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Abstract

In ball-end milling, a clear distinction exists between the nominal and the working (or effective) diameters, particularly when 

machining free-form surfaces. The working diameter is not constant; instead, it changes dynamically based on several factors, 

including the surface inclination (AN2), tool diameter (D), depth of cut (ap), and feed direction (Af). Accurately predicting the working 

diameter is essential for improving surface quality and dimensional accuracy. Three primary approaches are commonly used for 

this purpose: the geometric model, which analytically describes the geometric relationships between machining parameters and the 

working diameter; regression analysis, which builds mathematical models from empirical data; and artificial neural network (ANN) 

models, which are capable of modeling complex, non-linear interactions between multiple input variables and the working diameter. 

In this study, one geometric model, two types of regression models, and two ANN models were developed and evaluated. Their 

performance was assessed using a set of statistical measures, including the standard deviation of the prediction error, the coefficient 

of determination (R2), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). These metrics provided 

a comprehensive basis for comparing the accuracy and reliability of each approach. The results highlight the strengths and limitations 

of each method in capturing the variability of the working diameter during ball-end milling of free-form surfaces.
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1 Introduction
The adoption of freeform surfaces has seen a surge across 
diverse industries, encompassing aerospace, automo-
tive, consumer products, and die and mold manufactur-
ing. The primary tool employed for machining such sur-
faces, especially for finishing and pre-finishing, is  the 
ball-end cutter. However, when using a 3-axis milling 
machine, distinctions arise between the nominal and 
working (or effective) diameter of the ball-end cutter. This 
discrepancy is influenced by various parameters, includ-
ing cutting parameters, workpiece inclination, and cutting 
strategy. Consequently, determining the working diame-
ter that aligns with the process parameters crucially influ-
ences the attainment of the desired product quality.

In the realm of the manufacturing process, engineers 
grapple with two primary practical challenges. The ini-
tial challenge involves determining the values of pro-
cess parameters that guarantee the desired product qual-
ity, aligning with technical specifications. The second 

challenge revolves around the optimization of manufac-
turing system performance, ensuring efficient resource 
utilization. In this context, researchers typically strive to 
create a model for the machining process, a mathemati-
cal equation illustrating the relationship between process 
parameters (decision variables) and machining perfor-
mance (responses). Essentially, models fall into three cate-
gories: geometric models, analytical models, and artificial 
intelligent (AI) based models. 

In the context of manufacturing industry, a geomet-
ric models can be developed by emphasizing one or more 
aspects of machining theory, such as cutting tool proper-
ties, process kinematics, and chip formation. Computer-
aided design (CAD) methods are used to build the model 
that simulates the machined surface profile formation. Lotfi 
et al. [1] utilized this approach to compute cutting forces 
by determining the precise engagement region and instan-
taneous undeformed chip thickness. Similarly, Forootan 
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et al. [2] introduced a model to calculate the cutter-work-
piece engagement area and cutting forces for a  ball-end 
tool. Feng and Su [3] proposed a model for calculating 
instantaneous cutting forces, incorporating static cutting 
system deflection feedback in 3D ball-end milling. Ko and 
Cho [4] utilized instantaneous cutting force parameters to 
develop a model for forces in ball-end cutter applications. 
Ghorbani and Movahhedy [5] presented a model for cal-
culating cutter-workpiece engagement boundaries in ball-
end milling. In their study, Wei et al. [6] introduced a cut-
ting force prediction approach for 3-axis ball-end milling 
of sculptured surfaces with Z-level contouring tool paths. 
To address challenges in sculptured surface machining, 
Wei et al. [7] presented a  unique method for predicting 
cutting forces in three-axis ball-end milling. Nishida 
et al. [8] introduced a distinctive approach to calculating 
uncut chip thickness, utilizing a voxel model to describe 
both the workpiece and cutting edge. In the realm of pre-
dicting working diameter, Mikó and Zentay [9] presented 
a geometric model, later simulated using MATLAB by 
Mgherony and Mikó [10].

Analytical models, utilizing conventional approaches 
like the regression technique, have been applied inno-
vatively in various studies. Cheng et al. [11] employed 
this approach to develop a new model predicting surface 
residual stress. In a similar vein, Lu et al. [12] utilized 
a Gaussian process regression model for accurate predic-
tion of Ra surface roughness in compacted graphite cast 
iron. Addressing the intricacies of three and five-axis ball-
end milling, Xu et al. [13] introduced a model to develop 
surface topography. This innovative model incorporates 
a discrete sweeping surface of the cutting edge, integrating 
time-varying feed speed profiles, thereby overcoming lim-
itations in existing models. Denkena et al. [14] applied this 
method in their study, introducing a simulation approach 
that combines material removal simulation (MRS) and an 
empirical model to predict post-milling surface topogra-
phy. Furthermore, Wojciechowski [15] contributed to this 
field by presenting a refined cutting force model specifi-
cally tailored to finish ball-end milling. This model fac-
tors in various elements such as cutting conditions, sur-
face inclination (AN2 ) angle, and cutter runout.

AI-based models, incorporating non-conventional 
techniques like artificial neural network (ANN), have 
been instrumental in various studies. Santhakumar and 
Iqbal [16] employed a neural network to develop a model, 
focusing on predicting surface roughness, specific cutting 
energy, and temperature during end milling operations 

with the trochoid toolpath strategy for AISI D3 steel. 
Concurrently, Lin et al. [17] introduced a model for sur-
face roughness in end milling, taking into account cut-
ting parameters and machining vibration. Xie et al. [18] 
presented an ANN-based model for spindle speed power. 
Proposing an intelligent prediction model, Kannadasan 
et  al. [19] utilized the ANFIS model to predict perfor-
mance indexes like average surface roughness and geo-
metric tolerances in milled products. Additionally, 
Shankar et al. [20] employed artificial intelligence to fore-
cast the wear of the cutting tool during milling processes.

In this paper, the objective is to underscore the signif-
icance of the working diameter. This is achieved through 
the application of both a regression model and an ANN 
to predict the working diameter during milling operations 
with a ball-end cutter.

The effective or working diameter of a ball-end milling 
cutter has great effect on the cutting speed, because in case 
of free form surface milling it will change. The changing 
cutting speed has effect on the chip removal process, the 
chip formation and the surface quality [21, 22].

The working diameter depends on the tool diameter (D), 
the depth of cut (ap ), the feed direction (Af ) and the incli-
nation of the surface, which can be described by the angu-
lar position of the surface normal vector (N) (AN1, AN2 ). 
Actually, the AN1 can be eliminated, if the Af is a relative 
parameter. The relative Af shows the value to the AN1 angle 
(Fig. 1). In the analysis, this relative Af  is applied.

2 Method
For a more in depth analysis of the effective diame-
ter, it is essential to establish a mathematical model that 
describes effective diameter concerning cutting parame-
ters. Two different methods were compared, the regression 
modelling and the ANN.

Fig. 1 Orientation of the surface normal vector and the interpretation of 
the tool working diameter
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The base of the analysis is the set of data, which was gen-
erated by the geometry-based algorithm. In this study, the 
working diameter values for the ball-end tool were not based 
on a specific free-form surface, but were determined over 
the full range of possible values of AN2 and milling direction.

The D and the ap were varied on 4 levels, the AN2, and the 
relative Af on 13 levels, as the Table 1 shows. The full fac-
torial plan was used, because of the fast and easy calcu-
lation of the working diameter, so 2704 data were gener-
ated (4 × 4 × 13 × 13 = 2704).

The statistical analysis of the data and the regression anal-
ysis were performed by MiniTab, (v14) [23] and Excel [24]. 
The neural network model was created by MATLAB [25].

The regression model and the ANN model were com-
pared based on statistical parameters. The coefficient 
of determination (R2 ) is the percentage of variation in 
the response that the model explains. The R2 is between 
0 and 1, the higher R2 value indicates the better model:
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where:
•	  xi : original (measured) value;
•	  xi : estimated value;
•	      mean value of xi;
•	  n: number of data.

Root means square error (RMSE) measures the accu-
racy of the regression model also. The RMSE is the root 
square of the average value of the square of the difference 
of the original and estimated values.
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Mean absolute percentage error (MAPE) means the 
average of the absolute value of the relative difference of 
the original and estimated values.
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3 Results
3.1 The regression model
The main effect plots (Fig. 2) show the importance of each 
input parameters on the output parameter. The graphs show 
the mean values for each factor level connected by line.

The AN2 has the largest effect on the working diameter 
as the Fig. 2 shows. In case of the shallow section, this 
effect is smaller, but at the steep region, the working diam-
eter is larger, and the relationship is not linear. The diam-
eter of the tool and the ap have an increasing and linear 
effect on the working diameter. The smallest effect can be 
seen in case of the Af  .

The interaction plot shows (Fig. 3) how the relationship 
between one factor and the continuous response depends on 
the value of the second factor. This plot displays the aver-
age of one factor level on the x-axis, and a separate row for 
each level of another factor. If the lines of the diagram are 
parallel, there is no interaction between the factors. If the 
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Table 1 Set of input parameters

Parameter Values

D 6 8 10 12 – – –

ap 0.15 0.25 0.35 0.45 – – –

AN2

40 30 20 15 10 5 1

−5 −10 −15 −20 −30 −40 –

Af

89 74 61 44 31 14 1

−14 −31 −44 −61 −74 −89 –

Fig. 3 Interaction plot

Fig. 2 The main effect plot
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lines are not parallel, an interaction occurs and in this case, 
the multiplication of the factors must also be included in the 
model. Based on this, the following multipliers should also 
be considered in the regression model: A AN f2

× , A AN f2

3× ,

A AN f2

3 × , A AN f2

3 3× , A AN f2

5 × , A AN f2

5 3× .

Based on the main effects plot, the interaction plot and 
iterations, the following equation was defined (marked as 
r1 model):
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c A c A c A A
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Table 2 shows the value of the coefficients of the 
r1 model. The value of the R2(adj) parameter is 91.8%.

In case of the two values of the working diameter 
D Deff eff1 2

and� �  the regression model is the same, only the 
value of the coefficients is different.

In order to improve the accuracy of the regression 
model, four separate equations were created for the differ-
ent D (marked as r2 model). The structure of the regres-
sion equation was the same. Table 2 shows the values of 
the coefficients.

The accuracy of the regression is improved, the values of 
the R2(adj) parameter are up to 95% in every case. However, 
the result is better, but instead of one equation, four equa-
tions should be used, and the D is not taken into account. The 
advised solution is to use a linear function of the D instead 
of constant coefficients. As Table 3 presents, the coefficients 
show linear regression in function of the D with good accu-
racy, so the separated equations could be unified in Eq. (5):

D f D Ceff i i� � ��� . 	 (5)

3.2 The ANN model
Another way of the mathematical modelling is the use of 
ANN. The ANN is a multi-layered structure comprising 
one or more hidden layers positioned between the input 
and output layers. Each of these layers consist of numer-
ous processing units called neurons, which are intercon-
nected with adjustable weights. Within the network, every 
neuron receives input from all the neurons in the previous 
layer [21], and this is calculated as follows:

net w xj ij i
j

N

� �
�
�
0

, 	 (6)

where:
•	  netj : the total or net input,
•	  N : the number of inputs to the j th neuron in the hid-

den layer,
•	  wij : the weight of the connection from the i th neuron in 

the forward layer to the j th neuron in the hidden layer,
•	  xi : the input from the i th neuron in the preceding layer.

Each neuron in the network generates its output (outj ) 
by processing the net input through an activation (transfer) 
function. In this study, the logistic sigmoid transfer func-
tion (also known as the sigmoid or logistic function) was 
used for hidden layers and a linear transfer function for the 
output layer in a regression task [22].

The logistic sigmoid transfer function [26,  27], often 
used in ANNs, is defined by Eq. (7):

f x
e x� � �

� �

1

1
, 	 (7)

where:
•	  x: the input to the function,
•	  e: the base of the natural logarithm (Euler's number), 

approximately equal to 2.71828.

The logistic sigmoid function maps any real-valued 
number x to an output in the range (0, 1), which makes it 
suitable for problems where you need to model probabil-
ities or when you want to introduce non-linearity in the 
neural network.

The sigmoid function's characteristic S-shaped curve is 
typically used in the hidden layers of feedforward neural 
networks for tasks like classification. It helps transform 
the weighted sum of inputs into a range where the network 
can learn complex relationships between features.

For this study, we have designed an optimal neural net-
work architecture using the MATLAB Neural Network 

Table 2 The coefficients of the r1 model

Predictor Coefficients P

C −0.696340 0.000

c1 0.341616 0.000

c2 3.289690 0.000

c3 6.548300 0.000

c4 −1.605500 0.001

c5 −0.282260 0.000

c6 7.777700 0.000

c7 −0.741100 0.000

c8 −19.90000 0.000

c9 3.456000 0.007

c10 18.542000 0.000

c11 −4.363000 0.039
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Toolbox [28]. In the first case (marked as a1 model) the 
network architecture comprises one input layer, one hid-
den layer, and one output layer. 10 neurons can be found 
in the hidden layer, while the input layer has four neu-
rons, and the output layer contains two neurons during 
both the training and testing phases. The input layer neu-
rons correspond with the D, the ap , the AN2 and the rela-
tive Af  , while the output layer represents effective diame-
ter D Deff eff1 2

and� �.  While in the second case (marked as 
a2 model) the network has two hidden layers: 10 neurons 
in the first hidden layer, and 5 in the second hidden layer.

In Figs. 4 and 5, it's evident that more than 1000 sam-
ples, in addition to approximately 400 validation and 
test samples, exhibit an error of 0.01034 in the context of 
a neural network configuration with a single hidden layer. 
On the contrary, when employing a model with two hid-
den layers, approximately 1200 samples and 400 valida-
tion and test samples display a notably reduced error of 

0.001365. This implies that by increasing the complexity 
of the model, achieved by adding more neurons and hid-
den layers, the model's performance has been enhanced.

The discernible distinctions in accuracy are apparent in 
Figs. 6 and 7 presented below, where the performance of the 
two-layer configuration surpasses that of the single-layer 
arrangement. In the first case, the accuracy for training 
data stands at 0.99512. In contrast to this, the second case 
exhibits superior accuracy with a value of 0.99892. This 
pattern is similarly reflected in the validation data, where 
the initial scenario registers an accuracy of 0.99408, while 
the second case excels with a higher accuracy score of 
0.99886. The trend continues in case the testing data, with 
the first case recording an accuracy of 0.9949, while the 
second case excels further with an accuracy of 0.9989.

Consequently, when utilizing a neural network archi-
tecture featuring two hidden layers, we observe enhanced 
performance in comparison to the one-layer counterpart. 

Table 3 The coefficients in r2 regression model for Deff1
Ci D = 6 D = 8 D = 10 D = 12 fi (D) R2(adj)

C 1.885 2.234 2.549 2.845 0.160D + 0.941 99.87

ap 2.893 3.210 3.442 3.614 0.120D + 2.212 98.17

2.634 4.982 7.762 10.815 1.366D − 5.747 99.66

0.616 −0.461 −2.204 −4.374 −0.836D + 5.915 97.89

−0.218 −0.265 −0.305 −0.341 −0.020D − 0.099 99.62

AN  2 × Af 5.258 6.987 8.643 10.223 0.828D + 0.330 99.96

−0.652 −0.717 −0.772 −0.823 −0.028D − 0.486 99.70

−12.006 −17.176 −22.481 −27.936 −2.655D + 3.993 99.99

3.665 3.628 3.368 3.163 −0.088D + 4.251 93.46

10.410 15.600 21.105 27.052 2.772D − 6.404 99.91

−4.834 −4.736 −4.173 −3.709 0.197D − 6.135 94.01

R2(adj) 95.7 96.3 96.8 97.1 – –

AN 2
2

AN 2
4

Af
2

A AN f2

3×

A AN f2

3 ×

A AN f2

3 3×

A AN f2

5 ×

A AN f2

5 3×

Fig. 4 Histogram error in the case of 1 hidden layer

Fig. 5 Histogram error in the case of 2 hidden layers
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This improvement is particularly evident regarding the 
validation results, achieved within a reduced number of 
training epochs. In case of 2 hidden layers the learning 
process was faster (Figs. 8 and 9).

3.3 Comparison of the models
The base of the comparison is the analysis of the error. 
Figs. 10 and 11 present the calculated and the estimated 
values of the effective diameter and the distribution of the 

differences. Only the data of Deff1  is presented, given that 
the results of Deff2  show similar tendencies.

In case of the r1 model, as shown in Fig. 10 (a) and (b), 
the  estimated values have remarkable error. The point 
clouds follow the ideal line, but the area is too wide. 
Moreover, some negative values are also included. 
The  inaccuracy of the regression can be seen in the his-
togram of the differences. The range of the differences is 
3.899 mm, the histogram is flat, and the standard devia-
tion is 0.562 mm. Four ramifications can be seen at the top 
region, which are connected to the four different Ds.

The r2 regression model shows better accuracy 
(Fig. 10 (c) and (d)). The point cloud is narrower, and the 
histogram has higher peak. The range is little bit smaller 
(3.118 mm), and the standard deviation is 0.329 mm. 
The larger deviation can be observed under 6 mm.

Fig. 6 Training, testing and validation data in the case of 1 hidden layer

Fig. 7 Training, testing and validation data in the case of 2 hidden layers

Fig. 8 Validation performance in the case of 1 hidden layer (a1)

Fig. 9 Validation performance in the case of 2 hidden layers (a2)
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The ANN models show better performances. 
The a1 model (Fig. 11 (a) and (b)) has narrow point cloud, 
but some outlier data can be observed. In case of small 
working diameter, the error is larger, a small curve can be 
seen in the diagram. The histogram of the error shows nor-
mal distribution, the range is 2.601 mm and the standard 
deviation is 0.194 mm.

The a2 neural model shows the best accuracy. The point 
cloud in Fig. 11 (c) is very thin, but under 1 mm a pat-
tern can be observed, similar to the case of the a1 model. 
The histogram is narrow and tall, the range is 1.113 mm 
and the standard deviation is 0.080 mm only. The a2 ANN 
model results the smallest error within all the cases.

The improving accuracy of the different methods is shown 
in the previously presented diagrams, but the statistic param-
eters can describe more precisely (Table 4 and Fig. 12).

The range of the error values indicates the inaccuracy 
of the methods, but this is only a rough characterization. 
The standard deviation can describe the nature of the his-
togram, the distribution of the values of the error. In case 

of the presented models, the range and the standard devia-
tion had smaller and smaller values.

The R2 is 91.9% in case of the r1 model, which is gen-
erally a good regression, but as the previous analysis has 
shown, the local error can be large in some cases. In case 
of ANN model, the R2 are 99.0% and 99.8%, which signi-
fies a very good regression.

The standard deviation, the RMSE and the MAPE 
changed parallel (Fig. 12). The relative values of the stan-
dard deviation, the RMSE and the MAPE changed similar, 
in case of the r2 the values are 58% – 58% – 59%; in case of 
the a1: 35% – 37% – 42% and in case of the a2: 14% – 14% 
and 19% comparing to the r1  model. Although these 
parameters measure the different aspects of the deviation, 
their values changed parallelly.

4 Conclusions
In case of ball-end milling of free form surfaces, the work-
ing diameter changes parallelly with the AN2. The work-
ing diameter depends on the D, the ap , the AN2 and the Af  . 

Fig. 10 The calculated and the estimated values of the effective diameter and the distribution of the error of regression models: (a) r1; (b) r1; (c) r2; (d) r2

(a) (b)

(c) (d)
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In this article the geometric model, two types of regression 
models and two ANN models were compared based on the 
statistical parameters of the error values. The base of the 
investigation was a set of data, which contains 2704 vari-
ations of input parameters. The performances of the mod-
els were compared by the range of the error, the standard 
deviation, the R2, the RMSE and the MAPE.

The results can be summarized as follows:
1.	 To introduce the relative Af  , due to the inherent peri-

odic behavior of the geometric model, the number of 
input parameters can be reduced. Utilizing the rel-
ative Af in the regression equation for the working 
diameter proved to be advantageous. To establish an 

appropriate regression model, the multiplication of 
the first, third, and fifth powers of the AN2 and the 
relative Af is essential.

2.	A separated regression model based on the D yields 
improved accuracy, the coefficients can be computed 
as a function of the D. This approach facilitates the 
creation of a unified regression model, streamlin-
ing the modelling process and ensuring consistency 
across different Ds.

3.	 The integration of the ANNs into prediction mod-
els seeks to harness their learning capabilities, 
constructing precise and resilient models for mak-
ing informed predictions about the working diam-
eter in end ball milling. This adaptation ensured 
accuracy and reliability in real-world milling sce-
narios by leveraging relevant cutting parameters. 
The  ANN based model showed the best perfor-
mances. The  standard deviation, the RMSE and 
MAPE parameters, although these parameters mea-
sure the different aspects of the deviation, their val-
ues changed parallel and to the same extent.

Table 4 The values of the statistical parameters of the differences

Model r1 r2 a1 a2

Range 3.899 3.118 2.601 1.113

Standard deviation 0.562 0.329 0.194 0.080

R2 0.919 0.972 0.990 0.998

RMSE 0.562 0.329 0.194 0.080

MAPE 0.194 0.114 0.082 0.038

Fig. 11 The calculated and the estimated values of the effective diameter and the distribution of the error of ANN models: (a) a1; (b) a1; (c) a2; (d) a2

(a) (b)

(c) (d)
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The working diameter of the ball-end milling cutter can 
be used during the adaptive modification of the cutting 
parameters in order to keep the constant value of the cut-
ting speed and the feed. Taking into account the AN2 at 
the current tool position based on the CAD model and the 
milling direction, the spindle speed for a constant cutting 

speed can be calculated, thus improving machining condi-
tions and surface quality. During the tool path planning of 
finishing milling of a free form surface the current value 
of the working diameter can be used, in order to minimize 
the changing of it. These applications require a fast and 
accurate calculation method.
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