �
� � �

�

�
�

�

�
�

� �

t t
R R
R
m m

m
1 2

9

1

3 5

1

2

1

8 10 3 10

0 0418 6 0904. .

, (20)

where Rm1 < Rm2. Note that besides the Eqs. (14)–(16) of the 
BS 1140:1993 standard [27] this is the only correlation eas-
ily applicable for dissimilar joints. While, the British stan-
dard relies on the thinner sheet thickness, Eq. (20) relies 
on the weaker base material of the two sides of the weld.

Of course, the other equations also can be used for dis-
similar welds. Here, it is recommended to calculate the 
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STS according to both sides of the joint and use the smaller 
value for designing the welded part. 

2.2 Prediction of the cross tension strength
To prepare cross tension specimen and measure their 
strength is a little bit more complicated, maybe that's 
why there are fewer formulas to forecast the cross tension 
strength of RSWed joints, than for STS.

Heuschkel [9] also investigated the CTS of the carbon 
and manganese alloyed steels (Eq. (21))2.

CTS lb C Mn� � � � � � �� � � � � � �� ��� ��t d R a R b c f gm m  (21)

Where t is the sheet thickness (here in inch), d is the 
weld nugget diameter (here in inch), Rm is the base mate-
rials tensile strength (here in psi), a and b components of 
normal strength formulas in psi, c, f and g components 
of normal strength formulas without dimension and C, 
Mn are the carbon and manganese content in mass %. 
The problem here is the same, as with their STS formula 
(Eq. (1)), namely previous knowledge of chemical compo-
sition is needed to be able to use this function, and its lim-
ited Rm and chemical composition range. 

There are other formulas from Oikawa et al. [12, 13] for 
shear type fracture based on the weld nuggets' mechan-
ical properties (hardness and tensile strength) (Eq. (22) 
and Eq. (23)), 

CTS
nugget

� � � �H d Rm� 2
4  (22)

CTS
nugget

nugget

� � � � � �� �
�� �

9 8 4 1 4 0 003

3

2
. . .� d HV

HV
 (23)

where H is a coefficient. 
Kuo and Chiang [22] proposed for interfacial fracture 

too, to use the hardness ratio in their equation (Eq. (24)). 

CTS Hard.
nugget BM

� � � � � �

� �

� �d R HV HV

d R
m

m

2

2

4

4

 (24)

Equations (22)–(24) are hard to use thus as already 
mentioned the weld metals' hardness and tensile strength 
are hard to predict in the planning stage. Of course, in the 
case of the cross tension (normal) load, the favored frac-
ture type is the pull-out fracture. Therefore, these correla-
tions were not investigated in detail.

For the preferred pull-out fracture Oikawa et al. [12, 13] 
proposed Eqs. (25)–(27)). In the planning stage Eq. (26) 

2 Note for the other formulas if not indicated otherwise SI units are 
used CTS is given in N, t and d in mm, Rm in MPa.

is the handiest, thus only the sheet thickness and nugget 
size is needed.

CTS
nugget

� � � � � �I t d Rm2 3 �  (25)

CTS � � �645
1 27t d .  (26)

CTS El.
nugget

� � � � � � � � �� �� �5 1 100 100 0 5
1 46

� t d Rm .
.  (27)

Sakuma and Oikawa [23] and Sakuma et al. [24] pro-
posed a similar correlation (Eq. (28)) for the CTS as Eq. (2) 
for the STS values.

CTS � � � �J t d Rm  (28)

Where J is a coefficient. The investigated steels were 
in the 400 MPa < Rm < 800 MPa strength range and 
t = 1–2.6 mm thickness range. They determined, J = 1.2–2.7 
of and found it is dependent on the sheet, thickness, base 
materials' strength and the chemical composition, mainly the 
carbon and silicon content.

Kuo and Chiang [22] proposed a correlation for pull-out 
fracture too. They used the hardness ratio in their equation 
as well (Eq. (29)).

CTS Hard.
nugget BM

� � � � � � � � � �� � � �t d HV HV t dm m  (29)

As for the standardized correlations, the 
AWS D8.1M:2013 standard [28] gives the minimum 
acceptance criteria for automotive applications for CTS 
values too (Eq. (30)).

CTS � �1 25
2 2

.
.t  (30)

Here again, the only parameter is the steel sheets 
thickness.

The equations for calculating CTS (Eqs. (21)–(30)) also 
can be used for dissimilar welds, here it is recommended 
to calculate the CTS according to both sides and use the 
smaller value for designing the welded part. 

2.3 Other possibilities of strength prediction
Naturally, correlations get better and better, the nar-
rower the sheet thickness and material range e.g., 
Rajarajan et al. [33] predicted very accurately the STS, 
CTS, HVnugget values of RSWed DP800 steel sheets. Good 
estimations can be made with numerical [34–38] and 
finite element (FEM) simulations [39–43], machine learn-
ing [44], and artificial neural networks [45–48]. These 
methods can be a very useful and accurate tools to opti-
mize and predict weld properties (STS and CTS as well), 
but they are primarily applicable to a specific narrow 
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application area, not to a wide range of material strength 
classes and combinations. 

Therefore, these methods are used not in the planning 
stage of the RSWed parts, but more likely in the optimi-
zation of the joint and in whilst establishing an applicable 
parameter window for production and during quality con-
trol by monitoring of the manufacturing process.

2.4 Data collection and processing
In the main scientific databases (e.g., Science Direct, Web 
of Science, J-Stage etc.) keyword-based searches were 
run to find possible papers with STS or CTS data. Also, 
complementary searches were made in specifically weld-
ing related journals (e.g., Welding in the World, Welding 
Journal, Quarterly Journal of the Japan Welding Society, 
Hegesztéstechnika etc.). The keywords were: resistance 
spot welding, steel and if available the different joint 
strengths. Papers mostly in English and Hungarian were 
processed but also in Japanese and Korean if the figures/
tables and their captions were presented in English. STS 
and CTS data were collected if at least the sheet thick-
nesses and base materials strength could be determined 
from the manuscript. If available complementary data, 
like nugget size, absorbed energy, and scatter for those 
was also collected. To avoid excess and mostly bad data 
points, only the STS or CTS data were collected, corre-
sponding to an optimized joint (highest STS or CTS).

To investigate the effectiveness of the concrete correla-
tions, the normalized STS or CTS values for the given 
equations ( STSmeasured / STSequation or CTSmeasured / CTSequation ) 
are calculated in Excel® software. The diagrams were made 
with Origin® software. In case of the dissimilar joints the 
STS or CTS values were calculated for both sides for the 
joints – and if the given correlation did not specify other-
wise – the value for the weaker side was used for the cal-
culation of the normalized values. For better visualization 
of the trends of the different equations linear regression 
using least squares method was made also with Origin® 
software on most of the plots.

3 Results and discussion
From the listed correlations (Eqs. (1)–(30)) some are 
harder some are easier applicable in the design stage of the 
RSWed parts, STS and CTS data of couple hundred papers 
was collected and evaluated according to the selected 
equations to see their feasibility for predicting the STS or 
CTS values in a wide base metals range. 

3.1 Evaluation of the STS correlations
From the listed equations for the STS values (Eqs. (1)–(20)) 
some could be already used in the design stage for shear-ten-
sile loaded RSWed joints. Of course, interfacial fracture is 
to be avoided. If the concrete material is not yet known for 
the part to be welded, only the equations which require ten-
sile strength and thickness (Eqs. (2), (3), (10), (11), (14) 
and Eq. (20)) can be applied, therefore the literature data 
for those correlations was evaluated. STS data from more 
than 240 papers was analyzed. The STS values from the 
professional literature for the optimized joints are plotted in 
Fig. 1 [12–17, 23, 25, 29, 31–35, 38–40, 45, 47, 49–273]. 
The dissimilar joints were depictured as the "weaker side" 
of the joint according to the requirement (Eq. (17)) of the 
AWS D8.1M:2013 standard [28].

The measured STS values vs. the sheet thicknesses are 
plotted on Fig. 2. According to this diagram, the STS val-
ues increase significantly with the sheet thickness, but the 
scatter is really high, e.g., for a steel sheet thickness of 
2 mm the measured STS values were between 10–46 kN. 
After linear fitting the STS values for 2 mm thick sheets 
are predicted to be in the very wide range of 16–40 kN 
(95% prediction band). Therefore, the applicability of such 
equations where the sheet thickness is the only parameter 

Fig. 1 Graphical representation of the literature data of the STS values 
is shown in similar [12–17, 25, 29, 31–35, 38, 39, 45, 49–239] and 

dissimilar [23, 29, 31, 32, 34, 38, 40, 47, 50, 61, 63, 67, 74, 99, 102, 107, 
116, 118, 120, 121, 134, 138, 144, 162, 163, 170, 205, 214, 223, 231, 233, 

240–273] RSWed joints. For the dissimilar joints, the weaker side is 
depictured according to Eq. (17).
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for predicting the STS values beforehand seems to be very 
limited, but they were investigated, nevertheless.

In Fig. 3 the normalized STS values for Eq. (3) is rep-
resented in the whole Rm range of Rm = 300–1900 MPa. 
The normalized STS values are between ~0.3–1.5 and scat-
ter asymmetrically around the fitted trend line +0.4, and –0.6 
at lower Rm and at higher base materials strength it is more 
pronounced. The normalized STS values are tendentiously 
decreasing in the whole Rm range. Therefore, Eq. (3) is not 
recommended for designing the joint strength. 

Basically Eq. (10) is very similar to Eq. (3), but in [12, 13] 
factor F was not presented for Eq. (10). Therefore, a param-
eters search was made via Origin® software on the simi-
lar joints STS data. F = 70.47 was found to be the best fit 
(with R2 = 0.55). The normalized STS values for Eq. (10) 

with F = 70.47 are in Fig. 4 and they are between ~0.4–1.7.  
This is a bit larger scatter, than in the case of Eq. (3), but 
the normalized STS values are symmetrically distrib-
uted around the fitted line. Moreover, Eq. 10 has the same 
shortcoming namely, the normalized STS values are ten-
dentiously decreasing in the whole Rm range and above 
Rm ~ 1200 MPa it goes bellow 1. Practically it means that 
the correlation for lower strength steels overestimates 
the achievable STS values and for UHSS Rm > 1200 MPa 
it underestimates them. Therefore, Eq. 10 is not recom-
mended for designing the joint strength. 

Equation (11) takes the sheet thickness and tensile 
strength of the material with more weight into account 
(t1.42, Rm

0.84) compared to Eq. (3) or Eq. (10), which results 
in a larger scatter in the normalized STS values ~0.5–2.5  
(Fig. 5). For Eq. (11) too, in the whole base materi-
als tensile Fig. 5 strength range a clear decreasing trend 
can be observed, and the normalized STS values above 
Rm ~ 1300 MPa fall below 1. Therefore, Eq. (11) is not rec-
ommended for designing the joint strength either.

Normalized STS values for the AWS D8.1M:2013 stan-
dard [28] can be seen on Fig. 6. In outmost cases the values 
are above 1, therefore the correlation fulfills its original 
purpose as a boundary for minimal acceptable STS val-
ues. Applying it to the joint strength's planning neverthe-
less proves to be difficult. 

Because as discussed also in [29, 30], the scatter is 
high ~1–4, and due to the nature of Eq. (17), the nor-
malized STS values decrease till Rm = 1340 MPa, and 
then they start to increase again. Therefore, this incre-
ment Rm > 1340 MPa is somewhat dampened by Eq. (18). 

Fig. 2 The measured STS values are shown in similar and dissimilar 
RSWed joints, for the dissimilar joints, the weaker side is depictured.

Fig. 3 Normalized STS values are shown according to Eq. (3) 
for similar and dissimilar RSWed joints, for the dissimilar joints, 

the weaker side is depictured.

Fig. 4 Normalized STS values are shown according to Eq. (10) with 
F = 70.47 for similar and dissimilar RSWed joints, for the dissimilar 

joints, the weaker side is depictured.
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For these reasons, these equations are not recommended 
for designing the joints strength.

Equations where the nugget size is also a parameter 
are tricky to use in the planning for the joint strength, but 
we present a typical approach. According to the literature 
and also standards (e.g. [1, 274]) to produce sound RSWed 
joints the weld nuggets diameter should be at least 3.5 · √t, 
because bellow this value different type of weld defects can 
occur, e.g., lack of fusion, stuck weld etc. The maximum 
weld nugget size is set typically 5 · √t (according to [26]), 
eventually 6 · √t, but above this size, other weld defects 
will occur e.g., splash. Therefore, we will investigate the 

correlations where d the nugget size also a parameter is, 
in the typical region d = 3.5 – 5 · √t.

Sawhill and Baker's [10] equation (Eq. (2)), is used by 
various authors and even in standards [14, 25–27]. The nor-
malized STS values for the two extrema (A = 2.2, d = 3.5 · √t 
and A = 2.6 and d = 5 · √t) are visualized in Fig. 7 and 
Fig. 8. It is important to mention that the real nugget sizes 
maybe differ from the ones assumed in the calculation. 

In Fig. 7 there are the normalized STS values, for 
the smallest STS requirement. These values at small 
Rm (~300 MPa) scatter around ~2.6±1.4, and a clear decreas-
ing trend can be observed, the normalized STS values at 
Rm ~ 1000 are in the range ~1.7±1. Here in most cases nor-
malized STS values are above 1 (till Rm ~ 1700 MPa), but 

Fig. 6 Normalized STS values are shown according to the AWS 
standard [28] (Eq. (17)) and modified by the authors [29] when 

Rm > 1340 MPa (Eq. (18)) for similar and dissimilar RSWed joints. 
For the dissimilar joints, the weaker side is depictured according to 

Eq. (17) and Eq. (18).

Fig. 7 Normalized STS values are shown according to Eq. (2) where 
A = 2.2 and d = 3.5 · √t for similar and dissimilar RSWed joints. 

For the dissimilar joints, the weaker side is depictured.

Fig. 8 Normalized STS values are shown according to Eq. (2) where 
A = 2.6 and d = 5 · √t for similar and dissimilar RSWed joints.  

For the dissimilar joints, the weaker side is depictured.

Fig. 5 Normalized STS values are shown accoriding to Eq. (11) 
for similar and dissimilar RSWed joints, for the dissimilar joints, 

the weaker side is depictured.
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still more values are below 1 than in the case of Eq. (17) 
(Fig. 6), therefore as a boundary for minimal acceptable 
STS values is Eq. (17) a better choice. We have to men-
tion however, that the standardized equation was meant 
to be used for low carbon steels, and in the UHSS range 
(Rm > 800 MPa) for most steel types, the carbon content 
also keeps increasing with higher Rm . Therefore Eq. (2) is 
only recommended to be used to estimate the minimum 
acceptable STS values for steels Rm < 800 MPa, where 
A = 2.2 and d = 3.5 · √t, and d is not the actual (measured) 
nugget size it is only for the calculation. 

In Fig. 8 there are the normalized STS values (for the 
larger STS requirement). If the actual nugget size is not 
known, d = 5 · √t was used to calculate the minimum 
acceptable STS of the steels. In the whole Rm range similar 
decreasing trend can be observed than in Fig. 7. The nor-
malized STS values scatter at low Rm (~ 300 MPa) around 
1.5±0.9 but at ~Rm = 1200 MPa these values go below 1. 
Therefore, for the planning of the joint strength Eq. (2) is 
not recommended either.

However, in case of similar joints, the British stan-
dard [27] uses the same equation as the ISO standard [26], 
the British standard also gives correlations for the dissimi-
lar joints using the mechanical properties of the thinner side 
of the joint (Eq. (15) and Eq. (16)). As we can see in Fig. 9 
the British Standard gives a little bit smaller normalized 
STS values in the whole Rm range than the ISO standard. 
The same decreasing trends can be observed, but the slope 
of the decrement is smaller in the case of the ISO standard. 

The normalized STS results of Xu et al. [31, 32] approach 
(Eq. (20)) using the smaller Rm of the two base materials 
is visualized in Fig. 10. The normalized values are mostly 
in ~0.3–1.5 range, at lower tensile strength it's a bit more 
(~0.3–2.0). Overall, the normalized STS values scatter 
around ~0.9±0.6 and no significant decreasing trend can be 
observed. Therefore, with a safety factor ~3 this correlation 
could be used globally to predict the STS values.

Previously [30] a plane was fitted on the optimized 
STS values (similar joints) depending on the base mate-
rials' tensile strength and sheet thickness (Eq. (19)). This 
was done based on STS data of approx. 160 papers. Again, 
plane fitting was done, but now based on data of over 
200 papers (Fig. 11, Eq. (31)). Small refinement was made 

Fig. 9 Normalized STS values of the dissimilar RSWed joints are 
shown according to the ISO 14373:2015 standard [26], where A = 2.6 
and d = 5 · √t are used by Eq. (2), and the weaker side is depictured. 
Normalized STS values of the dissimilar RSWed joints are shown 

according to the BS 1140:1993 standard [27], where d = 5 · √t is used 
by Eq. (15) and Eq. (16), and the weaker side is depictured.

Fig. 10 Normalized STS values are shown according to Eq. (20).

Fig. 11 Measured STS values are shown with the fitted plane according 
to Eq. (31), for similar and dissimilar RSWed joints. For the dissimilar 

joints, the weaker side is depictured.
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compared to the previous fitting (R2 = 0.7). It is still clearly 
seen, that, the main effect lies on the sheet thickness to be 
welded, and the base metals tensile strength also increases 
the STS values.

STS kN� � � � � � � �9 58 15 32 0 0087. . .t Rm  (31)

Normalized STS values for Eq. (31) can be seen in 
Fig. 12. The scatter is small, normalized STS values are 
between ~0.5–2.0 and the values scatter symmetrically 
around 1. Therefore, with a safety factor >2 this correla-
tion can be used in the whole Rm range to predict the STS 
values in the design stage of the given RSWed component.

3.2 Evaluation of the CTS correlations
From the listed equations for the CTS values (Eqs. (21)–(30)) 
some could already be used in the planning stage for nor-
mal loaded RSWed joints. Of course, interfacial fracture is to 
avoid here too. If, the concrete material is not yet known for 
the part to be welded only the required tensile strength and 
thickness, Eqs. (26), (28) and Eq. (30) can be applied, there-
fore the literature data for those correlations was tested. CTS 
data for optimized joints from ~100 papers were analyzed. 
The CTS values for the optimized joints is plotted in Fig. 13 
[12, 21, 23, 25, 33, 38, 39, 42, 43, 49, 60, 66, 67, 71, 80, 83, 
84, 86, 100, 107–109, 118, 134, 136, 143, 146, 150, 153, 158, 
166, 167, 170–175, 179, 182–186, 188–190, 197, 200, 203, 
206, 209–212, 214–220, 228, 232, 234, 235, 238, 249, 250, 
266, 273, 275–304, 305]. The dissimilar joints were repre-
sented as weaker side of the joint according to the require-
ment (Eq. (30)) of the AWS D8.1M:2013 standard [28].

The measured CTS values vs. the sheet thickness are 
plotted on Fig. 14. 

According to this diagram, the CTS values increase sig-
nificantly with the sheet thickness, but the scatter is really 
high, e.g., for a steel sheet thickness of 1.6 mm the mea-
sured CTS values were between 6–18 kN. After linear fit-
ting the CTS values for 1.6 mm thick sheets are predicted 
to be in the very wide range of 5–16 kN (95% prediction 
band). Therefore, the applicability of such equations where 
the sheet thickness is the only parameter for predicting the 
CTS values beforehand seems to be very limited.

Fig. 14 The measured CTS values are shown for similar and dissimilar 
RSWed joints. For the dissimilar joints, the weaker side is depictured 

according to Eq. (30).

Fig. 12 Normalized STS values are shown according to Eq. (31), 
for similar and dissimilar RSWed joints. For the dissimilar joints, 

the weaker side is depictured.

Fig. 13 Graphical representation of the literature data of the measured 
CTS values is shown in similar [12, 21, 23, 25, 33, 38, 39, 42, 43, 49, 60, 
66, 67, 71, 80, 83, 84, 86, 100, 107–109, 134, 136, 143, 146, 150, 153, 158, 
166, 167, 170–175, 179, 182–186, 188–190, 197, 200, 203, 206, 209–212, 

214–220, 228, 232, 234, 235, 238, 249, 273, 275–304] and dissimilar 
[38, 43, 67, 107, 118, 134, 170, 214, 249, 250, 266, 282, 304, 305] 

RSWed joints.
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In Fig. 15 the Eq. (30) (AWS D8.1M:2013 standard [28]) 
is investigated. As it can be seen, it fulfills its purpose by 
completely describing the minimal acceptable CTS val-
ues, because utmost normalized CTS values are above 1. 
(The same can be observed also in Fig. 16). The normal-
ized values are basically in the whole investigated Rm 
range between 1–6 (eventually even 9) and a decreasing 
trend with higher Rm values can be observed. Therefore, 
Eq. (30) is not recommended for calculating the actual 
CTS value in the design stage.

As it was mentioned earlier, the nugget diameter d for 
good quality joints should be in the range of 3.5 – 5 ⸱ √t, 

therefore Eq. (26) was investigated in this range. As it 
can be seen in Fig. 16, calculating with the nugget size 
d = 3.5 ⸱ √t, Eq. (26) could be used as a boundary for the 
minimal acceptable CTS values similar to Eq. (30), but here 
a few more CTS values fall under the acceptance criteria. 
Increasing the assumed nugget size also increases the num-
ber of CTS values that fall under the acceptance criteria.

In the normalized CTS value plot for Eq. (26) for 
d = 5 ⸱ √t (Fig. 17) a slight decreasing trend for the normal-
ized CTS values with higher base materials strength can 
be observed (~1.8±0.8 at Rm = 300 MPa decreased to ~1.2 
at Rm = 1800 MPa). Still, the values scatter in a smaller 
range (between 0.5–3) than for Eq. (30) therefore with 
a safety factor >2 Eq. (26) could be used for predicting the 
CTS of the joint, for design purposes.

Equation (28) is beneficial, because it takes not only the 
sheet thickness and nugget size, but also the base materi-
als tensile strength into account. Sakuma and Oikawa [23] 
and Sakuma et al. [24] determined for their investigation's 
coefficient J = 1.2–2.7. For the global approach in the whole 
tensile strength range the normalized CTS values are plot-
ted for d = 3.5 ⸱ √t and d = 5 ⸱ √t in Fig. 18. As it is obvious 
the normalized CTS values are constantly decreasing, and 
at some Rm (depending on the nugget size and factor J) it 
falls below 1. However, this correlation works well for the 
selected steel group in [23, 24], it does not give a global 
approach to predict CTS values, for design purposes in the 
whole tensile strength range.

A plane fitting on all the literature data of similar joints 
was made (Fig. 19) with Origin® software to cover the 
whole steel sheet range. 

Fig. 15 Normalized CTS values are shown according to the requirement 
(Eq. (30)) of the AWS D8.1M:2013 standard [28] for similar and dissimilar 

RSWed joints. For the dissimilar joints, the weaker side is depictured.

Fig. 16 Graphical representation of the literature data of the measured 
CTS values is shown in similar and dissimilar RSWed joints, planes 
are shown according to Eq. (26) (for different weld nugget sizes) in 
blue and according to Eq. (30) in green. The weaker side is depicted 

according to Eq. (30) for the dissimilar joints.

Fig. 17 Normalized CTS values are shown for Eq. (26) for similar 
and dissimilar RSWed joints, for the assumed nugget size d = 5 ⸱ √t. 

For the dissimilar joints, the weaker side is depictured.
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The fitted plane equation is Eq. (32).

STS kN� � � � � � � �1 74 9 76 0 0034. . .t Rm  (32)

According to Eq. (32) in the investigated range it seems; 
that the main effect on the CTS has the sheet thickness 
which increases its value and the base materials tensile 
strength slightly but decreases the achievable CTS.

The normalized CTS values for Eq. (32) can be seen 
in Fig. 20. For similar joints the normalized values scatter 
around 1 and they are between 0.5–2. In the case of the 
dissimilar joints if there is a large difference in the sheet 

thickness of the two sides of the joint there were some high 
values ~5. Therefore, in the case of the dissimilar joints the 
CTS values were compensated proportional with the sheet 
thickness ratios according to Eq. (33). 

STS kN

+

� � � � � � � �� � � �� �
� � �

1 74 9 76 0 0034

1 74 9 76

1 1 1 1 2

2

. . .

. .

t R t t t

t
m

�� �� � � �� �0 0034
2 2 1 2

. R t t tm

 (33)

After this compensation, normalized CTS values for the 
dissimilar joints are in the region of 0.4–2 too. According 
to these results, for similar joints Eq. (32) and for dissimilar 
joints Eq. (33) can be used in the planning stage of RSWed 
parts in the whole tensile strength range for thin sheets. 
For application the usage of a safety factor 2> is needed.

4 Conclusions
In this study significant amount of literature data on resis-
tance spot welding was analyzed and evaluated according 
to different kinds of shear tension strength and cross ten-
sion strength formulas. It was determined whether they are 
applicable to predict the strength of the RSWed joints in the 
planning stage of the manufacturing if only the sheet thick-
ness and tensile strength of the base materials is known.

The literature data analysis using the different STS cor-
relations showed:

• The AWS D8.1M:2013 standard's [28] equation 
(Eq. (17)) gives a good boundary for minimal achiev-
able STS values in the whole tensile strength range, but 
to estimate the STS beforehand is not really applicable.

• Sawhill and Baker's [10] equation (Eq. (2)) with 
A = 2.2 and a presumed nugget size d = 3.5 · √t 
gives also a good boundary for minimal acceptable 

Fig. 19 Measured CTS values are shown with the fitted plane according 
to Eq. (32) for similar and dissimilar RSWed joints, for the dissimilar 

joints, the weaker side is depictured.

Fig. 20 Normalized CTS values are shown according to Eq. (32) for similar 
and dissimilar, and according to Eq. (33) for dissimilar (compensated) 
RSWed joints. For the dissimilar joints, the weaker side is depictured.

Fig. 18 Normalized CTS values are shown according to Eq. (28) 
(for J =1.2 and 2.7 the nugget sizes d = 3.5 ⸱ √t and 5 ⸱ √t) for similar 

RSWed joints.
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STS values in the whole tensile strength range, but 
to estimate the STS beforehand is not really appli-
cable either.

• Xu et al.'s [31, 32] equation (Eq. (20)), seems to be 
applicable to estimate the STS in the whole tensile 
strength range (with a safety factor ~3 needed).

• A new formula was proposed (Eq. (31)), which is 
even more applicable to estimate the STS depending 
on the steels sheet thickness (0.3–3.8 mm range) and 
their tensile strength (300–1900 MPa range), (with 
a safety factor ~2 needed).

The literature data analysis using the different CTS cor-
relations showed:

• The AWS D8.1M:2013 standard's [28] equation 
(Eq. (30)) gives a good boundary for minimal achiev-
able CTS values in the whole tensile strength range, but 
to estimate the CTS beforehand is not really applicable.

• Oikawa et al.'s [12, 13] equation (Eq. (26)) with 
a presumed nugget size d = 3.5 · √t gives also a good 

boundary for minimal acceptable CTS values in the 
whole tensile strength range and also seems to be 
applicable to estimate the CTS (with a safety factor 
>2 needed).

• A new formula was proposed to predict the cross 
tension strength for similar (Eq. (32)) and dissimi-
lar (Eq. (33)) joints as well, depending on the steels 
sheet thickness (0.5–2.6 mm range) and their tensile 
strength (300–1900 MPa range), respectively (with 
a safety factor >2 needed).
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