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Abstract

Phased microphone array measurements combined with beamforming signal processing is a widely used approach for localizing
and quantifying noise sources, which can be used for turbomachinery applications. Among the various array configurations, uniform
circular arrays (UCAs) are frequently employed for rotating sources due to their geometric simplicity and the practical advantage that
they can be installed around a free jet or a duct without disturbing the flow. The present article investigates this array design with the
aim of providing guidelines for planning proper measurement setups. Particular attention is given to two interdependent parameters:
the array diameter and the measurement distance. For a simplified turbomachinery test case, a suitable measurement range is
defined within the parameter plane spanned by these variables. The lower and upper bounds of this range are established through
the constraints of achieving sufficient spatial resolution and avoiding spatial aliasing, for the estimation of which straightforward
formulas are derived herein. Furthermore, it is shown that the parameter plane defined by array diameter and measurement distance
can be regarded as the extrusion of one of its cross-sections along specific curves, referred to herein as self-similar curves, as the

beamforming maps along these curves are self-similar. This property is advantageous, as conclusions can easily be drawn for the

entire parameter space under investigation by carrying out a few simple calculations that utilize the formulas derived herein.
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1 Introduction

Phased microphone array technology, combined with
beamforming signal processing, is a widely used method
for localizing and quantifying noise sources. This capabil-
ity is an important step in the design of quieter machines,
which is essential both for health-related reasons and for
meeting legislative requirements. Microphone array and
beamforming technology can be applied not only to sta-
tionary noise sources but also to moving ones, such as
those in turbomachinery applications. Localizing noise
sources in turbomachinery, however, presents additional
challenges. To identify sources associated with rotating
components, the rotational motion must be compensated.
A widely adopted method for this compensation is the
Virtual Rotating Array (VR A) algorithm [1]. The core idea
of VRA is to create virtual microphones that rotate syn-
chronously with the turbomachinery, so that the rotating
sources appear stationary in the reconstructed sound field.
The signals of these virtual microphones are generated

through interpolation of the signals from the nearest phys-
ical microphones. VRA was originally developed for uni-
form circular arrays (UCAs), in which microphones are
evenly distributed along a circular geometry. In this case,
the virtually rotating signals can be obtained by simple
linear interpolation between neighboring microphone
signals. For technical details of the algorithm, the reader
is referred to [1]. Since its introduction, VRA has been
extended to other array configurations [2—4]. However,
the UCA remains one of the most commonly used designs
for microphone array measurements. Over just the past
three years, numerous studies have employed UCAs, e.g,
in [5—11]. In addition to their simple geometry, UCAs offer
the important advantage that they can be mounted around
free jets without disturbing the flow, or around ducts,
when combined with acoustically transparent duct tech-
nology [12]. This makes UCAs particularly powerful tools
for acroacoustic investigations. Their possible use could
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make invaluable contributions in studies of flow struc-
tures in the wakes of pylons, struts, and other mounting
elements, blade-tip vortex shedding, and the noise sources
of counter-rotating open rotor configurations [13-15].

The UCA design has been widely employed since the
early development of sensor arrays. Foundational theoreti-
cal work has been established in the fields of antenna arrays
and communication technology. Ma and Balanis derived
the array factor in spherical coordinates and expressed
it in a simplified form using Bessel functions [16, 17].
Pontoppidan further analyzed the occurrence and locations
of grating lobes in circular antenna arrays [18]. However,
when it comes to designing microphone array setups for
turbomachinery applications — particularly when only a
limited number of microphones are available — the guidance
found in the literature does not provide much practical help.
In the work of Lehmann et al. [19], the UCA was examined
with respect to the influence of microphone density on the
interpolation accuracy of the VR A algorithm. Microphones
per wavelength (mpw) was introduced as a spatial sampling
metric, and the study showed that sampling is insufficient
when mpw < 2. This requires that, for any pair of adjacent
microphones, their angular separation as viewed from the
source remains smaller than the angle associated with one
wavelength at that distance. In the work of Ocker et al. [20],
the required number of microphones is determined based
on a modal decomposition of the rotating sound field. The
resulting, readily applicable formulas account for the source
frequency, rotational speed, and the rotating source radius.
This constraint on the number of microphones is particu-
larly important when modal decomposition-based beam-
forming methods [21] are employed. While maintaining
sufficient microphone density and sufficient modal resolu-
tion are crucial requirements for obtaining reliable results,
they alone do not define the feasible ranges of other funda-
mental parameters, such as the array diameter and the mea-
surement distance. Establishing such parameter ranges is
of particular importance when installation space imposes
strict limitations on the measurement setup. Especially
when asynchronous measurements are to be performed,
where a series of measurements is carried out while varying
a given parameter, such as measurement distance or micro-
phone array diameter. Applying asynchronous measure-
ments and combining the beamforming results has proven
effective in reducing sidelobes and improving the quality
of beamforming maps in turbomachinery applications [22],
being most effective when the investigated parameter is var-
ied across the largest range possible.

The present article aims to define the complete range of
two fundamental parameters in the setup for turbomachin-
ery noise measurements: the array diameter and its rela-
tion to the measurement distance. The interdependent rela-
tionship between these parameters is analyzed in Section 2
using a simplified turbomachinery test case. In Section 3,
the concept of self-similar curves is discussed. This con-
cept is particularly valuable, as conclusions can easily be
drawn for the entire parameter space under investigation by
carrying out a few simple calculations that utilize formulas
derived herein. In Section 4, the theoretically derived mea-
surement range is validated through numerical simulations.
The results show that the proposed formulas provide reli-
able bounds for the array diameter, which can be applied
with confidence in defining suitable ranges for the asyn-
chronous measurement of turbomachinery applications.

2 Constraints of the measurement setup and
determination of the theoretical measurement range
When investigating a turbomachinery test case, such as
an axial flow fan (see a simplified model in Fig. 1), the
measurement results depend on both the rotor charac-
teristics and the parameters of the phased microphone
array. Therefore, it is important to select an appro-
priate microphone array for the specific task. Certain
rotor parameters can often be estimated before the measure-
ment. For instance, the number of noise sources is typically
related to the number of rotor blades, while the location of
these sources is determined by the underlying noise-gen-
eration mechanism, often being dominant near the blade
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Fig. 1 Simplified model of a turbomachinery test case analyzed using a

microphone array



tip radius. The frequency, and hence the wavelength, of the
noise sources also depends on the noise-generation mecha-
nism. If the frequency is unknown or a broader range must
be investigated, the lower end of the frequency range is
usually chosen to satisfy spatial resolution requirements.

As discussed in Section 1, the VRA algorithm employed
in this study was originally developed for UCAs [1], which
remains a relevant and broadly applied geometry. The pres-
ent investigation focuses on this microphone array design.
In general, a larger number of microphones is desirable to
improve beamforming performance; however, equipment is
often limited by the number of available sensors or measure-
ment channels. Furthermore, beyond a certain threshold,
adding more microphones has little effect on the beamform-
ing results when using a circular arrangement. The required
number depends on the noise source frequency, radial posi-
tion, and rotational speed [19, 20]. The theoretical measure-
ment ranges of the two additional parameters that strongly
influence the results, the array diameter D and the rotor-ar-
ray distance z, are investigated below, and it is shown how
their bounds can be determined based on the constraints
imposed by spatial resolution and spatial aliasing.

2.1 Bound resulting from the spatial resolution
capabilities of a microphone array

Spatial resolution describes the minimum angular sep-
aration between two incident waves that allows them to
be distinguished. When considering a particular mea-
surement plane, this critical angle can be converted into
a corresponding length, allowing spatial resolution to be
expressed in length dimensions. For on-axis incidence,
the spatial resolution p for spatially incoherent incoming
waves can be calculated as [23]:

z

p=a, B/l )]
where 1 is the wavelength of the incoming wave, and o,
accounts for the array geometry. For a circular array, accord-
ing to the Rayleigh criterion, o, =1.22. The Rayleigh cri-
terion is recommended for determining the resolution limit
when the beamforming method used is conventional delay-
and-sum. If more advanced beamforming techniques are
employed — such as DAMAS [24], CLEAN-SC [25], or
Functional Beamforming [26] — more demanding reso-
lution criteria, e.g., the Dawes or Sparrow limits [27, 28],
may be utilized. The procedure for establishing the lower
bound of the array diameter measurement range remains
the same in all cases, only the value of o differs. Since the
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present study uses delay-and-sum beamforming, the lower
bound is now formulated based on the Rayleigh limit.

Equation (1) shows the dependence of the spatial res-
olution on the rotor-array distance, the wavelength (and
hence the frequency) of the noise sources, and the array
diameter. For a given turbomachinery test case, the mini-
mum required resolution p . canbe determined as the dis-
tance between the two closest noise sources, i.e., the dis-
tance between any pair of neighboring sources. Assuming
the sources lie at a radius R, and are uniformly distrib-
uted with an angular spacing of 2z/N, where N is the total
number of sources (see Fig. 2(a)):

pmin = 2Rrat Sin [%j (2)

Substituting this expression for p . into Eq. (1) and
rearranging for D yields a minimum array diameter,
denoted D__

z

D, =0a,—1
min 3
2R, sin(”j )
N

If 1is known, Eq. (3) provides the minimum array diam-
eter necessary to satisfy the resolution requirement for a
given rotor-array distance z. In this way, the lower bound
of the theoretical measurement range of D is established.

In practical turbomachinery applications, multiple noise
generation mechanisms may appear at different radii, or
measurements may need to cover a range of frequencies cor-
responding to the different spectral content of each source.
In such cases, each noise generation mechanism should be
considered separately. When determining the lower bound
of the array diameter, the maximum D___resulting from the
different noise generation mechanisms should be selected
to ensure adequate spatial resolution across all sources.

2.2 Bound resulting from spatial aliasing on
beamforming maps

Spatial aliasing occurs when false peaks appear on a beam-
forming map due to insufficient spatial sampling of the
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Fig. 2 Schematic illustration of the distance calculation between the
(a) sources on the rotor, and (b) the microphones in the array
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sound field. These false peaks, also referred to as grat-
ing lobes, can have amplitudes equal to or close to that of
the true source. They are caused by actual noise sources,
however, because the incoming waves are spatially under-
sampled, these peaks appear at multiple incident angles.
According to the Nyquist-Shannon sampling theorem, spa-
tial undersampling can occur when the distance between
microphones exceeds half the wavelength of the incoming
wave [29]. Spatial aliasing is primarily a concern for regular
arrays with periodic microphone arrangements, such as rect-
angular grid arrays. In contrast, aperiodic arrangements —
where microphone spacings vary — can significantly reduce
the risk of spatial aliasing. Such aperiodic arrays can be
constructed using fewer microphones while still preventing
undersampling over a broad frequency range in all direc-
tions. Although spatial aliasing may not occur in the strict
sense in these cases, inadequate spatial sampling can still
produce false peaks. While the amplitudes of these peaks
may be lower than those of the true sources, their presence
reduces the quality and interpretability of beamforming
maps [29]. This phenomenon is presented in Fig. 3(a), which
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Fig. 3 (a) Array patterns of 24-microphone UCAs, with array diameters

indicated above each image. D _denotes the array diameter where
the effects of spatial aliasing appear according to Eq. (8). The black
circle marks the rotor's radius, which has been used to define the
desired spatial aliasing-free area. The red circle marks the limit of the
aliasing-free area. (b) Cross-sections of the array patterns along lines
of symmetry A and B, as shown in the right image of the top row.

(c) Array patterns with shifted source positions.

shows three array patterns. An array pattern represents the
spatial response function of a microphone array, describing
its directional sensitivity at a given frequency. In this case,
the patterns correspond to plane waves incident perpendic-
ular to the array. The mainlobe (marked by a black square)
corresponds to the true source and appears at the center of
each image, while the sidelobes correspond to false peaks
determined by the microphone arrangement and surround it.
The left image shows a case with adequate spatial sampling.
The middle image shows the critical state in which alias-
ing peaks begin to emerge, visible as high amplitudes in
the corners of the investigated area. The right image depicts
inadequate sampling, where false peaks appear with a max-
imum amplitude approximately 4 dB lower than the true
source. In the figures, the mainlobe is assigned a relative
value of 0 dB. Throughout this article, the term spatial alias-
ing is used to describe the emergence of such false peaks,
since their characteristics are consistent with the strict defi-
nition of spatial aliasing. To avoid high-amplitude aliasing
peaks, it is crucial to ensure adequate spatial sampling, even
in aperiodic arrays. In this study, UCAs are investigated.
Although the microphone spacings between neighboring
microphones of a UCA are equal in magnitude, their direc-
tions vary continuously along the perimeter of the circle.
Consequently, a circular array can be regarded as aperiodic,
despite the regular arrangement of the microphones [30].

As mentioned in Section 1, the behavior of circular
arrays has been studied in fields such as antennas and com-
munication technology [16—18]. However, to the authors'
best knowledge, no analytical formula exists that precisely
describes the location of the innermost ring of spatial
aliasing peaks. The array pattern of a circular array can be
expressed as an infinite sum of Bessel functions, among
which J, and J | contribute most significantly to the inner
ring of spatial aliasing peaks [31]. Solving these Bessel
functions allows one to locate the spatial aliasing peaks,
but the procedure is complex. Here, a new approach is pro-
posed. The authors found that a reasonable estimation can
be obtained directly from the Nyquist-Shannon sampling
theorem [32]. According to this criterion, spatial aliasing
can be avoided if the microphone spacing satisfies:

Ax<A/2 C))

When the incoming wave direction deviates from
the normal to the array plane, the resulting variations in
source—microphone distance across a UCA are not uni-
form, leading to a non-uniform effective microphone spac-
ing Ax. This variation is not accounted for in the present



analysis, as the authors found that the estimation obtained
assuming a uniform Ax agrees well with the spatial-alias-
ing behavior observed for a UCA. For a direct comparison
between a UCA and a truly uniformly spaced linear array,
the reader is referred to Appendix A.

According to Eq. (4), the noise source may be located any-
where in front of the array, i.e, for angles $ <| £ 7/2|, where
9 is measured from the array center axis (see Fig. 1). For a
particular turbomachinery application, the field of view can
often be restricted. In such cases, Eq. (4) modifies to:

|Axsin(9)| < A/2 )

In the extreme case, the field of view is limited to the
angular span of the rotor. Denoting this angle by 9 and
assuming the rotor radius R is known, the angle depends
only on the rotor-array distance z (see Fig. 1):

1

R
‘9 — rot —
( s) \/22+Rr20t \/( . ]2 1 (6)
+

sin

rot

For a UCA with M microphones, the spacing between
neighboring microphones can be expressed in terms of the
array diameter D (see Fig. 2(b)):

A =22 gin (2—”j = Dsin [lj )
27 \2m M

Substituting Egs. (6) and (7) into Eq. (5) yields a con-
straint on the array diameter D that ensures spatial alias-
ing is avoided. Equating the left- and right-hand sides
and solving for D provides the maximum allowable array
diameter D

max’

which serves as the upper bound of the the-
oretical measurement range:

2
i (R] o
Dmax: 2 _ rot A
. (nj 1
sin| — | ——=
M 2
V4
— | +1
[RY{HJ

The results obtained using Eq. (8) are demonstrated in

Fig. 3. As described above, the top row shows array pat-
terns for a 24-microphone UCA with varying diameters.
The diameters are indicated above each column: the left
image shows a diameter being half, and the one on the
right shows a diameter being twice D . The middle image
corresponds to when the effects of spatial aliasing appear
according to Eq. (8). When D < D_ , spatial sampling
is sufficient, and the mainlobe is surrounded by smooth,
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circular sidelobes. At D= D__, peaks begin to appear due
to aliasing, while for D > D__, sampling is inadequate,
producing distinct, regularly spaced false peaks with
lines of symmetry indicated by A and B. Fig. 3(b) shows
cross-sections of these array patterns along the lines of
symmetry. The black lines denote the rotor radius R,
which determines the maximum investigation angle J.
The solid red lines denote the limit of the aliasing-free
area using the respective array diameters. At D = D_ ,
the red circle coincides the black one. The dashed red line
shows the double of the aliasing limit, where the grating
lobes are expected to appear. Over the shown investiga-
tionareaof 4 R x4 R _, false peaks due to spatial alias-
ing emerge as the diameter approaches D = D__, while
smaller diameters show no signs of aliasing.

Figs. 3(a) and 3(b) displays an arrangement where the
source is located at the center. In turbomachinery, dominant
noise sources typically occur along the blade span, often
being the most dominant at the blade tip. In such cases, the
spatial aliasing peaks shift to the side accordingly, with some
part appearing closer to the measurement area. This is illus-
trated in Fig. 3(c). In the extreme case, the source appears at
the blade tip (marked by the black circle). Selecting the array
diameter D according to Eq. (8) results in the grating lobes
approaching the rotor area, as seen in the middle image of
Fig. 3(c). When selecting an array diameter D < D__, the
grating lobes can be kept outside the rotor area.

In conclusion, Eq. (8) has been derived for circular
microphone arrays, starting from the Nyquist-Shannon
sampling theorem, and it has been shown that it provides
an accurate estimation of the critical array diameter and
is adopted hereafter as the upper bound of the theoretical
measurement range for D.

2.3 Constraints for the measurement distance

Having established the bounds of the theoretical mea-
surement range for the array diameter D based on spa-
tial resolution and spatial aliasing criteria, it is also nec-
essary to define constraints for the rotor-array distance z.
Beamforming techniques are designed to localize sound
sources when the array is positioned in the acoustic far-
field of the sources. Consequently, ensuring a minimum
measurement distance is essential.

For an acoustic monopole, the far-field is typically
defined as the distance r at which the product of » and the
wavenumber k satisfies kr>> 1 (see, e.g., [33]). Substituting
the rotor-array distance into this criterion and rearranging
yields a simple expression for the lower bound of z:
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Zo > * )
2r

Typical values of kr found in the literature [1, 34] sat-
isfy this criterion, usually exceeding | by more than an
order of magnitude.

The upper bound of the rotor-array distance z is theo-
retically limited by the dissipation of the measured sound
— that is, when the amplitude decreases to a level compa-
rable with the uncertainty of the microphones. In practice,
however, this distance is often large. Large measurement
distances require correspondingly large array diame-
ters to maintain sufficient spatial resolution, which may
not be feasible given facility constraints. Moreover, the
decrease in signal amplitude reduces the signal-to-noise
ratio, adversely affecting data quality. For these reasons,
the upper bound of z is typically determined by practical
considerations rather than theoretical limitations.

2.4 Determination of the theoretical measurement
range of the D and 7 parameters

As discussed above, the bounds of the theoretical measure-
ment range of D can be defined using the criteria of spatial
resolution and spatial aliasing. Combining the expressions
obtained in Egs. (3) and (8), the theoretical range of D can
be expressed as:

a z
R
R
—X_A<D<
2sin|
N
The expressions can be normalized by A, introducing the

dimensionless variables D* for D/Aand z" forz/R . With this
normalization, the bounds become formally independent

(10)

of the noise source frequency, while z* represents the ratio
of the rotor-array distance and the rotor radius, a charac-
teristic quantity in the measurement setup. Normalization
also reduces the number of parameters, yielding:

aRz* . vz +1

— <D <——— (1)
2sin 2 2sin T
N M

Equivalently, this can be written as:
D, (z')<D <D, () (12)

The theoretical measurement range of D is plotted
in Fig. 4 with a green area. The lower bound for z° is set
according to the minimum measurement distance for a
source frequency of 4995.7 Hz, the same frequency used in

theoretical measurement range
70r self-similar curves
O  points displayed in Sec. 3
60 +  points displayed in Sec. 4 1z

0 2 4 6 8 10 12 14 16 18 20

zZ/R
rot

Fig. 4 Definition of the theoretical measurement range in terms of the

normalized parameters D" and z*

Section 4. For other source frequencies, the minimum mea-
surement distance can be calculated using Eq. (9). The nor-
malized z'-D" plane shown in Fig. 4 provides a practical
tool for narrowing the number of potential measurement
setups. This theoretical range has been applied in the simu-
lation test case discussed in Section 4, where its applicabil-
ity to rotating noise sources has been investigated. Before
proceeding, however, further constraints can be applied to
reduce the number of cases that must be investigated.

3 Self-similar beamforming map curves on the z"-D"
parameter plane

Beyond defining the theoretical measurement range of
the array diameter and rotor-array distance, an additional
important characteristic of the z*-D" parameter plane is the
similarity of beamforming maps corresponding to differ-
ent parameter pairs. When the array diameter is varied at
a fixed measurement distance (i.e., moving along a verti-
cal line in the parameter plane), the resulting beamform-
ing maps exhibit strong similarity, largely independent of
the actual measurement distance. In other words, a beam-
forming map obtained at one specific z*-D" parameter pair
can be reproduced in a very similar form at other dis-
tances by appropriately adjusting the array diameter. This
observation defines a set of curves D*(z") along which the
beamforming maps are similar. These will be referred to
as self-similar beamforming curves throughout this arti-
cle. The observed similarity in the acoustic results is con-
nected to the geometrical similarity of the measurement
setups. However, because the rotor diameter remains fixed
regardless of the chosen distance or array size, the set-
ups are not strictly geometrically similar. Accordingly, the
greatest similarity does not occur along a simple line, as
would be expected under strict geometrical similarity, but
rather along distinct curves. This motivates the definition
of self-similar curves through a different approach.



As mentioned in Section 2.2, the array pattern of a
UCA can be expressed as an infinite sum of Bessel func-
tions [31]:

W (k)= 2T (k%sin&jem(z_q’) (13)
where X, is the focus gridpoint defined by the angles 9
and ¢ (see Fig. 1), k is the wavenumber, M is the number
of microphones, and D is the array diameter, and J, , is the
Bessel function of the first kind of order n - M where 7 is
the running index. Within the spatial aliasing limits, the
array pattern can be well approximated by the zeroth-or-
der Bessel function (n = 0) [16], since the neglected terms
are several orders smaller. Then Eq. (13) reduces to

W(x,,k)=J, (k%sin&j (14)

Equation (14) implies that if the product k& D/2 sin 3
is held constant, the array pattern amplitude remains
unchanged. On this basis, self-similar curves can be
defined. For a reference pattern obtained with parameters
z .and D _, one can write (using Eq. 6):

D,

kQ d =k d (15)
N 2 sz,

Rearranging for D gives:

D(r,z)=—D (16)

2 > ref
1“" + Zref

where 7 is the radius of the focus gridpoint X, measured

from the rotational axis. Using the normalized quantities

introduced in Section 2.4, D" =D/ and z" = z/R, , Eq. (16)
becomes:
S0
D|—.,z |= 17
[ Rrot ] ( )

Equation (16) is specific to investigation points at
radius r. At the center of the array pattern (» = 0), Eq. (16)
simplifies to a linear relation:

D(z)=—D,, (18)

A representative curve for the entire investigation area
can be obtained by averaging D across focus points within
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the spatial aliasing limits, where Eq. (14) remains valid.
The resulting self-similar curves are dislayed as solid
black lines in Fig. 4, closely following the upper theoretical
bound given by the right side of Eq. (11), which is explained
by their formal similarity. Equation (16) does not depend

explicitly on R, its effect enters only through the region

rot®

over which D is averaged. The authors found that, over a

broad range of R, this approach results in a more accurate

rot’
representation of the self-similar curves than formulations
that account for the off-center source positions.

The self-similar curves are demonstrated through one
set of array patterns in Fig. 5 for a reference setup with
D" =71.43 at z* = 40.81. The respective coordinates are
indicated above each image and marked as black circles
in Fig. 4. In all four cases, the number and distribution
of sidelobes are similar, with similarity decreasing some-
what at small distances. This trend is quantified in Fig. 6,
where the correlation between the reference and the test
array patterns is shown by black circles. The dashed line
shows correlation coefficients obtained across a finer
scale of distances. Although similarity weakens at small
distances, the displayed array patterns remain the closest
matches to the reference.

2z =4.08 D" =15.26

2z =204,D" =891

4 4
3 3
2 2
1 1
: 0:“0
x 0
s X
-1 -1
-2 -2
-3 -3
-4 -4
4 3 2 -1 0 1 2 3 4 4 -3 2 1 0 1 2 3 4
x/Rro‘ x/Rmt
* * * *
z =8.16,D = 29.06 z =16.33,D
4 4 )
3 3
29 2
1 1
8 8
x 0 x 0
S S
-1 -1
2 -2
-3 -3
-4 -4
4 3 2 -1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
X/Rmr X/Rmt

Fig. 5 Set of self-similar beamforming maps, with the corresponding
normalized rotor—array distance (z*) and array diameter (D) values
indicated above each image
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Fig. 6 Correlation coefficient between the self-similar beamforming
maps and the reference map (generated at z* = 40.81)

The advantage of the identification of self-similar curves
is twofold. First, the array diameter range determined at
one measurement distance can be transferred directly to
other distances, reducing the number of required investi-
gations in the z*-D" plane. This is exploited in Section 4,
where results are presented for only one measurement dis-
tance. In fact, the transformation need not occur exclu-
sively between two measurement distances, as it may also
take place between any two cross-sections of the diagram,
as long as the same self-similar curves are intersected.

Second, these curves not only indicate where beam-
forming maps are similar, but can also be used to assess the
extent to which they differ in other directions. Identifying
directions associated with stronger variations is import-
ant when planning a series of measurements under spa-
tial constraints. This property can be exploited in asyn-
chronous measurements for turbomachinery (as discussed
in Section 1), where combining beamforming maps ben-
efits from maximizing differences between the side-
lobe arrangements of the individual measurements. Self-
similar curves, therefore, identify regions where results
resemble one another most closely, providing a basis for
selecting alternative configurations that ensure maximum
difference in combined analyses.

4 Validation of the theoretical measurement range
Having determined the theoretical measurement range for
a UCA, this section investigates the effectiveness of the
bound formulas for rotating noise sources.

4.1 Numerical procedure

The simulations in this study have been performed using
an in-house beamforming code previously applied in ear-
lier investigations [7, 22]. Four sources have been defined,
as shown in Fig. 1, each emitting uncorrelated white noise.
The sources have been positioned uniformly around the cir-
cumference of a rotor with a diameter of 0.49 m (source
positions indicated by black squares and paths by black cir-
cles in Fig. 7) rotating at 50 rev/s, resulting in a tangential

xR
rot

Fig. 7 Beamforming maps for various D" (specified in the top left
corner of each image) at z* = 10, evaluated at the frequency bin
4995.7 Hz. Black squares mark the true source positions, while red
asterisks indicate the maximum sidelobe locations

speed of 0.22 Ma at the source positions. The emitted sound
has been numerically propagated to the microphones by
solving the convected wave equation for a monopole source,



following procedures similar to those reported in the litera-
ture [35]. The emission has been oversampled five times rel-
ative to the microphone sampling frequency and resampled
at the microphones using spline interpolation. The sam-
pling frequency has been 44.1 kHz, and the total sample
duration has been 30 s. Beamforming of the rotating noise
sources has been performed using the VRA algorithm [1].
Spectra have been computed via averaged FFT, using 1024-
point segments with a Hanning window and 50% overlap,
resulting in frequency bins of 43.07 Hz bandwidth. The
area investigated by beamforming has been defined as 1.5
times the rotor diameter in each direction, using a grid of
121 x 121 points. Although the sources emitted uncorrelated
white noise, beamforming maps have been evaluated at a
single frequency of 4995.7 Hz for demonstration purposes.
Results have been plotted in decibels and normalized to
their respective maxima, applying a wide dynamic range of
15 dB. While a narrower dynamic range could enhance the
visual separation of the sources, the wider range provides
more detailed information on the array's performance.

4.2 Evaluation of the results

As discussed in Section 3, beamforming maps obtained
at any specific normalized measurement distance can be
transformed to other distances using self-similar curves.
Therefore, the simulations performed at a fixed measure-
ment distance can be interpreted for other points along the
self-similar curves. In this study, the measurement dis-
tance has been set to z* = 10 (10 times the rotor diame-
ter). The rate of change of the beamforming maps with
respect to D" is nonlinear, smaller diameters produce more
pronounced changes for the same increment. In order
to account for this, D" values have been selected on a
non-uniform scale. The normalized diameters are indi-
cated in Fig. 4 by black crosses, and are also shown in the
top-left corner of each image in Fig. 7.

The results are presented in Fig. 7. For the chosen
z" = 10, the theoretical bounds for D" are 8.63 and 38.50.
Two diameters below and three above the theoretical range
are shown. Below the lower bound, at D* = 5 and 7, the
sources are unresolved, producing only a blurred lobe due
to insufficient spatial resolution.

At D* =9, slightly above the lower bound, the sources
are clearly separated, with four distinct main lobes cor-
responding to the source positions (black squares). This
separation is maintained throughout the theoretical range
up to D" = 35, with high local amplitude maxima mark-
ing the sources. The maximum sidelobe level (MSL) is an
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important measure of array performance. Generally, the
MSL is approximately 4 dB below the mainlobe. An excep-
tion occurs at D* = 12, where a central sidelobe emerges,
reducing the MSL to 2 dB. This results from the superposi-
tion of the first sidelobe rings of all four sources at the image
center. Until D" = 30, the highest sidelobe is located on the
first sidelobe ring of one of the sources. At D* = 35, how-
ever, the highest sidelobe shifts to the image corners, and
its amplitude increases. This is presented in Fig. 8, where
the MSL variation is shown as a function of the array diam-
eter. Black circles indicate the diameters corresponding to
Fig. 7, and the dashed line shows the MSL obtained on a
finer diameter scale (not presented for brevity). The MSL
increases significantly around D" = 30 and remains high for
larger diameters. This trend aligns closely with the theo-
retical upper bound of D* = 38.50. The minor discrepancy
arises from two factors. First, the currently investigated
area measures 1.5 R *< 1.5R , whereas in the theoreti-
cal definition, it has been restricted to its minimum extent,
corresponding to a circle of R . The spatial aliasing peaks
seen in the corners of Fig. 7 are outside the area applied in
the definition. Second, the source position has been chosen
at the center in the theoretical definition (indicating an aver-
age position for all the sources), whereas now the individual
source positions shift the spatial aliasing peaks closer to the
center. These differences do not undermine the validity of
the upper bound formula, which has reliably estimated the
higher end of the measurement range. The authors have had
the same experience when investigating other test cases.
For D" =40, 45, and 55, high MSL values are observed,
and source localization becomes increasingly difficult with-
out prior knowledge of their positions. In the extreme case
(last image), the highest amplitudes are no longer aligned
with the true source positions, demonstrating the destruc-
tive effects of spatial aliasing on beamforming maps.
Overall, the lower and upper bound formulas have effec-
tively estimated the usable measurement range. Within
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Fig. 8 Variation of the maximum sidelobe level as a function of array

diameter
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this range, the sources are clearly resolved, and high-am-
plitude sidelobes due to spatial aliasing do not appear near
the rotor area. When the limitations inherent in the defini-
tions are considered, the formulas provide a reliable tool
for designing measurement setups involving UCAs for
turbomachinery investigations.

5 Conclusions

This article has investigated the application of uniform
circular arrays (UCAs), which are frequently employed
for turbomachinery noise measurements due to their sim-
ple design and their ability to be placed around ducts and
free jets. The theoretical measurement range of the array,
in terms of the rotor-array distance (z) and the array diam-
eter (D), has been determined for a simplified turboma-
chinery test case. The lower bound of the array diameter
has been established based on the spatial resolution con-
straint using the Rayleigh criterion, while the upper bound
has been determined from the spatial aliasing constraint,
and a formula has been proposed to calculate its numeri-
cal value. The lower and upper bounds of the rotor-array
distance have been defined based on the far-field condition
and practical considerations, respectively. The theoretical
measurement range has been normalized using the vari-
ables z* and D", and the corresponding parameter plane
has been visualized in a diagram.

The similarity of the beamforming maps has also been
analyzed, allowing the z*-D" parameter plane to be simpli-
fied through the identification of self-similar beamforming
maps along self-similar curves. The points of these curves
have been characterized using point spread functions,
derived from Bessel function arguments. By employing
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Appendix

The spatial aliasing criterion given in Eq. (8) — used in this
article to determine the upper bound of the array diameter
— describes the aliasing behavior of a uniform linear array
(ULA), rather than that of a uniform circular array (UCA).
This appendix compares these two sensor arrangements,
shown in Fig. Al. The UCA consists of M = 24 sensors,
matching the configuration used in the main text. For the
ULA, the same sensor spacing Ax is applied to ensure that
the aliasing characteristics remain identical for both arrays.
The resolution of the beamforming results is governed by the
characteristic size of the arrays, D and L, respectively (see
Fig. Al). To obtain comparable resolution, L was selected
to minimize |(M,, — )Ax — D|. With M, = 9, the resulting
array length becomes L = 1.044 D. The array patterns were
computed for plane waves, using the Eq. (A1) [22]:
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where x_ are the microphone coordinates, w, are the weight-
ing factors (being equally in this investigation), k is the
wavenumber defined as k = 2z/1, where 4 is the wavelength,
and e 2 is the unit vector pointing toward the focus point x,.
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Fig. A1 Microphone arrangements of a uniform linear array (ULA) and
a uniform circular array (UCA), having the same sensor spacing and
approximately the same characteristic size
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The resulting one-dimensional array patterns are shown in
Fig. A2. Only the right-hand side is displayed for better vis-
ibility. For generality, the array patterns are displayed in
terms of 1/2 kAsind, where 9 is measured from the array's
center axis (see Fig. 1). The shown results correspond to
D = 204. The ULA pattern is plotted in blue, while the
UCA patterns — corresponding to cross-sections A and B
in Fig. 3(a)) — are shown in gray. The aliasing limit derived
from Ax = 1/2 is marked by solid red lines, and the first grat-
ing lobe locations (corresponding to Ax = 4) are indicated by
dashed red lines. As seen in Fig. A2, the first grating lobe
of the ULA occurs at 7. The precise location of the UCA's
first grating lobe depends on the number of microphones,
but remains close to the ULA's location. In conclusion, the
first grating lobe positions are similar for the ULA and
UCA. The location of the aliasing limit shows somewhat
greater variation: for the ULA it lies at z/2, beyond which
sidelobe peak amplitudes clearly increase, indicating alias-
ing. For the UCA, the first signs of aliasing appear around
2.1 on the horizontal axis, where cross-sections A and B
begin to diverge. This higher value for the UCA could sug-
gest a slightly more relaxed aliasing limit, compared to the
ULA. However, for the argument presented in Section 2.2 —
specifically, ensuring that aliasing would be prevented even
when the source is displaced from the center of the focus
plane — Eq. (8) remains as the recommended estimate for
the upper bound of the array diameter.
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Fig. A2 Array patterns of a ULA and a UCA
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