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Abstract 

The flow field induced by a submerged inclined jet in a cylindrical tank is treated. A flow 
visualization and velocity measurement on the free surface of the tank delineated a simple 
constant eddy viscosity axisymmetric model that may be used to predict the flow field in 
the tank. A formula for the prediction of the tangential velocity on the free surface of the 
tank was deduced from the Navier-Stokes equations and balances of the radial momentum. 
Thus, the whole flow field may be predicted from design and operational parameters. 

Keywords: submerged, monophase, floating particles, free surface, mean swirl velocity. 
constant eddy viscosity, prediction from design and operational parameters. 

1. Introduction 

A vortex with an axial velocity component is generally called swirling flow. 
Such flmv configuration exists in many industrial devices; cyclone separators, 
hydro cyclone separators, swirling spray dryers, swirling furnaces and vortex 
tubes used for thermal separation. It can be found also in agitated chemical 
tanks and turb o-machinery passages and piping. 

The swirling flow in these devices is mostly regarded as a turbulent 
one, where fluid fluctuations are occurring in all: tangential, radial and axial 
directions. Usually the tangential velocity component strongly dominates 
the state of swirling flow. KURODA and OGAWA [9J reviewed turbulent 
s\virling pipe flmv and explained the available methods for correlating the 
mean swirl velocity Ve. The flow domain is divided into two regions (Fig. 1), 
i.e. forced rotational flow in the center of the pipe, and quasi-free rotational 
flow surrounding it. Typical empirical expressions used for modelling and 
data fitting of Ve distributions are: 

1. Transformation of Rankine's compound vortex 

(1.1) 
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for the forced vortex. 

(1.2) 

for quasi-free vortex. 
2. Transformation of Burgers vortex 

- kl ( ?) 17 1 -k?r-. I"B=- -e -
T 

(2) 

where kl' k2, Tb (defined in Fig. 1), 171, nand Ws (characteristic angular 
velocity in the forced vortex) are to be determined from experiment. Since 
their values depend on local flow conditions, it is difficult to determine them 
from operational conditions. On the other hand. it is important from en­
gineering point of view to establish how to estimate 1/ e distribution for an 
arbitrary operational condition. KuRODA and OGAWA [9] used the trans­
formation of Rankine's compound vortex to model swirling flow in a pipe. 
Their model depends on Tb and 1/ Bb which can be found only by experiment. 

! 
(1.1);n=1 
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Fig. 1. Theoretical tangential velocity distribution 

The transformation of Burgers' vortex was derived by Bl'RGERS [2] to 
explain the mechanism of turbulence. Later, it was independently derived 
by ROTT [8]. He used it to model stagnation point flow and to explain some 
practical physical phenomena such as flow in the bath tub, the tornado 
problem and the phenomena found at the intake of jet engines situated (at 
rest) near the ground. 
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In equilibrium, a 'viscous radius', r* is found which is determined by 
the kinematic viscosity v and the gradient of the incoming flow a: 

fF'> * _v 
r = -. 

a 
(3) 

To alleviate the restriction of a stagnation flow extending to infinity, Rott 
proposes that the viscous effect is restricted to a cylinder of radius of the or­
der of r*; thus, the solution can be applied, in the sense of a boundary-layer 
approximation, to the core of any vortex aligned with an axisymmetric stag­
nation point whatever the flow at infinity may be. Subsequently, Burgers' 
transformation has been used [3] as the basis for comparison of swirl-velocity 
measurements for numerous practical devices such as those mentioned previ­
ously. Eq. (13) was utilized despite the assumption of uniform axial velocity 
which,as experiment indicates, is far from real. Also. in most practical sit­
uations, the vonex core is turbulent and so an eddy viscosity Ve has been 
substituted for the kinematic viscosity. 

In modern chemical processing units, it is common practice for liquids 
in a tank to be circulated by drawing them through a pump and returning 
them to the tank through a pipe or a nozzle for such purposes as homog­
enization of physical properties, prevention of stratification, prevention of 
deposition of suspended particles and tank cleaning. The problem under 
investigation here has similar arrangement with application to waste treat­
ment. 

The setup used for both numerical and experimental simulations is 
shown in Fig. 2. It consists of a cylindrical tank with flat bottom equipped 
with a nozzle, pump and connecting hoses. \:Vater leaves the tank via four 
peripheral outlets. The nozzle can be positioned at the desirable location 
and angle. A similar setup is being used in a waste treatment plant in 
Hungary to stir aeration tanks in order to keep matter suspended. Our 
mo del cont ains only pure water and no air. \Vhen the nozzle is inclined 
and positioned away from the centre of the tank. the flow is turbulent and 
three-dimensional. In this case the problem has the following features: 

- The flow field is described by the 3D ::\ avier-Stokes equations which 
are coupled high-order non-linear partial differential equ·ations. Their 
solution is a challenge to the most powerful computational methods 
and computers. 

- The flow is turbulent and the addition of a turbulence model such as 
the k - c. model will complicate further the problem and increase the 
required computer resources. 

The problem has at least two varying length scales: a small nozzle 
diameter and a large tank dimension. 
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Fig. 2. Setup 

2. Flow Visualization and Measurement 

In the experimental study visual observation of light part ides floating on 
free surface of the water and suspended particles circulating \vith the flow 
or settling on the bottom indicated that the flmy may be treated as ax­
isymmetric for some cases. The inclined jet with its axial downward and 
tangential components produces a swirling motion in the sense defined pre­
viously. This observation was utilized to device a simple flmv model for the 
complex problem. A method based on imaging streamlines and using com­
puter digitization was developed and used for measuring the distribution 
of the tangential velocity on the free surface (details are given in [10]). A 
typical image taken by the camera on Fig. 2 is shown in Fig. 9. 

3. Distribution of the Tangential Velocity 

Based on observation we attempt to find some simple solutions that may 
give further insight into the nature of the problem and indicate possible 
simplification to reduce its complexity. A natural start is to use one of the 
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existing models. LITVAI and HEGEL [5J used Eq. (13) to predict the tangen­
tial velocity distribution using the distance from the centre of the tank to 
the location of the jet (q) for 1'*. They tested this assumption for a single 
set of data and their tuning of constants for the friction coefficient cannot be 
generalized. Ho\vever, this assumption \vas not always suitable. Addition­
ally, the equation does not provide for any systematic way to treat all sets of 
data. In what follows we reconsider the derivation starting from the Navier­
Stokes equations with somewhat different non-dimensional regrouping of the 
variables. 

3.1. Mathem.atical A.nalysis 

The Navier-Stokes equation for the tangential velocity component for ax­
isymmetric incompressible flo\v IS: 

Vr o( r Ve ) . oVe [0 (1 o( l' Ve ) ) 0
2 

Ve 1 - --- + lie -- - Veil - - --- + -- = 0, 
l' or - or or l' Or oz2 

(4) 

where vefl = Vtur + V/am is assumed to remain constant; turbulence is as­
sumed to increase in effect the normal molecular viscosity [5, 7J. If Ve is 
assumed to be independent of z the partial differential equation simplifies 
to an ordinary solvable one 

--- - velfdd (- --" 
1~. drFe) (1 drVg)) 
r d \1' d 

o. 

If we introduce the following non-dimensional parameters: 

r* 

vefl 

1ier 

lie 2 1'2 

l' 

R= -. 
1'2 

(5) 

(6) 

(7) 

(8) 

v,,-here 7'2 is the tank radius and le2 is the corresponding tangential velocity. 
In order to solve the differential equation we need to know 1"~. As a first 
approximation \\-e assume that Fr is proportional to r. This assumption IS 

suggested by experiment. The solution may be assumed of the form: 

(9) 
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Applying the boundary conditions r* = 1 at R = 1 and r* 
we obtain: 

1 

and 
Cl - = C,). 
,\ -

Hence the final solution is: 

or 

r* 
1 _ e-(>..j2)R2 

1 - e-A/ 2 

( 1 _ e-(A/2)R2
) 

Ve2 r2 Ve = ----;--;-:--'------'-
1 - e--\j2 r 

Comparison to Eq. (2) reveals that: 

and 

3.2. Determination of ,\ 

o at R = 0, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15 ) 

VVe plot eq1wtion (12) for various values of /\ and then superimpose r: (r* 
calculated from experiment) on the same graph. Values of (rFe)') required to 
put the experimental circulation (re) into a non-dimensional for-m (r:) were 
extrapolated from experimental trend curves and adjusted to give the best 
possible fit. Fig. 3 displays the results. The theoretical non-dimensional 
circulation (r*) fits very well the measured one (r:) with a single value of 
/\ = 8 and for unique values of (rFe h for each set of data. These values are 
given in Table 1. 

Table 1. Values of kl and k2 for best fit of experimental data 

Set # kl Vin k2 
p293 0.035 0.043 6.25 
p592 0.060 0.074 6 ')-.~0 

p992 0.130 0.159 6.25 
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Fig. 4. Relation of power law exponent n and Re for best fit of experimental data 

3.3. Estimation of lie2 

To determine Fe (7") from design and operational parameters. we need to find 
lie2' In equilibrium, the momentum produced by the tangential component 
of the jet is balanced by frictional forces acting on the walls of the tank. An 
anguhr momentum balance over the total volume yields: 

;\fJet = Jls ide-wall + 1HI/oor . (16) 

where "HJet is the rate of convection of angular momentum by the tangential 
component of the jet. 1HI/oor and j\fside-wall are the momentum dissipated 
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by the side and bottom of the tank 

( 17) 

(18) 

J
r2 

2 2 
Alf/oor = pT! Cf,bVer d, (19) 

o 
Vj is the velocity of the jet at the nozzle exit, 7'n is the nozzle radius, 7'1 is 
the position of the jet from the center of the tank and e is the nozzle angle 
of inclination, 7'2 is the tank radius. and h is the tank height. The shear 
stress Tre was replaced by 

P 2 
Tre = -ve Cf· 2 . (20 ) 

where C f is a friction coefficient. Substitution m the momentum balance 
equation yields: 

r2 

2 2 . e C' I 21r2 I J C' 2 2d Vj7' n TI sm = f,5 ~r2 l'e2 T j,bVe,b7'· (21) 

o 

The calculation of the contribution to the momentum equation by the floor 
is complicated by the dependence of both Cf,b and Ve,b on 7'. If we assume 
that Ve,b has the same distribution as that at the free surface multiplied by 
a decay factor then Eq. (21) may be solved exactly or numerically. Thus: 

The formulae available for calculating Cf for pipes or flat plate oYer­
predict the peripheral tangential velocity that fit best the experimental data. 
'When the constants in the power law equation were modified to predict the 
desired value of Ve2 for one set, the prediction improves but better accuracy 
is still desirable. There are good reasons for this to happen. The nature of 
the problem is different from those in pipes or flat plates and the tangential 
velocity decays towards the floor. An effective friction-like factor accounting 
for these factors and other unknown ones is to be sought. The friction factor 
f is a function of the exponent n in the power law. 

f= (23) 

and 
f 0.3 

Cf = - = --;;- , 
4 n-

(24) 

where c = 1.2 is used according to HIi\'ZE [4]. The exponent n is a function 
of the Reynold's number, e.g. n = 6 at ReD = 4.104 and n = 9 at ReD = 106 

[4, 6]. By trial and error, n was selected to produce the desired Cf for the 
three data sets under investigation. The resulting values are plotted versus 
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Re in Fig. 4. The points lie on a straight line. By regression analysis, the 
following relation was obtained. 

n = 1.149 + 1.367 . 10-5 Re . (25 ) 

Cf versus Re is plotted in Fig. 5. By looking at the Moody diagram, it is 
seen that behavior of this system is similar to that of rough pipes in the 
complete turbulence state. A regression fit for C f in terms of Re is also 
found: 

Cf = 0.3874 . 105 Re- L184 
. (26) 

There seems to be a good correlation for the investigated sets of data. 

3.4. Simple Closed Form Solv,tion 

Having found ways to determine Ve2 in general we now seek a simple closed 
form solution relating it to operational parameters. Assuming Cfb constant 
and equal to CIs) momentum lost on the floor is approximated as follows: 

(27) 

The expression in square brackets may be simplified further to [r2 - 0.4.55J 
for 7'2 larger than 0.7. Introducing these simplifications we obtain: 

_ .~QVj nilsm 2 ."1v 

[ 

0 ,,- 2 d2 . e ]1.225 1 1'-
\/e2 =" - . 

0.3874·10'> (h + 0.2(7'2 - 0,455)) (v) (28) 

4. Estimation of the Eddy Viscosity 

In deriving Eg. (13) for the distribution of the tangential velocity, it was as­
sumed that the viscosity is constant; the turbulence is assumed to increase 
the effective viscosity in a manner that the eddy viscosity may be treated, 
on the average, as a constant. This assumption was utilized in applications 
mentioned previously, in which Burgers' solution was used to fit experimen­
tal data. Useful information on the computation of constant effective eddy 
viscosity is found in [IJ. The eddy viscosity was found to correlate with Re 
as follows: 

Re 
(29) 

v 
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Fig. 5. Relation of C f to Re for best fit of experimental data 
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Fig. 6. Comparison of predicted and measured tangential velocity profile for Vj = 

19 m/s, dn = 5.1 mm. Tl = 0.34 m, and e = 30° 

Re is based on the maximum tangential velocity and the corresponding 
radius. Remin is equal to 30. This relation WClS found by order of magnitude 
analysis and verified by experiment. 

5. The Constant Eddy Viscosity Model 

Now we have all the ingredients to formulate a more elaborate mathemat­
ical model. 'With the tangential velocity at the free surface as a boundary 
condition and the effective velocity producing it known, it is possible to 
calculate the flow field in the rest of the tank by the numerical solution 
of the axisymmetric N avier-Stokes equations. The measured profile of the 
tangential velocity accounts of the effect of the jet. 
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Fig. 8. Comparison of predicted and experimental data for Vj 

25 mm, rl = 0.33 m, and e = 30° 

6. Conclusions 

1.84 m/5, dn 

\,ye have formulated a simple mathematical model for the prediction of the 
tangential wlocity on the free surface. \Vith some information about the 
decay of swirl velocity it is possible to generalize the model to the whole 
flow field. We summarize the main findings in the following points: 
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Fig. 9. A typical image by the cament,on Fig. 5:: 

1. The derived model was found to fit the experimental a\'eragecl tangen­
tial velocity profile remarkably well for the three tested sets of'data' 
by a single parameter /\ = 8 provided that the·tangential velocity at 
the periphery is \vell predicted. 

2, The tangential velocity at the periphery was calculated from a momen­
tum balance on the radial: com:ponen't of the jet. A close form simple 
formulae relating 1182 to design and operational parameters was de­
rived. 

3. A consta~tviscosity model 1,i;ith thetangenti~l veloc.ity 'profile at the 
free surface (accounting for the effect: of the jet) 'as a boundary condi-, 
tion is proposed. 
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