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Abstract

Phased microphone array measurements combined with beamforming signal processing is a widely used approach for localizing 

and quantifying noise sources, which can be used for turbomachinery applications. Among the various array configurations, uniform 

circular arrays (UCAs) are frequently employed for rotating sources due to their geometric simplicity and the practical advantage that 

they can be installed around a free jet or a duct without disturbing the flow. The present article investigates this array design with the 

aim of providing guidelines for planning proper measurement setups. Particular attention is given to two interdependent parameters: 

the array diameter and the measurement distance. For a simplified turbomachinery test case, a suitable measurement range is 

defined within the parameter plane spanned by these variables. The lower and upper bounds of this range are established through 

the constraints of achieving sufficient spatial resolution and avoiding spatial aliasing, for the estimation of which straightforward 

formulas are derived herein. Furthermore, it is shown that the parameter plane defined by array diameter and measurement distance 

can be regarded as the extrusion of one of its cross-sections along specific curves, referred to herein as self-similar curves, as the 

beamforming maps along these curves are self-similar. This property is advantageous, as conclusions can easily be drawn for the 

entire parameter space under investigation by carrying out a few simple calculations that utilize the formulas derived herein.
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1 Introduction
Phased microphone array technology, combined with 
beamforming signal processing, is a widely used method 
for localizing and quantifying noise sources. This capabil-
ity is an important step in the design of quieter machines, 
which is essential both for health-related reasons and for 
meeting legislative requirements. Microphone array and 
beamforming technology can be applied not only to sta-
tionary noise sources but also to moving ones, such as 
those in turbomachinery applications. Localizing noise 
sources in turbomachinery, however, presents additional 
challenges. To  identify sources associated with rotating 
components, the rotational motion must be compensated. 
A widely adopted method for this compensation is the 
Virtual Rotating Array (VRA) algorithm [1]. The core idea 
of VRA is to create virtual microphones that rotate syn-
chronously with the turbomachinery, so that the rotating 
sources appear stationary in the reconstructed sound field. 
The signals of these virtual microphones are generated 

through interpolation of the signals from the nearest phys-
ical microphones. VRA was originally developed for uni-
form circular arrays (UCAs), in which microphones are 
evenly distributed along a circular geometry. In this case, 
the virtually rotating signals can be obtained by simple 
linear interpolation between neighboring microphone 
signals. For technical details of the algorithm, the reader 
is referred to  [1]. Since its introduction, VRA has been 
extended to other array configurations  [2–4]. However, 
the UCA remains one of the most commonly used designs 
for microphone array measurements. Over just the past 
three years, numerous studies have employed UCAs, e.g, 
in [5–11]. In addition to their simple geometry, UCAs offer 
the important advantage that they can be mounted around 
free jets without disturbing the flow, or around ducts, 
when combined with acoustically transparent duct tech-
nology [12]. This makes UCAs particularly powerful tools 
for aeroacoustic investigations. Their possible use could 
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make invaluable contributions in studies of flow struc-
tures in the wakes of pylons, struts, and other mounting 
elements, blade-tip vortex shedding, and the noise sources 
of counter-rotating open rotor configurations [13–15].

The UCA design has been widely employed since the 
early development of sensor arrays. Foundational theoreti-
cal work has been established in the fields of antenna arrays 
and communication technology. Ma and Balanis derived 
the array factor in spherical coordinates and expressed 
it in a simplified form using Bessel functions  [16,  17]. 
Pontoppidan further analyzed the occurrence and locations 
of grating lobes in circular antenna arrays  [18]. However, 
when it comes to designing microphone array setups for 
turbomachinery applications – particularly when only a 
limited number of microphones are available – the guidance 
found in the literature does not provide much practical help. 
In the work of Lehmann et al. [19], the UCA was examined 
with respect to the influence of microphone density on the 
interpolation accuracy of the VRA algorithm. Microphones 
per wavelength (mpw) was introduced as a spatial sampling 
metric, and the study showed that sampling is insufficient 
when mpw < 2. This requires that, for any pair of adjacent 
microphones, their angular separation as viewed from the 
source remains smaller than the angle associated with one 
wavelength at that distance. In the work of Ocker et al. [20], 
the required number of microphones is determined based 
on a modal decomposition of the rotating sound field. The 
resulting, readily applicable formulas account for the source 
frequency, rotational speed, and the rotating source radius. 
This constraint on the number of microphones is particu-
larly important when modal decomposition-based beam-
forming methods  [21] are employed. While maintaining 
sufficient microphone density and sufficient modal resolu-
tion  are crucial requirements for obtaining reliable results, 
they alone do not define the feasible ranges of other funda-
mental parameters, such as the array diameter and the mea-
surement distance. Establishing such parameter ranges is 
of particular importance when installation space imposes 
strict limitations on the measurement setup. Especially 
when asynchronous measurements are to be performed, 
where a series of measurements is carried out while varying 
a given parameter, such as measurement distance or micro-
phone array diameter. Applying asynchronous measure-
ments and combining the beamforming results has proven 
effective in reducing sidelobes and improving the quality 
of beamforming maps in turbomachinery applications [22], 
being most effective when the investigated parameter is var-
ied across the largest range possible.

The present article aims to define the complete range of 
two fundamental parameters in the setup for turbomachin-
ery noise measurements: the array diameter and its rela-
tion to the measurement distance. The interdependent rela-
tionship between these parameters is analyzed in Section 2 
using a simplified turbomachinery test case. In Section 3, 
the concept of self-similar curves is discussed. This con-
cept is particularly valuable, as conclusions can easily be 
drawn for the entire parameter space under investigation by 
carrying out a few simple calculations that utilize formulas 
derived herein. In Section 4, the theoretically derived mea-
surement range is validated through numerical simulations. 
The results show that the proposed formulas provide reli-
able bounds for the array diameter, which can be applied 
with confidence in defining suitable ranges for the asyn-
chronous measurement of turbomachinery applications.

2 Constraints of the measurement setup and 
determination of the theoretical measurement range
When investigating a turbomachinery test case, such as 
an axial flow fan (see a simplified model in Fig.  1), the 
measurement results depend on both the rotor charac-
teristics and the parameters of the phased microphone 
array. Therefore, it is important to select an appro-
priate microphone array for the specific task. Certain 
rotor parameters can often be estimated before the measure-
ment. For instance, the number of noise sources is typically 
related to the number of rotor blades, while the location of 
these sources is determined by the underlying noise-gen-
eration mechanism, often being dominant near the blade 

Fig. 1 Simplified model of a turbomachinery test case analyzed using a 
microphone array
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tip radius. The frequency, and hence the wavelength, of the 
noise sources also depends on the noise-generation mecha-
nism. If the frequency is unknown or a broader range must 
be investigated, the lower end of the frequency range is 
usually chosen to satisfy spatial resolution requirements.

As discussed in Section 1, the VRA algorithm employed 
in this study was originally developed for UCAs [1], which 
remains a relevant and broadly applied geometry. The pres-
ent investigation focuses on this microphone array design. 
In general, a larger number of microphones is desirable to 
improve beamforming performance; however, equipment is 
often limited by the number of available sensors or measure-
ment channels. Furthermore, beyond a certain threshold, 
adding more microphones has little effect on the beamform-
ing results when using a circular arrangement. The required 
number depends on the noise source frequency, radial posi-
tion, and rotational speed [19, 20]. The theoretical measure-
ment ranges of the two additional parameters that strongly 
influence the results, the array diameter D and the rotor-ar-
ray distance z, are investigated below, and it is shown how 
their bounds can be determined based on the constraints 
imposed by spatial resolution and spatial aliasing.

2.1 Bound resulting from the spatial resolution 
capabilities of a microphone array
Spatial resolution describes the minimum angular sep-
aration between two incident waves that allows them to 
be distinguished. When considering a particular mea-
surement plane, this critical angle can be converted into 
a corresponding length, allowing spatial resolution to be 
expressed in length dimensions. For on-axis incidence, 
the spatial resolution ρ for spatially incoherent incoming 
waves can be calculated as [23]:

� � �� R
z
D

	 (1)

where λ is the wavelength of the incoming wave, and αR 
accounts for the array geometry. For a circular array, accord-
ing to the Rayleigh criterion, �R � 1 22. . The Rayleigh cri-
terion is recommended for determining the resolution limit 
when the beamforming method used is conventional delay-
and-sum. If more advanced beamforming techniques are 
employed –  such as DAMAS  [24], CLEAN-SC  [25], or 
Functional Beamforming  [26]  –  more demanding reso-
lution criteria, e.g., the Dawes or Sparrow limits [27, 28], 
may be utilized. The procedure for establishing the lower 
bound of the array diameter measurement range remains 
the same in all cases, only the value of α differs. Since the 

present study uses delay-and-sum beamforming, the lower 
bound is now formulated based on the Rayleigh limit.

Equation (1) shows the dependence of the spatial res-
olution on the rotor-array distance, the wavelength (and 
hence the frequency) of the noise sources, and the array 
diameter. For a given turbomachinery test case, the mini-
mum required resolution ρmin can be determined as the dis-
tance between the two closest noise sources, i.e., the dis-
tance between any pair of neighboring sources. Assuming 
the sources lie at a radius Rrot, and are uniformly distrib-
uted with an angular spacing of 2π/N, where N is the total 
number of sources (see Fig. 2(a)):

�
�
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Substituting this expression for ρmin into Eq. (1) and 
rearranging for D yields a minimum array diameter, 
denoted Dmin:
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If λ is known, Eq. (3) provides the minimum array diam-
eter necessary to satisfy the resolution requirement for a 
given rotor-array distance z. In this way, the lower bound 
of the theoretical measurement range of D is established.

In practical turbomachinery applications, multiple noise 
generation mechanisms may appear at different radii, or 
measurements may need to cover a range of frequencies cor-
responding to the different spectral content of each source. 
In such cases, each noise generation mechanism should be 
considered separately. When determining the lower bound 
of the array diameter, the maximum Dmin resulting from the 
different noise generation mechanisms should be selected 
to ensure adequate spatial resolution across all sources.

2.2 Bound resulting from spatial aliasing on 
beamforming maps
Spatial aliasing occurs when false peaks appear on a beam-
forming map due to insufficient spatial sampling of the 

Fig. 2 Schematic illustration of the distance calculation between the 
(a) sources on the rotor, and (b) the microphones in the array
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sound field. These false peaks, also referred to as grat-
ing lobes, can have amplitudes equal to or close to that of 
the true source. They are caused by actual noise sources, 
however, because the incoming waves are spatially under-
sampled, these peaks appear at multiple incident angles. 
According to the Nyquist-Shannon sampling theorem, spa-
tial undersampling can occur when the distance between 
microphones exceeds half the wavelength of the incoming 
wave [29]. Spatial aliasing is primarily a concern for regular 
arrays with periodic microphone arrangements, such as rect-
angular grid arrays. In contrast, aperiodic arrangements – 
where microphone spacings vary – can significantly reduce 
the risk of spatial aliasing. Such aperiodic arrays can be 
constructed using fewer microphones while still preventing 
undersampling over a broad frequency range in all direc-
tions. Although spatial aliasing may not occur in the strict 
sense in these cases, inadequate spatial sampling can still 
produce false peaks. While the amplitudes of these peaks 
may be lower than those of the true sources, their presence 
reduces the quality and interpretability of beamforming 
maps [29]. This phenomenon is presented in Fig. 3(a), which 

shows three array patterns. An array pattern represents the 
spatial response function of a microphone array, describing 
its directional sensitivity at a given frequency. In this case, 
the patterns correspond to plane waves incident perpendic-
ular to the array. The mainlobe (marked by a black square) 
corresponds to the true source and appears at the center of 
each image, while the sidelobes correspond to false peaks 
determined by the microphone arrangement and surround it. 
The left image shows a case with adequate spatial sampling. 
The middle image shows the critical state in which alias-
ing peaks begin to emerge, visible as high amplitudes in 
the corners of the investigated area. The right image depicts 
inadequate sampling, where false peaks appear with a max-
imum amplitude approximately 4  dB lower than the true 
source. In  the figures, the mainlobe is assigned a relative 
value of 0 dB. Throughout this article, the term spatial alias-
ing is used to describe the emergence of such false peaks, 
since their characteristics are consistent with the strict defi-
nition of spatial aliasing. To avoid high-amplitude aliasing 
peaks, it is crucial to ensure adequate spatial sampling, even 
in aperiodic arrays. In  this study, UCAs are investigated. 
Although the microphone spacings between neighboring 
microphones of a UCA are equal in magnitude, their direc-
tions vary continuously along the perimeter of the circle. 
Consequently, a circular array can be regarded as aperiodic, 
despite the regular arrangement of the microphones [30].

As mentioned in Section  1, the behavior of circular 
arrays has been studied in fields such as antennas and com-
munication technology [16–18]. However, to the authors' 
best knowledge, no analytical formula exists that precisely 
describes the location of the innermost ring of spatial 
aliasing peaks. The array pattern of a circular array can be 
expressed as an infinite sum of Bessel functions, among 
which J1 and J−1 contribute most significantly to the inner 
ring of spatial aliasing peaks [31]. Solving these Bessel 
functions allows one to locate the spatial aliasing peaks, 
but the procedure is complex. Here, a new approach is pro-
posed. The authors found that a reasonable estimation can 
be obtained directly from the Nyquist-Shannon sampling 
theorem [32]. According to this criterion, spatial aliasing 
can be avoided if the microphone spacing satisfies:

� �x � / 2 	 (4)

When the incoming wave direction deviates from 
the normal to the array plane, the resulting variations in 
source–microphone distance across a UCA are not uni-
form, leading to a non-uniform effective microphone spac-
ing ∆x. This variation is not accounted for in the present 

Fig. 3 (a) Array patterns of 24-microphone UCAs, with array diameters 
indicated above each image. Dmax denotes the array diameter where 
the effects of spatial aliasing appear according to Eq. (8). The black 

circle marks the rotor's radius, which has been used to define the 
desired spatial aliasing-free area. The red circle marks the limit of the 
aliasing-free area. (b) Cross-sections of the array patterns along lines 

of symmetry A and B, as shown in the right image of the top row. 
(c) Array patterns with shifted source positions.
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analysis, as the authors found that the estimation obtained 
assuming a uniform ∆x agrees well with the spatial-alias-
ing behavior observed for a UCA. For a direct comparison 
between a UCA and a truly uniformly spaced linear array, 
the reader is referred to Appendix A.

According to Eq. (4), the noise source may be located any-
where in front of the array, i.e, for angles ϑ < | ± π/2|, where 
ϑ is measured from the array center axis (see Fig. 1). For a 
particular turbomachinery application, the field of view can 
often be restricted. In such cases, Eq. (4) modifies to:

�x sin /� �� � � 2 	 (5)

In the extreme case, the field of view is limited to the 
angular span of the rotor. Denoting this angle by ϑs and 
assuming the rotor radius Rrot is known, the angle depends 
only on the rotor-array distance z (see Fig. 1):
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For a UCA with M microphones, the spacing between 
neighboring microphones can be expressed in terms of the 
array diameter D (see Fig. 2(b)):
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Substituting Eqs. (6) and (7) into Eq. (5) yields a con-
straint on the array diameter D that ensures spatial alias-
ing is avoided. Equating the left- and right-hand sides 
and solving for D provides the maximum allowable array 
diameter Dmax, which serves as the upper bound of the the-
oretical measurement range:
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The results obtained using Eq. (8) are demonstrated in 
Fig. 3. As described above, the top row shows array pat-
terns for a 24-microphone UCA with varying diameters. 
The diameters are indicated above each column: the left 
image shows a diameter being half, and the one on the 
right shows a diameter being twice Dmax. The middle image 
corresponds to when the effects of spatial aliasing appear 
according to Eq.  (8). When D  <  Dmax, spatial sampling 
is sufficient, and the mainlobe is surrounded by smooth, 

circular sidelobes. At D = Dmax, peaks begin to appear due 
to aliasing, while for D  >  Dmax, sampling is inadequate, 
producing distinct, regularly spaced false peaks with 
lines of symmetry indicated by A and B. Fig. 3(b) shows 
cross-sections of these array patterns along the lines of 
symmetry. The black lines denote the rotor radius  Rrot, 
which determines the maximum investigation angle ϑs. 
The solid red lines denote the limit of the aliasing-free 
area using the respective array diameters. At  D  =  Dmax, 
the red circle coincides the black one. The dashed red line 
shows the double of the aliasing limit, where the grating 
lobes are expected to appear. Over the shown investiga-
tion area of 4 Rrot × 4 Rrot, false peaks due to spatial alias-
ing emerge as the diameter approaches D  =  Dmax, while 
smaller diameters show no signs of aliasing.

Figs. 3(a) and 3(b) displays an arrangement where the 
source is located at the center. In turbomachinery, dominant 
noise sources typically occur along the blade span, often 
being the most dominant at the blade tip. In such cases, the 
spatial aliasing peaks shift to the side accordingly, with some 
part appearing closer to the measurement area. This is illus-
trated in Fig. 3(c). In the extreme case, the source appears at 
the blade tip (marked by the black circle). Selecting the array 
diameter Dmax according to Eq. (8) results in the grating lobes 
approaching the rotor area, as seen in the middle image of 
Fig. 3(c). When selecting an array diameter D < Dmax, the 
grating lobes can be kept outside the rotor area.

In conclusion, Eq.  (8) has been derived for circular 
microphone arrays, starting from the Nyquist-Shannon 
sampling theorem, and it has been shown that it provides 
an accurate estimation of the critical array diameter and 
is adopted hereafter as the upper bound of the theoretical 
measurement range for D.

2.3 Constraints for the measurement distance
Having established the bounds of the theoretical mea-
surement range for the array diameter D based on spa-
tial resolution and spatial aliasing criteria, it is also nec-
essary to define constraints for the rotor-array distance z. 
Beamforming techniques are designed to localize sound 
sources when the array is positioned in the acoustic far-
field of the sources. Consequently, ensuring a minimum 
measurement distance is essential.

For an acoustic monopole, the far-field is typically 
defined as the distance r at which the product of r and the 
wavenumber k satisfies kr >> 1 (see, e.g., [33]). Substituting 
the rotor-array distance into this criterion and rearranging 
yields a simple expression for the lower bound of z:
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z
min


�
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	 (9)

Typical values of kr found in the literature [1, 34] sat-
isfy this criterion, usually exceeding 1 by more than an 
order of magnitude.

The upper bound of the rotor-array distance z is theo-
retically limited by the dissipation of the measured sound 
– that is, when the amplitude decreases to a level compa-
rable with the uncertainty of the microphones. In practice, 
however, this distance is often large. Large measurement 
distances require correspondingly large array diame-
ters to maintain sufficient spatial resolution, which may 
not be feasible given facility constraints. Moreover, the 
decrease in signal amplitude reduces the signal-to-noise 
ratio, adversely affecting data quality. For these reasons, 
the upper bound of z is typically determined by practical 
considerations rather than theoretical limitations.

2.4 Determination of the theoretical measurement 
range of the D and z parameters
As discussed above, the bounds of the theoretical measure-
ment range of D can be defined using the criteria of spatial 
resolution and spatial aliasing. Combining the expressions 
obtained in Eqs. (3) and (8), the theoretical range of D can 
be expressed as:
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The expressions can be normalized by λ, introducing the 
dimensionless variables D* for D/λ and z* for z/Rrot. With this 
normalization, the bounds become formally independent 
of the noise source frequency, while z* represents the ratio 
of the rotor-array distance and the rotor radius, a charac-
teristic quantity in the measurement setup. Normalization 
also reduces the number of parameters, yielding:
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Equivalently, this can be written as:

D z D D z
min

* * *

max

* *� � � � � � 	 (12)

The theoretical measurement range of D* is plotted 
in Fig. 4 with a green area. The lower bound for z* is set 
according to the minimum measurement distance for a 
source frequency of 4995.7 Hz, the same frequency used in 

Section 4. For other source frequencies, the minimum mea-
surement distance can be calculated using Eq. (9). The nor-
malized z*-D* plane shown in Fig. 4 provides a practical 
tool for narrowing the number of potential measurement 
setups. This theoretical range has been applied in the simu-
lation test case discussed in Section 4, where its applicabil-
ity to rotating noise sources has been investigated. Before 
proceeding, however, further constraints can be applied to 
reduce the number of cases that must be investigated. 

3 Self-similar beamforming map curves on the z*-D* 
parameter plane
Beyond defining the theoretical measurement range of 
the array diameter and rotor-array distance, an additional 
important characteristic of the z*-D* parameter plane is the 
similarity of beamforming maps corresponding to differ-
ent parameter pairs. When the array diameter is varied at 
a fixed measurement distance (i.e., moving along a verti-
cal line in the parameter plane), the resulting beamform-
ing maps exhibit strong similarity, largely independent of 
the actual measurement distance. In other words, a beam-
forming map obtained at one specific z*-D* parameter pair 
can be reproduced in a very similar form at other dis-
tances by appropriately adjusting the array diameter. This 
observation defines a set of curves D*(z*) along which the 
beamforming maps are similar. These will be referred to 
as self-similar beamforming curves throughout this arti-
cle. The observed similarity in the acoustic results is con-
nected to the geometrical similarity of the measurement 
setups. However, because the rotor diameter remains fixed 
regardless of the chosen distance or array size, the set-
ups are not strictly geometrically similar. Accordingly, the 
greatest similarity does not occur along a simple line, as 
would be expected under strict geometrical similarity, but 
rather along distinct curves. This motivates the definition 
of self-similar curves through a different approach.

Fig. 4 Definition of the theoretical measurement range in terms of the 
normalized parameters D* and z* 
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As mentioned in Section 2.2, the array pattern of a 
UCA can be expressed as an infinite sum of Bessel func-
tions [31]:

W k J k D ef
n

nM

inM
x , sin� � � �
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2
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where xf is the focus gridpoint defined by the angles ϑ 
and φ (see Fig. 1), k is the wavenumber, M is the number 
of microphones, and D is the array diameter, and JnM is the 
Bessel function of the first kind of order n ∙ M where n is 
the running index. Within the spatial aliasing limits, the 
array pattern can be well approximated by the zeroth-or-
der Bessel function (n = 0) [16], since the neglected terms 
are several orders smaller. Then Eq. (13) reduces to

W k J k Dfx , sin� � � �
�
�

�
�
�0

2
� 	 (14)

Equation (14) implies that if the product k  D/2  sin  ϑ 
is held constant, the array pattern amplitude remains 
unchanged. On  this basis, self-similar curves can be 
defined. For a reference pattern obtained with parameters 
zref and Dref, one can write (using Eq. 6):
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Rearranging for D gives:
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where r is the radius of the focus gridpoint xf, measured 
from the rotational axis. Using the normalized quantities 
introduced in Section 2.4, D* = D/λ and z* = z/Rrot, Eq. (16) 
becomes: 
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Equation (16) is specific to investigation points at 
radius r. At the center of the array pattern (r = 0), Eq. (16) 
simplifies to a linear relation:

D z z
z

D
ref

ref� � � 	 (18)

A representative curve for the entire investigation area 
can be obtained by averaging D across focus points within 

the spatial aliasing limits, where Eq. (14) remains valid. 
The resulting self-similar curves are dislayed as solid 
black lines in Fig. 4, closely following the upper theoretical 
bound given by the right side of Eq. (11), which is explained 
by their formal similarity. Equation (16) does not depend 
explicitly on Rrot, its effect enters only through the region 
over which D is averaged. The authors found that, over a 
broad range of Rrot, this approach results in a more accurate 
representation of the self-similar curves than formulations 
that account for the off-center source positions.

The self-similar curves are demonstrated through one 
set of array patterns in Fig. 5 for a reference setup with 
D* = 71.43 at z* = 40.81. The respective coordinates are 
indicated above each image and marked as black circles 
in Fig. 4. In  all four cases, the number and distribution 
of sidelobes are similar, with similarity decreasing some-
what at small distances. This trend is quantified in Fig. 6, 
where the correlation between the reference and the test 
array patterns is shown by black circles. The dashed line 
shows correlation coefficients obtained across a finer 
scale of distances. Although similarity weakens at small 
distances, the displayed array patterns remain the closest 
matches to the reference.

Fig. 5 Set of self-similar beamforming maps, with the corresponding 
normalized rotor–array distance (z*) and array diameter (D*) values 

indicated above each image
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The advantage of the identification of self-similar curves 
is twofold. First, the array diameter range determined at 
one measurement distance can be transferred directly to 
other distances, reducing the number of required investi-
gations in the z*-D* plane. This is exploited in Section 4, 
where results are presented for only one measurement dis-
tance. In fact, the transformation need not occur exclu-
sively between two measurement distances, as it may also 
take place between any two cross-sections of the diagram, 
as long as the same self-similar curves are intersected.

Second, these curves not only indicate where beam-
forming maps are similar, but can also be used to assess the 
extent to which they differ in other directions. Identifying 
directions associated with stronger variations is import-
ant when planning a series of measurements under spa-
tial constraints. This property can be exploited in asyn-
chronous measurements for turbomachinery (as discussed 
in Section 1), where combining beamforming maps ben-
efits from maximizing differences between the side-
lobe arrangements of the individual measurements. Self-
similar curves, therefore, identify regions where results 
resemble one another most closely, providing a basis for 
selecting alternative configurations that ensure maximum 
difference in combined analyses.

4 Validation of the theoretical measurement range
Having determined the theoretical measurement range for 
a UCA, this section investigates the effectiveness of the 
bound formulas for rotating noise sources. 

4.1 Numerical procedure
The simulations in this study have been performed using 
an in-house beamforming code previously applied in ear-
lier investigations [7, 22]. Four sources have been defined, 
as shown in Fig. 1, each emitting uncorrelated white noise. 
The sources have been positioned uniformly around the cir-
cumference of a rotor with a diameter of 0.49  m (source 
positions indicated by black squares and paths by black cir-
cles in Fig. 7) rotating at 50 rev/s, resulting in a tangential 

speed of 0.22 Ma at the source positions. The emitted sound 
has been numerically propagated to the microphones by 
solving the convected wave equation for a monopole source, 

Fig. 6 Correlation coefficient between the self-similar beamforming 
maps and the reference map (generated at z* = 40.81)

Fig. 7 Beamforming maps for various D* (specified in the top left 
corner of each image) at z* = 10, evaluated at the frequency bin 

4995.7 Hz. Black squares mark the true source positions, while red 
asterisks indicate the maximum sidelobe locations
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following procedures similar to those reported in the litera-
ture [35]. The emission has been oversampled five times rel-
ative to the microphone sampling frequency and resampled 
at the microphones using spline interpolation. The  sam-
pling frequency has been 44.1  kHz, and the total sample 
duration has been 30 s. Beamforming of the rotating noise 
sources has been performed using the VRA algorithm [1]. 
Spectra have been computed via averaged FFT, using 1024-
point segments with a Hanning window and 50% overlap, 
resulting in frequency bins of 43.07  Hz bandwidth. The 
area investigated by beamforming has been defined as 1.5 
times the rotor diameter in each direction, using a grid of 
121 × 121 points. Although the sources emitted uncorrelated 
white noise, beamforming maps have been evaluated at a 
single frequency of 4995.7 Hz for demonstration purposes. 
Results have been plotted in decibels and normalized to 
their respective maxima, applying a wide dynamic range of 
15 dB. While a narrower dynamic range could enhance the 
visual separation of the sources, the wider range provides 
more detailed information on the array's performance.

4.2 Evaluation of the results
As discussed in Section 3, beamforming maps obtained 
at any specific normalized measurement distance can be 
transformed to other distances using self-similar curves. 
Therefore, the simulations performed at a fixed measure-
ment distance can be interpreted for other points along the 
self-similar curves. In  this study, the measurement dis-
tance has been set to z* = 10 (10 times the rotor diame-
ter). The  rate of change of the beamforming maps with 
respect to D* is nonlinear, smaller diameters produce more 
pronounced changes for the same increment. In  order 
to account for this, D* values have been selected on a 
non-uniform scale. The  normalized diameters are indi-
cated in Fig. 4 by black crosses, and are also shown in the 
top-left corner of each image in Fig. 7.

The results are presented in Fig. 7. For the chosen 
z* = 10, the theoretical bounds for D* are 8.63 and 38.50. 
Two diameters below and three above the theoretical range 
are shown. Below the lower bound, at D* = 5 and 7, the 
sources are unresolved, producing only a blurred lobe due 
to insufficient spatial resolution.

At D* = 9, slightly above the lower bound, the sources 
are clearly separated, with four distinct main lobes cor-
responding to the source positions (black squares). This 
separation is maintained throughout the theoretical range 
up to D*  =  35, with high local amplitude maxima mark-
ing the sources. The maximum sidelobe level (MSL) is an 

important measure of array performance. Generally, the 
MSL is approximately 4 dB below the mainlobe. An excep-
tion occurs at D* = 12, where a central sidelobe emerges, 
reducing the MSL to 2 dB. This results from the superposi-
tion of the first sidelobe rings of all four sources at the image 
center. Until D* = 30, the highest sidelobe is located on the 
first sidelobe ring of one of the sources. At D* = 35, how-
ever, the highest sidelobe shifts to the image corners, and 
its amplitude increases. This is presented in Fig. 8, where 
the MSL variation is shown as a function of the array diam-
eter. Black circles indicate the diameters corresponding to 
Fig. 7, and the dashed line shows the MSL obtained on a 
finer diameter scale (not presented for brevity). The MSL 
increases significantly around D* = 30 and remains high for 
larger diameters. This trend aligns closely with the theo-
retical upper bound of D* = 38.50. The minor discrepancy 
arises from two factors. First, the currently investigated 
area measures 1.5 Rrot × 1.5 Rrot, whereas in the theoreti-
cal definition, it has been restricted to its minimum extent, 
corresponding to a circle of Rrot. The spatial aliasing peaks 
seen in the corners of Fig. 7 are outside the area applied in 
the definition. Second, the source position has been chosen 
at the center in the theoretical definition (indicating an aver-
age position for all the sources), whereas now the individual 
source positions shift the spatial aliasing peaks closer to the 
center. These differences do not undermine the validity of 
the upper bound formula, which has reliably estimated the 
higher end of the measurement range. The authors have had 
the same experience when investigating other test cases.

For D* = 40, 45, and 55, high MSL values are observed, 
and source localization becomes increasingly difficult with-
out prior knowledge of their positions. In the extreme case 
(last image), the highest amplitudes are no longer aligned 
with the true source positions, demonstrating the destruc-
tive effects of spatial aliasing on beamforming maps.

Overall, the lower and upper bound formulas have effec-
tively estimated the usable measurement range. Within 

Fig. 8 Variation of the maximum sidelobe level as a function of array 
diameter
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this range, the sources are clearly resolved, and high-am-
plitude sidelobes due to spatial aliasing do not appear near 
the rotor area. When the limitations inherent in the defini-
tions are considered, the formulas provide a reliable tool 
for designing measurement setups involving UCAs for 
turbomachinery investigations.

5 Conclusions
This article has investigated the application of uniform 
circular arrays (UCAs), which are frequently employed 
for turbomachinery noise measurements due to their sim-
ple design and their ability to be placed around ducts and 
free jets. The theoretical measurement range of the array, 
in terms of the rotor-array distance (z) and the array diam-
eter (D), has been determined for a simplified turboma-
chinery test case. The lower bound of the array diameter 
has been established based on the spatial resolution con-
straint using the Rayleigh criterion, while the upper bound 
has been determined from the spatial aliasing constraint, 
and a formula has been proposed to calculate its numeri-
cal value. The lower and upper bounds of the rotor-array 
distance have been defined based on the far-field condition 
and practical considerations, respectively. The theoretical 
measurement range has been normalized using the vari-
ables z* and D*, and the corresponding parameter plane 
has been visualized in a diagram.

The similarity of the beamforming maps has also been 
analyzed, allowing the z*-D* parameter plane to be simpli-
fied through the identification of self-similar beamforming 
maps along self-similar curves. The points of these curves 
have been characterized using point spread functions, 
derived from Bessel function arguments. By employing 

the concept of self-similar beamforming maps, the results 
obtained for one set of (z*, D*) parameter pairs can be 
extended to other measurement distances and array diame-
ters, providing an important outcome of the present study.

The validity of the lower- and upper-bound formulas 
has been demonstrated on a synthetic test case. It has been 
shown that the theoretical formulas provide a reliable esti-
mate of the usable measurement range. Within the range 
suggested by the formulas, spatial resolution has been suf-
ficient to separate the noise sources, and spatial aliasing 
peaks have been effectively excluded from the rotor area. 
However, it is important to note that at the upper end of 
the range, spatial aliasing peaks may appear in the corners 
of the images. To avoid this, a more conservative upper 
bound can be applied, defining the investigation area 
larger than the rotor. Considering these limitations, the 
presented lower- and upper-bound formulas offer practi-
cal guidance for engineers designing measurement setups 
using UCAs for turbomachinery noise analysis.
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Appendix
The spatial aliasing criterion given in Eq. (8) – used in this 
article to determine the upper bound of the array diameter 
– describes the aliasing behavior of a uniform linear array 
(ULA), rather than that of a uniform circular array (UCA). 
This appendix compares these two sensor arrangements, 
shown in Fig. A1. The UCA consists of M  =  24 sensors, 
matching the configuration used in the main text. For the 
ULA, the same sensor spacing ∆x is applied to ensure that 
the aliasing characteristics remain identical for both arrays. 
The resolution of the beamforming results is governed by the 
characteristic size of the arrays, D and L, respectively (see 
Fig. A1). To obtain comparable resolution, L was selected 
to minimize |(Mlin − 1)∆x − D|. With Mlin = 9, the resulting 
array length becomes L = 1.044 D. The array patterns were 
computed for plane waves, using the Eq. (A1) [22]:
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where xm are the microphone coordinates, wm are the weight-
ing factors (being equally  in this investigation), k  is the 
wavenumber defined as k = 2π/λ, where λ is the wavelength, 
and ef is the unit vector pointing toward the focus point xf. 

The resulting one-dimensional array patterns are shown in 
Fig. A2. Only the right-hand side is displayed for better vis-
ibility. For generality, the array patterns are displayed in 
terms of 1/2 k∆sinϑ, where ϑ is measured from the array's 
center axis (see Fig.  1). The shown results correspond to 
D  =  20λ. The ULA pattern is plotted in blue, while the 
UCA patterns – corresponding to cross-sections A and B 
in Fig. 3(a)) – are shown in gray. The aliasing limit derived 
from ∆x = λ/2 is marked by solid red lines, and the first grat-
ing lobe locations (corresponding to ∆x = λ) are indicated by 
dashed red lines. As seen in Fig. A2, the first grating lobe 
of the ULA occurs at π. The precise location of the UCA's 
first grating lobe depends on the number of microphones, 
but remains close to the ULA's location. In conclusion, the 
first grating lobe positions are similar for the ULA and 
UCA. The location of the aliasing limit shows somewhat 
greater variation: for the ULA it lies at π/2, beyond which 
sidelobe peak amplitudes clearly increase, indicating alias-
ing. For the UCA, the first signs of aliasing appear around 
2.1 on the horizontal axis, where cross-sections A and B 
begin to diverge. This higher value for the UCA could sug-
gest a slightly more relaxed aliasing limit, compared to the 
ULA. However, for the argument presented in Section 2.2 – 
specifically, ensuring that aliasing would be prevented even 
when the source is displaced from the center of the focus 
plane – Eq. (8) remains as the recommended estimate for 
the upper bound of the array diameter.

Fig. A1 Microphone arrangements of a uniform linear array (ULA) and 
a uniform circular array (UCA), having the same sensor spacing  and 

approximately the same characteristic size Fig. A2 Array patterns of a ULA and a UCA
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