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Abstract

Fiber reinforced plastic laminated composites have conquered greater and greater territory in the field of engineering in the past 

decades for their high strength to weight ratio. By varying the layup structure their behavior can easily be modified. One of the 

applications, that is investigated in this article is the slit tube or cylindrical shell, that used as a structural element undergoes bending. 

These shells indifferent from their material may experience the snap-through phenomenon (this depends both on the material and 

geometry) in which the shell flattens and loses its stability to bending. Depending on the layup bistable behavior also can be achieved, 

i.e., the shell would have two different shapes that are in equilibrium without any constraint. In this article the effect of the layup is 

investigated both on the bistable behavior and the snap-through phenomenon. Geometric limitations for the bistability are calculated 

based on a simple beam model from the literature. The same model is used to find the snap-through moment for these shells as a 

function of the orientation angle. It is also proven that the flattening of the shell cannot be evaded by changing the layup structure. 

The results are confirmed by FE simulations where applicable.
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1 Introduction
The polymer composite cylindrical shells presented in this 
article undergo pure bending, and their behavior is inves-
tigated under this load. The article mainly focuses on the 
simple beam model provided by Galletly and Guest  [1], 
which although not accurate from a quantitative point of 
view, but provides a good qualitative description, and it is 
easy to handle numerically. Galletly and Guest  [2] have 
also provided a more accurate shell model.

Cylindrical shells, tape-springs or storable tubular 
extendable members (STEMs, Rimrott  [3]) have been 
researched in the past, one of the first good description for 
flat shells comes from Wuest [4], published in 1954, who 
provided a shell model for isotropic materials. They are 
used primarily as measuring tapes, made of steel. When 
made of isotropic materials, they are only monostable, 
although because of the snap-through phenomenon they 
can be easily coiled. Another feature of these shells is the 
propagation moment, that is a theoretically constant bend-
ing moment in a large longitudinal curvature interval of 

the buckled shell. This has been investigated by Martin 
et al. [5] based on the Ericksen bar [6]. 

In case of bistable behavior, the shell has two distinct, 
curved configurations, that are an extended state with 
a transverse curvature and a coiled state where the trans-
verse curvature disappears (the shell flattens), and another 
longitudinal curvature appears. The bistable behavior can 
be achieved for the tape-springs made of isotropic mate-
rial by plastic forming that leaves residual stresses in the 
shell. This was first described by Kebadze et  al.  [7] in 
2004. The  first analytical description for the composite 
bistable shells was given by Iqbal et  al.  [8], who deter-
mined the coiling and transverse curvatures by finding 
the energy minima of an infinitesimally small compos-
ite shell element. In the work of Galletly and Guest [1] it 
is shown that for an antisymmetric layup the second sta-
ble state coils in a helical manner. For further articles 
describing the bistable composite shell, the reader is ref-
erenced to  [9–12]. Applications for tape springs include 
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self-deployable structures, energy harvesting and morph-
ing structures [11]. Another use of the slit tubes was pre-
sented by Seriani and Gallina  [13], who have presented 
a STEM parallel robot.

Lately several articles aimed to describe the behavior 
of multistable, quasi-cylindrical composite shells with the 
help of the Föppl-von Kármán shell model, which can be 
used to create models with a reduced number of degrees 
of freedom for better handling [14, 15]. Brunetti et al. [16] 
also confirmed that the reduced order model is able to 
predict the elastic energy content and the stable shapes 
of the clamped shells with acceptable accuracy. Brunetti 
et al. [17] also examined the nonlinear dynamics of these 
clamped cantilever shells, to enhance the energy harvest-
ing capabilities, which were experimentally investigated 
by Mitura et al. [18]. 

In the article based on the model of Galletly and 
Guest [1] several calculations have been caried out to ana-
lyze the effect of the layup. A method will be presented on 
how to use this model to determine the equilibrium trajec-
tories of the shell under pure longitudinal bending. It will 
be shown how the snap-through moment depends on the 
layup and cross-section geometry. In the last section a cri-
terion for the bistable behavior is also introduced.

2 Modelling methods
In this section the model for the composite slit tube pro-
vided by Galletly and Guest [1] will be presented for the 
reader to get familiar with the expressions and methods 
used later in the article. In Section  2.3 a finite element 
(FE) model is presented, the results of which are compared 
to the results obtained with the beam model. 

2.1 Beam model
The model treats the shell as a thin-walled section. 
The parameters and geometry of the shell are given in Fig. 1.

The four main loads of the cylindrical shell are pre-
sented in Fig. 2. These are tension (N), torsional moment 
(T), longitudinal bending moment ( ML ), and transverse 
bending moment ( MT ). In Fig.  3 the four deformation 
modes are also presented.

The assumptions include that there is no change in the 
deformation parameters along the beam, which means it 
deforms uniformly, and that the cross-section never loses 
the circular shape. Of all the deformation modes shear and 
bending around the Z axis are neglected. This leaves four 
deformations that need to be considered: Ex ; ϕ; KL ; KT , 
which are the longitudinal strain of the beam, the twist 
around X axis per unit length, longitudinal curvature, and 
cross-section curvature. It is important to emphasize that 
restricting the shape of the cross-section to a circular arc 
makes the model stiffer to bending than the reality [19, 20]. 

The local strains and curvatures used in the model, 
derived in [1] are given in Eqs. (1)–(4).
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Fig. 1 The geometry and parametrization of the cylindrical shell

Fig. 2 The loads and deformation modes of the shell considered  
in the model

Fig. 3 The forces acting on an infinitesimally small section of the shell: 
Of these stress resultants Ny and Nxy are to be set to zero.
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Equations  (1)–(4) are approximated by Galletly and 
Guest  [1] by substituting the trigonometrical functions 
with their truncated series. The simplified expressions 
given in [1] are presented in Eqs. (5), (6). Note that the for-
mulas for κy and κxy remain unchanged.
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The constitutive equation for the laminated plate in 
the linear region is given in Eq.  (7), by using the ABD-
matrix [1, 21]. Here A, B, and D are the extensional, exten-
sional-bending coupling stiffness, and bending stiffness 
matrices [21]. The forces and bending moments (stress resul-
tants) considered in this equation are presented in Fig. 3.
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Since in this model there is no cross directional load and 
shearing force present, we can set these terms to be zero; 
thus, Nxy = 0 and Ny = 0. By setting these zero, the consti-
tutive equation can be rearranged in the form of Eq. (8).
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From here the membrane strains εy and γxy can be 
expressed as a function of the other four remaining strains 
and curvatures. For this the ABD matrix can be divided 
into three submatrices, namely: K0, K1 and K2. These are 
given in Eqs. (9)–(11). The reordered system of equation is 
given in Eq. (12).
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Using these, the stress resultants relevant in this model 
can be expressed as a function of the relevant strains and 
curvatures, given in Eq. (13). The new, reduced stiffness 
matrix K* [1] is given in Eq. (14) and Eq. (15).
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By substituting Eqs. (1)–(4) or Eqs. (3)–(6) into Eq. (15) 
one can express the stress resultants as a function of the 
beam deformation parameters. From here, properly inte-
grating these over the cross-section yields the loads on 
the body. Let NT := [Nx Mx My Mxy] and εT := [εx κx κy κxy]. 
The tension on the beam is assumed to be zero throughout 
the analysis. This allows the expression of  as a function of 
the other deformation parameters and thus it can be elimi-
nated. The definition of the global tension (as named in the 
original work [1]) is presented in Eq. (16).

P N dsx
b

b

�
�

�
2

2

	 (16)

Now, the beam loads can be determined with the 
help of virtual work, which yields the formulas given in 
Eqs. (17)–(19).
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To calculate the nonzero moments on the beam (T, ML , 
MT ), one must substitute Eqs. (3)–(6) into Eqs. (17)–(19) 
and express the vector of the stress resultants N as a func-
tion of strains and curvatures using Eq.  (13). After inte-
gration, the torsional, longitudinal and transverse moment 
can be given in the form of Eqs. (20)–(22):
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For further details on the derivation of this model, the 
reader is referred to the paper of Galletly and Guest [1].

2.2 Material properties
The material used here is a fiber reinforced plastic which 
has been used for the numerical calculations performed 
both by Iqbal et  al.  [8] and Galletly and Guest  [1]. They 
use a 5-layer symmetric and an antisymmetric layup with 
a  ±45° orientation angle, with a 0° layer in the middle. 
These are defined as [+45°, −45°, 0°, +45°, −45°] for the 
antisymmetric and [+45°, −45°, 0°, −45°, +45°] for the sym-
metric. The reduced stiffness matrices for the laminates are 
given in Eqs.  (23),  (24), for the antisymmetric and sym-
metric cases, respectively, as given in the original work [1].
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The A*
ij elements have a unit of [N/mm], the B*

ij is given 
in [N] and the D*

ij components have [N mm] as a unit of 
measurement. One can see that both stiffness matrices 
give chance to significant simplifications. For the sym-
metric layup every B*

ij = 0. For The antisymmetric layup 
B*

11 = B*
12 =D*

16 = D*
26 = 0. 

For one to be able to investigate the effect of the ori-
entation angle, the basic stiffness matrix of such an orth-
otropic layer and the wall thickness of the shell must be 
known. The thickness for these reduced stiffness matri-
ces was 1.05 mm. As the basic elasticity parameters were 
not given in [1], this was obtained by calculating the K*

as 
matrix parametrically, and then equating it to the data 
given in Eq. (23). As some elements of the reduced stiffness 
matrix are nonlinear in the nonzero elements of C matrix, 
a numerical solver was used to obtain { C11 , C22 , C12 , C33 }. 
Thus, the stiffness matrix for a layer is given in Eq. (25).
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The elasticity parameters for the FE simulations were 
calculated from the stiffness matrix of the orthotropic 
layer [21]. These are given in Table 1, both for the material 
used in [1] (Material 1) and the material used in [15, 16] 
(Material 2).

2.3 Finite Element model
In this section a finite element model is presented, that 
was used to calculate bending characteristics, snap-
through moment and bistability limits for composite shells 
with different layups. The purpose of the FE model is to 

Table 1 Material elasticity parameters

Material E11 [MPa] E22 [MPa] G12 [MPa] ν12 [–]

Material 1 27752.4 2112.27 949.9 0.359

Material 2 130710 6360 4180 0.32
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validate the behavior predicted by the calculations based 
on the model of Galletly and Guest  [1]. The simulations 
were carried out in ABAQUS CAE environment.

The model simulates a pure bending scenario, in which 
a symmetry constraint is applied to one end of the modeled 
beam section, while a rotation constraint is applied to the 
other end. Both constrained cross-sections are free to deform 
in their plane, as shown in Fig. 4. The rotational displace-
ment load was applied through a reference point which is 
kinematically coupled to the nodes of the cross-section, as 
presented in Fig. 4. A similar model was used to investigate 
the behavior of isotropic cylindrical shells and to validate 
various pure bending models in [22]. Unfortunately, the sim-
ulations were not convergent for the symmetric layup with-
out constraining the twisting motion of the cross-section, 
thus results are available only for the antisymmetric layup.

3 Bending characteristics
One of the main interests discussed in this article is the 
bending characteristics of such a cylindrical shell. Here 
we assume that the only load on the shell is the longi-
tudinal bending moment. This assumption is contested 
later when the symmetric and antisymmetric layups are 
being discussed. In the former case an additional torsional 
moment must be considered too. We assume uniform 
bending throughout the investigation.

3.1 Dimensionless variables
Similarly to  [1], the following dimensionless variables 
will be introduced: kl , kt , φ. These are the dimensionless 
longitudinal moment, dimensionless transverse moment, 
and the dimensionless twist, whose definition is given 
in Eq. (26).
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This does not give dimensionless moments, since it 
leaves the cross-section parameters (R and α or R and b) in 
the equation. Trials to create dimensionless moments failed 
to the complicated buildup of the stiffness matrix, which 
includes terms with different units, and different powers 
of wall thickness. The form of Eqs. (20)–(22) with dimen-
sionless variables is presented in Eqs. (27)–(29). To obtain 
this form, one must substitute Eq. (26) into Eqs. (20)–(22), 
and the cross-section arc-length b must also be substituted 
by Rα. Here, α and R are the unloaded cross-section's cen-
tral angle and radius, as indicated in Fig. 1. 
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Fig. 4 The ABAQUS finite element model of the pure bending of the 
composite cylindrical shell
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3.2 Equilibrium equations
To find the equilibrium of the beam under uniform bend-
ing one needs to consider MT  =  0 which should always 
be true. Since we want to find the response of the beam 
given to a longitudinal bending moment, the longitudinal 

beam curvature ( kl ) will be expressed both from Eq. (28) 
and Eq.  (29) with keeping the transverse moment zero. 
Equation (28) yields a single result that is given in Eq. (30) 
and named kl

(0). Equation (29) yields two solutions, which 
are kl

(1) and kl
(2) given in Eqs. (31), (32).
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Finding the transverse curvature values where ky
(0) 

equals either kl
(1) or kl

(2) will yield the equilibrium state(s) 
of the cylindrical shell for a given bending moment ML . 
However, these equations still contain the twist of the 

beam, for which one either sets the torsional moment or 
the twist to be zero, depending on the defined boundary 
conditions of the beam. Expressing kl yields a fourth solu-
tion for the longitudinal curvature, that is given in Eq. (33).
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3.3 The antisymmetric layup
The antisymmetric layup is the easier to treat, since if one 
assumes a zero torsional moment (T = 0), three solutions 
emerge for the dimensionless twist, from which according 
to  [1] φ = 0 is the stable one. Using this, one can use only 
Eqs. (30)–(32) to find the equilibrium. Plotting the kl

(1) and 
kl

(2) characteristics along with the bending moment depen-
dent kl

(0) characteristic shows the behavior of the system. 
This is given in Fig. 5. In Fig. 5 one can already see for the 
α = 120° case that the shell has bistable property, for the 
bending moment dependent characteristic with crosses kl

(1) 
three times. From these solutions one is the initial state 
with kt = 1 and kl = 0, the other two are additional states, 
from which the middle one is an unstable one. As  one 
increases the bending moment in either direction, at a cer-
tain point three solutions appear, then the two solutions 
with higher kt values join and only one remains, with 
almost zero transverse curvature and a high longitudinal 
one. The unification of the solutions corresponds to the 
snap-through, when the shell loses stability and flattens.

For the model  [1] is based on the polynomial approx-
imation of the trigonometric functions, we have derived 
the equilibrium equations from Eqs. (17)–(19) without the 
approximation and compared the results for the three char-
acteristics given in Eqs.  (30)–(32). It yielded only a  few 
percent relative error in the kt region close to unity. Error 
closer to the flattened state was negligible, which makes 
it perfectly suitable for these calculations. Note that the 
model error is greater than the error of the approximation. 
This is presented in Fig. 6.

One can plot the results of the uniform longitudinal 
bending in the kl  –  ML plane. For this we use paramet-
ric plot, where the curve parameter is the transverse cur-
vature, with kt ∈  (0,1]. The abscissa would be calculated 
using Eqs. (31), (32), while the ordinate is given by insert-
ing either Eq.  (31) or Eq.  (32) into Eq.  (28). Results for 
some geometries are given in Fig. 7. 

Here one can observe the effect of the cross-section size 
on the snap-through moment. It is also observable that the 
curvature-bending moment characteristic for some cases 
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Fig. 5 The characteristic curves for the antisymmetric layup, for two 
initial central angles and R = 25 mm: Equilibrium is where the dashed 

curve crosses the moment independent characteristics.

becomes monotonic. This also causes the shell to flatten, 
although without stability loss. We have conducted calcu-
lations on the snap-through moments for different orien-
tation angles for the antisymmetric layup. These revealed 
that there is an oscillation in the peak bending moment the 
beam can withstand before stability loss. In a real-world 

scenario the positive sense bending (that causes a positive 
beam curvature in the model) is highly unstable in nature, 
thus only the reverse bending (negative bending moment 
and beam curvature) was investigated. The results for the 
stacking sequence in [1] with Material 1 are presented in 
Fig. 8, while the results for the stacking sequence given 
in [16] with Material 2 are shown in Fig. 9.

Fig.  8 and Fig.  9 reveal another interesting behav-
ior which can also be seen in the FE simulation results: 
for layups without a fixed-orientation middle layer, 

Fig. 6 The error of the approximation for a given setup: The trend was 
similar for any angle. The kl

(0) error rapidly converges to the error of the 
other two with the bending moment. 

Fig. 7 The curvature- bending moment characteristics for several 
geometric configurations for the antisymmetric layup: The dashed lines 

represent the FE simulation results.
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a  cross-section angle exists, for which the layup ori-
entation has practically no effect on the snap-through 
moment. However, the critical beam curvature where the 
peak bending moment appears may change significantly. 
Fig. 10 shows how the bending moment-curvature func-
tion changes with the layup angle θ, for Material 2 and the 
layup of  [16]. The bending characteristics are calculated 
for a cross-section geometry, for which the layup angle 
practically does not change the snap-through moment. 

This configuration for example allows the changing the 
stiffness of the beam, while keeping the geometry and load 
bearing capacity constant.

To increase the load bearing capacity of such a shell, 
and to avoid the snap-through phenomenon, one could try 
to shift the singularity to the right in the kl

(1,2) characteris-
tics. However, this is not possible even based on the not 
simplified model. The equation for the roots of the denom-
inator in the model without approximation is given in 
Eq. (34). With increasing α one can produce a root above 
zero, however this is not in the region of practical interest.
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t t
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3.4 The symmetric layup
With the symmetric layup the equations are somewhat 
more complicated. Setting the torsional moment to zero 
does not allow us to neglect the torsional deformation mode 
of the beam. In this case, all four equations (Eqs.  (30)–
(33)) need to be considered, as given in Eq. (35):
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These equations in Eq. (35) were taken into two pieces: 
kl

(0)  =  kl
(1,2) and kl

(1,2)  =  kl
(3). The system of equations was 

solved numerically for a cross-section angle of 135°, 
radius of 25  mm, with the symmetrical layup from  [1] 
and Material  1. The solution yields two separate curves 
which do not cross each other, when plotted in the space of 
dimensionless torsion, dimensionless cross-section curva-
ture and bending moment, as given in Fig. 11. Decreasing 
this angle will shrink the second, isolated trajectory, and 
will make it ultimately disappear. Twist is inevitable 

Fig. 8 The effect of the layup orientation angle on the snap-through 
moment for different cross-section angles and layups (Material 1), 

compared to FE simulations

Fig. 9 The effect of the layup orientation angle on the snap-through 
moment for different cross-section angles (Material 2), compared to 

FE results

Fig. 10 The effect of the layup orientation angle on the bending 
characteristic for opposite sense bending
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Fig. 12 The bistability limits calculated for the 45° symmetric and 
antisymmetric layup with Material 1. Bistable configurations can be 

found above the curves.

without any additional constraints. For each point the sta-
bility is defined with the tangent stiffness matrix. If it is 
positive definite, the equilibrium is stable [1]. This matrix 
is defined as in Eq. (36).

H �
�
�

�
�

�
�

�

�
�
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�
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� k k
T M M

l t
L T

T

	 (36)

4 Bistability limits
As shown by Galletly and Guest [1] the bistable behavior 
does not only depend on the layup, but the macroscopic 
geometric properties too. For a given layup there are 
geometry combinations that can produce a second stable 
configuration. For the material properties given in [1, 8] we 
have found numerically the limit curve of the cross-sec-
tion radius ( Rmin ) as a function of the initial cross-sec-
tion central angle (α), above which the shell will have a 
second stable state. The numerical analysis revealed that 
the curves themselves when plotted in a logarithmic plot 
have a highly linear trend, as shown in Fig. 12. This sug-
gested that there may be an analytical solution to them, 
which was ultimately found, and it is given in Eq.  (39) 
for the antisymmetric layup. Finding proper solutions for 
the symmetric layup was hard even numerically since the 
twisting of the beam cannot be eliminated. For the lat-
ter, in some bistable configurations, several equilibrium 
solutions are found simultaneously that are either unstable 
or need unrealistic deformations (additionally to the two 
realizable stable states). 

4.1 Bistability limit of the antisymmetric layup
For the antisymmetric layup, as seen before, stable solution 
exists only when there is no twist in the beam, i.e., φ = 0. 
It is easy to see that kl

(0) can only be positive for ML = 0 in 
the region of interest i.e., kt ∈ [0,1). That would mean that 
kl

(2) and kl
(0) must be equal, which leads to Eq. (37):

k k k kl t l t
2 0

0
� � � �� � � � � � .	 (37)

The initial method was solving in Eq. (37) numerically 
for several R values for a given α and see where the sec-
ond stable and unstable solutions appear or disappear. 
The limiting value for the initial radius has been found by 
bisection method. 

For this special case we have found 5 kt solutions for 
Eq.  (37). From these, one is kt = 1, the initial state, two 
others are complex roots and the other two may be com-
plex or real depending on the [R; α] combination. These 
formulas are lengthy; thus, they will not be published in 
the article. A square root function inside the solutions 
must be investigated to find whether complexity is pres-
ent or not. This governing equation is given in Eq. (38). 

Fig. 11 The bending characteristic of the symmetric layup: One can 
observe two separate curves which do not cross each other.
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The solutions for Eq. (38) represent the boundary between 
the mono- and bistable geometries:

� �

�

14745600 23040

3

11

4

22

2

11 11

2

12

2

22

2 4

11

2

12

D D A D D D R

A D

* * * * * *

* *

�

44 4 8

11

3

22

12

2

11 22

2 4
20480

720
0R D D

D
A D R

�
�

�
�

�

�

�
��

�

�
�� �

* *

*

.
	 (38)

The solution of the polynomial yields 4 solutions for the 
smallest radius R in which there is only one positive real 
solution. The resulting formula for Rmin is given in Eq. (39):
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For the data given in Eqs.  (23),  (24) this function 
becomes Rmin = 27.08α−2, where the angle is given in radi-
ans and the radius in millimeters. This function perfectly 
matches the numerical results. The results together with 
the results of the symmetric layup are shown in Fig. 12. 
Taking this finding further, if one considers an antisym-
metric layup, the various elements of the reduced stiffness 
matrix would be proportional in some way to the laminate 
thickness t: A*

ij ~ t, B*
ij ~ t2 and D*

ij ~ t3. Making use of this, 
Eq. (39) can be reordered:

R t const
min

.� 2 � ,	 (40)

which shows that the thickness can also be used to trigger 
bistable behavior for a given stacking sequence and mate-
rial properties. If one multiplies Eq. (40) by 1/8, one can 
see, that for shallow shells the result means, that to achieve 
bistability with a given material and stacking sequence, 
the shell height (Z-directional size in Fig. 1) to shell thick-
ness ratio should be greater than a constant value defined 
by the stacking sequence. This comes from the fact that 
for small central angles α, the height can be well approxi-
mated by its series: R(1 − cosα/2) ≈ R α2/8.

To examine the result regarding the limiting condition 
for the bistable behavior given by Eqs. (39), (40), FE sim-
ulations were conducted on the [45°, −45°, 0°, 45°, −45°] 
stacking sequence and the material properties of Material 1, 
given in Table 1. The minimal radius of the cross-section 
was found with bisection method for several (α,  t) com-
binations. The results are shown in Fig. 13, on a logarith-
mic scale. A plane fitting in the logarithmic space with 
an R2 value of 0.99958 confirmed that Eq.  (40) holds for 
the FE simulations too. However, the limiting, dimension-
less Rmin  α

2/t constant is predicted by Eq.  (39) is highly 

inaccurate. The analytical, simplified model would yield 
25.791, while the fit to the FE results gives 32.8255 (this 
means a −21.4% relative error for the minimal necessary 
radius prediction). Although the prediction of Eq.  (39) is 
inaccurate, it showed that to achieve two stable configura-
tions for a cylindrical composite shell with antisymmetric 
layup, the R α2/t dimensionless parameter should be greater 
than a certain value, which depends on the layup and mate-
rial parameters. This means, that this constant is enough 
to be found accurately for a single parameter combination 
(i.e. one finds Rmin for a given (α;  t) point with FE simu-
lations), and then the limiting surface between the mono- 
and bistable configurations can be determined accurately.

To see how the bistability limit changes with the orien-
tation angle for the antisymmetric layup, it was calculated 
and plotted for the [0, 90]° interval. The layup in this case 
is defined as [−θ, θ, 0°, −θ, θ]. The results can be seen in 
Fig. 13. It can be found that the lowest Rmin value will be 
found at θ = 48.5° for the given layup. As shown above, 
changing the thickness of the shell does not change the 
shape of the Rmin  α

2/t curve on a logarithmic scale, only 
translates it along the vertical axis. The minimum loca-
tion of the curve will not change to the shell thickness. 
However, removing the middle layer with the 0° orienta-
tion angle makes the shape almost symmetrical to θ = 45°. 
It is important to note, that the laminate thickness was the 
same (1.05  mm) for both layups investigated in Fig.  14, 
so that the results can be compared. It is found that that 
a middle layer with a 0° orientation angle may significantly 
lower the geometric constant The effect of the layup angle 
is confirmed by FE simulations (dashed curves in Fig. 14), 
although if the orientation angle is below 30° and above 60° 
the shape obtained from FE simulations starts to deviate sig-
nificantly from the analytical solution. The Rmin α

2/t constant 
was found with bisection method for θ ∈ [15°, 70°] in 2.5° 

Fig. 13 The FE results for the minimal cross-section radius as a 
function of cross-section angle and laminate thickness
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steps. The calculations were carried out for t = 1.05 mm and 
α = π/2, while the radius was varied to find the limit where 
the minimum of the bending moment function reaches zero 
in the case of a same sense bending. 

Below 15° and above 70° the nonlinearity grows stron-
ger, and no solutions were found due to convergence 
issues. However, the functions suggest, that these would 
lie outside the practical region of interest due to the huge 
dimensions required achieve the minimum constant value.

4.2 Bistability limit of the symmetric layup
For the symmetric layup, the algorithm is the same in gen-
eral, although one cannot assume that there is no twist in the 
system. So, one must solve the T = 0 equation as in Eq. (33). 
Now all kl

(i) expressions contain φ. Unfortunately, so far, no 
closed-form analytical solution was found; thus, the system 
of equations given by Eqs.  (30)–(33) with zero moments 
was solved numerically for several (R;  α) combinations, 
and the minimal radius was found with bisection method. 
In the bistable region, the model yields more than two sta-
ble configurations; the extra ones can be filtered out by 
restricting the value of the transverse curvature: kt ∈ (−1,1). 
The results of these calculations are presented in Fig. 12. 

In contradiction to the results of Galletly and Guest [1], 
stable configurations were found for the 45° symmetric 
stacking sequence, too. It is of importance, that these were 
found with the K*

s matrix given in Eq. (24). Interestingly, 
with the material data used for the FE solution, no bistable 
domain exists in the α – R plane, although the difference 
between the two reduced stiffness matrices stems only 
from rounding errors and could be considered negligi-
ble. Unfortunately, since, for the antisymmetric layup no 
closed form condition of bistability exists, further inves-
tigation on this matter cannot be conducted analytically. 

5 Conclusion
In this article an investigation was carried out on the effect 
of the layup on the stability of the composite cylindrical 
shells. For the investigation, a simple, uniform curvature, 
flexible cross-section beam model [1] was used, and meth-
ods were presented for the analysis of the tape-spring's 
behavior. Through numerical calculations it was shown, 
how the snap-through of the shell may disappear for some 
shell geometries and orientation angles. It is also shown 
that for certain geometries, the snap-through moment 
remains practically unchanged for any layup orientation 
angle. These were also confirmed by the finite element 
calculations. It is shown, that while the simple, uniform 
curvature model is inaccurate, it represents well the quali-
tative behavior of the tape springs. We found that the anti-
symmetric layup depending on the cross-section geom-
etry may have two separate (one open and one closed) 
trajectories simultaneously for uniform longitudinal bend-
ing. Using this model, it is proven that the flattening of the 
cross-section is inevitable through layup modification.

Regarding the bistable behavior of the shell, a closed-
form analytical solution was derived for the geometrical 
parameters of the cross-section, which limit the bistable 
property of the shell. While the analytical solution does 
not provide an accurate result, the FE calculations con-
firmed that the on the limiting surface between bistable 
and monostable behavior the R  α2/t remains constant. 
The effect of the orientation angles on the bistable geom-
etries was also shown. Finite element simulations con-
firmed that while around 45° layup angles the analytical 
model yields qualitatively accurate results, below 30° and 
above 70° the FE simulations start to deviate significantly. 
These also indicate that while bistability can be achieved 
theoretically close to 0° and 90° layup angles too, the geo-
metrical parameter combinations lie outside of the region 
of practical interest.
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