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Abstract 

The article deals with the analysis and synthesis of open-ended tendon transmissions, 
which are widely used in robotics, mainly at dextrous hands. A general theoretical 
approach is introduced, feasibility and isomorphism of arbitrary tendon structures are 
investigated with the help of defining normalized, schematic and canonical form of manip­
ulators. Kinematic description is discussed based on the structure matrix, and solution 
methods of inverse tasks are presented. For the purpose of constructional synthesis, mini­
mum and maximum nu:nber of tendons and pulleys are analysed. To enable practical use 
of the results, several algorithms are developed. As an application example for system 
optimization, transmission design of the TUB-PC multifingered robot hand is presented. 

Keywords: kinematics, open-ended tendons, dextrous robot hands. 

1. Introd uction 

Tendons are common elements widely used in the field of constructional syn­
thesis of various machines. :\lost frequently tendons are endless, for example 
in common applications of various belts or chains. In other cases, tendons 
are open-ended. :\hthematically, the speciality of open-ended tendon trans­
mission lays in the 'unidirectional character of the system, i.e. a tendon can 
transmit energy only in the direction of pulling. 

\1ultifingered robot hands are often operated with open-ended ten­
dons, because effective pay-load increase and manipulator structure becomes 
lighter. compared to other transmissions (e.g. direct drive). The reason is 
that actuators can be installed on the ground and the transmission system 
has relatively low mass and inertia. On the other hand. tendon transmission 
has some practical drawbacks, the non-linear system behaviour. the limited 
tensile strength and fatigue of tendons must be compensated with proper 
control methods and careful selection of tendon material (see SALISBl:RY, 

1982: .]ACOBSEN et al.. 1984). \ 
A manipulator with n degrees-of-freedom (DOF) and with m open­

ended tendons can be classified as an n x m type of manipulator. In prac­
tice. usually t\VO types of tendon routing are applied. One approach is the 
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m x 211 type of manipulator, for example at the UTAHj:\HT robot hand 
(.JACOBSE~ et aL 198c.±). Although, transmission of such manipulators is 
redundant, the operation principle is simple and quite similar to the tendon 
arrangement of a natural finger. Another possibility is the m x (n + 1) type 
of manipulator. which aims to obtain relatively low actuator mass due to 
the minimum number of motors. Quite many dextrous grippers have trans­
missions of the latter type, for example fingers of the Okada Hand (01'AOA, 
1979). the Stanfordj JPL Hand (SALISBURY, 1982), or the T1.7B-PC Hand 
(Ll'OVIG. 1997). It must be noted, there are other types of universal grip­
pers (e.g. Soft Gripper, see PHA:-'l and HEGI~BOTHA:'L 1986), robots arms 
(e.g. :"1icroboL see HILL and CLE:-'lENT. 1982), and other devices (e.g. endo­
scopes, see STCRGES and LAOWATTA:,\A. 1993) too, which have open-ended 
transmission. 

In general, there are many other possibilities to construct open-ended 
tendon transmissions. :"IORECKI et al. (1980) presented a theoretic ap­
proach to the problem. and that was criticized and deyeloped later by LEE 
and TSAI (1991). Although the latter outstanding work introduced several 
useful concepts, the analysis 'was focused only on the theory' of pseudo­
triangular structure rnatrices, thus many common tendon structures were 
not covered. This article generalizes results of LEE and T"SAL with the 
aim to provide a wider theoretical background for the analysis and design 
synthesis of open-ended tendon structures. 

2. Operation Principle 

For readers not familiar 'with the topic, the operation principle of open-ended 
transmissions will be introduced through some simple examples. 

T1 

ql ql T 1 
Fig. 1. Unfeasible manipulator of 1 x 1 type 

EXAt"lPLE 1 Assume, given a simple 1 DOF mechanism with 1 tendon, as 
shown in Fig. 1. The pulley can rotate freely around the axis of the joint, its 
distal end is jointed to the distal segment, the tendon is conducted around 
the pulley, then its other end is fastened to a motor pulley (not presented). 
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If a posItIve force acts on the proximal end of the tendon, it generates a 
negative joint torque. On the other hand. the manipulator is not feasible, 
because the mechanism cannot be operated in the negative direction with 
the tendon. 

T2 

qj ql Tj T1 

Fig. 2. Feasible manipulator of 1 x 2 type a) planar b) spatial 

In order to enable the operation of the above mechanism downwards 
too, a further tendon and pulley (bf'hind the first one) must be applied. 
which results an 1 x 2 type of manipulator, see Fig. 2.a.· Let us define the 
following kinematic \-ariables: 01,02 motor angular displacements: nil. lTI2 

motor torque. q1 joint angular position: '1 joint torque. Assume that pulley 
radii are of uni t length. 

2vIotor displacements (.6. 01, D.02) can be calculated from a given value 
of joint displacement (D.ql) 'with the following equation: 

(1 ) 

:.zotice that transmission ratio depends only on pulley radii. but distances 
between joint axis and tendon fixing points have no effect. The above trans­
foI'mation matrix is called the structure matrix of the transmission system 
(A). In the inverse position task, joint displacement must bt· calculated 
from motor displacements. A solution exists if the following condition is 
fulfilled: 

(2) 

which expresses that a tendon cannot loosen or be torn. A possible solution 
is: 

o 1 [ D.9,'l ] , 
D.02 

(3) 

where the transformation matrix (A -1) is a pseudo inverse (generalized 
inverse). Similar equations apply for joint and motor torque. The direct 
torque equation is calculated with the transposing of the transformation 
ma trix: 

T=ATm. (4) 

In the lIlverse task. motor torque must be calculated from joint torque: 

(5) 
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where the transformation matrix is A -T. There are infinite solutions, be­
cause the two tendons 'work against each other'. The internal force will be 
minimum, if: 

1\:1 = max(O, -TIl . (6) 

There are other manipulators, which can be described also with the above 
equations. For example, Fig. 2. b shO\vs a spatial representation of the same 
structure. 

Identification of structure matrices can be achieved relatively easily 
according to the following composition rule. 

Fig. 3. Manipulator of :2 x 3 type a) planar b) spatial 

ALGORITH:YI 1 Assume, given a planar manipulator, and its pulleys are all 
of unit or zero radii. In a structure matrix (A). column J of the matrix refers 
to tendon J, while row i refers to joint i (joints numbered from proximal 
end in ascending order. starting by 1). For the element in row i and column 
J of A the following rules apply: 

• the element is L if positive force on tendon j results in positive torque 
on link i; 

• the element is -1. if positive force on tendon j results in negative 
torq ue on link i; 

• the element is 0, if positive force on tendon J results in no torque on 
link i, because tendon crosses the joint axes or it is fixed to a segment 
proximal to joint i. 

Fig. 4. Schematic drawings of manipulators a) 1 x :2 type b) 2 x 3 type 
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EXA:"IIPLE 2 Let us no\\" investigate a 2 DOF mechanism. For the 2 x 3 type 
of manipulator shown in Fig. 3, Algorithm 1 yields the follo\ving structure 
matrix: 

[ i -1 
1 

o ] T . 
-1 (7) 

For the 2 x 4 type of manipulator in Fig. 5. the following structure matrix 
applies: 

-1 
o 

o o 
-1 (8) 

Notice, the relation between number of degrees-of-freedom and tendons. The 
above manipulators were of n x (71 + 1) and n x 2n types. respectively. 

E;5f<--f-~~ 
------T3 

Fig. 5. \Ianipulator of 2 x 4 type 

3. Classification of Manipulators 

Since the concrete objective of the work presented was to elaborate the 
theoretical background of transmission design for dextrous robot hands, only 
a limited area of open-ended tendon applications v;ill be discussed in details. 
In below, the word (general) mani]J'ulato1" (."-,-'/) refers to a system of the 
following components: (1) open-loop, serial mechanism with R-pairs, (2) 
transmission, v,Thich consists of open-ended tendons and conducting pulleys. 
that rotate freely around manipulator axes (distal end of a tendon is fixed 
to a segment, proximal end to a motor), (3) act·uator. which is a number of 
rotating motors. Set ;lA is infinite at a given number of degrees-of-freedom 
(DOF) and a given number of tendons. 

Because structural analysis deals rather v;ith the way how a manipu­
lator is operated and not \\-ith the calculation of kinematic variables_ thus 
exact values of geometrical parameters have no importance_ and simplified 
models can be taken. 

A normalized manipulator (A1n C ;\1) is a manipulator. \\-here the 
radius of pulleys is unit or zero at joints, and unit at motors. At given values 
of 11 and m, set ;\1 n is finite \vith respect to possible structure matrices. 
On the other hand, there are infinite numbers of normalized manipulators 
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having the same structure matrix. but differing in their D-H parameters 
(DENAVIT and HARTENBERG, 1955) from each other. 

A schematic manip-uiator (/vls C /Vl n ) is a planar, normalized manip­
ulator, where all links are of unit length. using the D-H parameter assign­
ment: 19; = O,0:i = 0, Qi = 1 and d; = 0. According to LEE and TSAI (1991), 
manipulators in plane can be represented \yith schematic dra-wings. see e.g. 
Fig. 4. Set .. VIs is finite at gi"en values of 11 and m. The main advantage 
in using the schematic description is due to the one-to-one correspondence 
between normalized structure matrices and schematic manipulators. 
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Fig. 6. Replacement of reversed tendons 

Although it is not a necessary feature of transmissions. in practice. 
tendons are usually conducted only in fOr\\"ard direction. from the basement 
to the direction of the distal end_ :'\evertheless, there is a possibility for 
reversed tendon rO'uting with one ore more changes in the direction of ten­
don conducting. Fig. 6 displays basic cases and gives suggestions how to 

replace reversed tendons with straightforward ones. Tendons are parailei. if 
they are conducted in an identical way. In structural analysis. they can be 
replaced with only one tendon. It will be assumed in below. that schematic 
manipulators ha"e neither reversed nor parallel tendons. For the sake of 
completeness it must be also imposed that if there was a tendon crossing 
only other joint axes beyond a certain joint. it is assumed to be fastened to 
the segment proximal to that joint. There is no tendon furthermore. ,,"hich 
has no effect on the manipulator (no aT row in Al. 

4. Kinematic Description 

Einematic description of a manipulator relates finding connection between 
variables of motor and joint space. which are motor (4)) and joint position 
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(q), motor and joint velocity, motor (m) and joint torque (I). 
Assume rigid tendons (with zero spring constant), zero mass and no 

friction! Conversion of kinematic variables at an n x m type of manipulator 
can be described with a structure matrix (A) of m x 17 size. Values in the 
matrix depend on the geometrical parameters of the transmission (diameters 
of pulleys), and in a general case: A.i,j E R. Assume pulley radii are of 
zero or unit value, which is the case at normalized manipulators, then: 
A.i,j E {-l,O,+l}. 

Assume zero motor positions result zero joint positions, and in that 
simple case, the following equation applies: 

4> = Aq . (9) 

Otherwise. there IS an additional bias addend (4)0) too 111 the equation: 

4> = Aq + 4>0 . (10) 

It follows from the law of energy conservation, that transformation matrices 
used in velocity (or displacement) and torque type of equations are trans­
posed of each other: 

Aq. 
ATm. 

(ll) 

( 12) 

The structure matrix of a feasible manipulator is non-quadratic (see Lemma 
8), that complicates the solution of the im-erse tasks. Im-erse equation 
on angular positions can always be expressed algebraically by reordering 
Eq. (9): 

(13) 

where A-I denotes pseudo inverse of the structure matrix. Physically it is 
clear that not all the motor positions can be set arbitrary values. because 
tendons are rigid, thus certain combinations of motor positions could cause 
loosening or tearing of some tendons. :\Iathematically that is described with 
m - n anholonomic-scleronomic constraints: 

fk = (01. 02, .... Om) = 0 , (14) 

where k = L ... , 111 - 11, which assure unambiguity of the task. For the 
inverse equation of angular velocity similar rules can be applied. The so­
lution of the inverse torque equation is always ambiguous, since number of 
unknowns is higher, than number of equations. Physically. internal forcers) 
act in the system, which yield no joint torque. and their valuers) can be 
optimized. Formally, the ilwerse torque task can be described as a system 
of parametrical equations: 

m = {f(I): 1 = ATm. m 2: 0, elm) -+ min} , (15 ) 

where elm) is a criterion function. Solution method depends mainly on 
elm), and cannot often be obtained in explicit form see Section 6. 
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5. Structural Analysis 

This section deals with main operational features of manipulators based on 
the analysis of structure matrices \vith the aim to provide theoretical basis 
for effective algorithms for constructional purposes. 

5.1. Feasible Tendon Str'uctures 

Taking an arbitrary structure matrix, there is no guarantee that it describes 
a fully controllable manipulator. 

DEFI:,\ITIO:\ 1 The open-ended tendon transmission of a manipulator is fea­
sible, if the variables of any joint can be set to any arbitrary value. not 
depending on the variables of other joints. 

The above definition is fulfilled. if the torque equation at an arbitrary 
T E 'R constant vector: 

ATnl = T ( 16) 

has a solution. which fulfills the condition ofunidirectionality: 

m 2: o. ( 11) 

For simplicity. torque equation was taken only. but similar rules could be 
obtained for velocity. According to the linear algebra, a necessary condi­
tion of feasibility can be obtained directly. considering (16) system of linear 
inhomogeneous equations. 

LDI\IA 1 If a manipulator i." feasible. then its structure matrix must ha"'e 
a rank equal to the number of degrees-of-freedom: 

rank (A) = n . (18) 

A manipulator can be equipped with passive and active tendons. A tendon 
is passive. if without that tendon the manipulator remains feasible (i.e. the 
passiye tendon is unnecessary). If not. the tendon is active. It must be noted 
that active and passive tendons of a manipulator can often be selected in 
various combinations. 

LDI\IA 2 If a manipulator is fea."ible. there is a homogeneous solution of 
Eq. (16). ,;-hich has onI.;- non-zero. posirire elements. 

Proof 1 Assume given a feasible manipulator without passive tendons . 

. _._. ------_._-----------_ ... _ ..• __ ... _- •.... - ... . '.' .'. '" ....... -.. --_ ..•.. -... -.-.. __ .---.. - ... -....- ' .. '-- .. . 
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Solutions of Eq. (16) can be composed from a particular solution (m P ) and 
from the homogeneous solution (mH): 

m-n 

m = lllP + 111H = 111
P + L (19 ) 

k=l 

where Kk E R. The second summand is an internal force, \vhich has no effect 
on net joint torque. Because all tendons are active, thus signs of elements of 
m P can be either positive or negative at an arbitrary joint torque. Consider 
the case that all elements are negative. It can be compensated by the 
homogeneous part, if there exists a set of Kk coefficients, that: 

7TI-n 

f3 "-lH>O = L..- "k llk . (20) 
k=l 

then one possible (not necessarily optimum) solution IS: 

(
m

P
) III = lllP - . min _,_J_ f3. 

J=L.,.m 3j 
(21 ) 

Eq. (20) expresses the same condition. as in the statement. 
Assume now that the manipulator has one passive tendon, too. Al­

though. at the first sight it seems that the motor torque acting on the passive 
tendon could be zero. wo, it can be proved that condition (20) is automat­
ically fulfilled. Since the manipulator is feasible even without the passive 
tendon. m - 11 - 1 homogeneous basis vector can be generated having zero 
elements in the row related to the tendon. Assume that the last tendon is 
the passive one. then Eq. (16) can be decomposed: 

[ 
T ] [ 111ac tive ] 

T = Aactiveapassive 711 . 
paSSIve 

(22) 

Obviously. the active part of the equation can be solved for T = -apassive 

constant vector. let us denote the solution with 111p: 

(23) 

The m = [mJ l]T motor torque \'ector \,-ill result zero joint torque, fur­
thermore. it is linearly independent from the m - n - 1 basis vectors since 
the element in its last row is not zero. consequently it is an (m - 11 )-th 
homogeneous basis vector. Because its last element is positive and its other 
elements can be compensated by the other basis vectors. condition (20) can 
automatically be fulfilled. If there were more than one passi,-e tendons. the 
above procedure could be applied for each of them. one- by-one. 
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Proof 2 A necessary and sufficient condition of feasibility follows directly 
from Lemma 1 and 2 according to Eqs. (16) and (17). 

LEMNIA 3 A manipulator is feasible if and only if Lemma 1 and 2 are ful­
filled. 

Although Lemma 3 provides an analytical tool on checking feasibility of an 
arbitrary manipulator, it is often complicated to generate vector,3. The 
following lemma can be better applied in computerized analysis. 

LEM'vlA 4 Let ti E ~n be a unit vector, ,v-hich is parallel with the i-th joint 
axis, and points to the positive direction. A manipulator is feasible if and 
only if the following equation can be solved at any i E {L ... ,n} indices: 

where (17) condition of unidirectionality must be also fulfilled. 

(24) 

(25) 

Proof 3 Necessity is trivial, because t; and -ti are some of the arbitrary r 
vectors. Sufficiency can be proved, if \ve consider that any r vectors can be 
provided as a sum of the t; and -t; vectors, respectively, multiplied with 1T; 1. 
According to the statement, all addends of that sum can be provided with 
positive motor torque vectors. Consequently. the sum itself (the r vector) 
can also be provided with the resultant of positive motor torque vectors. 

ALGORITHM 2 Feasibility of an arbitrary manipulator can be checked ac­
cording to Lemma 4. Eqs. (24) and (25) can be solved with tools of linear 
programming, using the 2-phased simplex method (G . .\SP,\R and TnlESL 
1990). Although optimization vector is not defined here, it is not a problem. 
because only the existence of the solution must be checked \vith the 1st phase 
of the method. The algorithm necessitates to solve 2n linear programming 
tasks in total at a given structure matrix. 

Another approach to feasibility of manipulators IS based on mechan­
ical considerations. If a manipulator is not feasible, it occurs because it 
has synergetic or limited joints. Joint i E {I, ... , n} and the group of 
joints Pl,'" ,Ps E {I, ... ,n} of a manipulator are synergetic. if there exist 
/\1'1' ... ,/\p5 E ~ coefficients. that: 

(26) 

where at least one coefficient is not zero. It occurs, if column vectors of a 
structure matrix are not linearly independent, i.e. Lemma 1 is not fulfilled. 
Joint i E {I,,,.,n} and the group of joints Pl,''''Ps E {I,,,.,n} of a 
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manipulator are limited, if there exist /\s E {+ 1. -1} and '\Pl"" ,Aps E R 
coefficients, that: 

(27) 

Possibility of limitation follows from the unidirectional character of the 
transmission. It occurs, if there exist '\1,"" /\, E R coefficients and a E 
Rm. a :::: O. la I > 0 vector. that: 

(28) 

If Eq. (28) can be fulfilled so, that all Ai coefficients are zero, then jointi 
cannot be operated in one or both directions (see Lemma Ei). If Eq. (28) 
could be satisfied ,vith la I = O. that would be the case of synergy. 

Although Algorithm 2 can be programmed relatively easily, its ap­
plication is time consuming. If a huge number of arbitrary manipulators 
should be checked, it is reasonable to filter out pre,-iously the obviously un­
feasible structures with simpler rules, e.g. with Lemma 5. which is a direct 
consequence of unidirectionality, 

LE~I\IA .j If a manipulator is feasible. its rows contain both positive and 
negative elements. 

5.2, Isomorphism 

::Vlanipulators. which differ in tendon routing. can "l1Jl beha\'e in similar 
manner. because of similarities in their structures. This section deals \\-ith 
that isomorphism. 

Assume that given a planar. schematic manipulator. where external 
moments and forces ac.ting on the manipulator are balanced with a joint 
torque vector of T = [T1T2." Tn]T. Take segment i of the manipulator. let 
JIi be a moment. which is obtained 'by transforming the external forces 
and moments acting on the segment and the effect of the distal segment 
(i + 1) to a frame. fixed to the centre point of the proximal axis of the 

segment. Executing such reduction at each joint. an 1V1 = [-'11_U2 ... J1n]T 
system of moments will be obtained. .Joint torque vector equals to the 
vector of moments in that simple. planar case. Let us define a diagonal 
transformation matrix R with n x 71 size and Rid, E {+1. -1}. It executes 
mirroring of moments through the .r - y plane. 

DEFI\,ITIO\' 2 Schematic manipulators A. and B are isomorphic. if there is 
a constant transformation (R), that the following equation applies to the 
joint torque vectors (mA.. mE): 
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(29) 

in case of arbitrary system of moments (M). 
The above definition describes tV.TO important features of isomorphic 

manipulators. Defining the positive direction to opposite at a joint (adding 
±180° to a twist angle) and/or renumbering the tendons (exchanging two 
tendons) yield isomorphic structures. Consequently. the following lemmas 
apply. 

LEM~1A 6 If two rows of a structure matrix are exchanged, then the original 
and the new structure matrices are isomorpl1ic. 

LE:--IMA 7 If signs of rhe elements in a certain row of a structure matrix al'e 
exchanged. then the original and the nen' structure matrices are isomorphic. 

In practice, isomorphism of general manipulators can be checked by 
checking their schematic representations based on the above definitions. 
Notwithstanding, the definition of isomorphism could be extended. In that 
case. svstem of moments would be a vector with 3n elements M 
= [my ~r '" m~lT, and matrix R would represent a more general transfor­
mation in the 3 x n dimensional space. For example, at normalized manip­
ulators, where O'i E {0°, 90°,180° • 270°}, a; = 1 and di = 0, matrix R would 
be a stripe matrix, haying rotational transformation matrices of 3 x 3 size 
in its diagonal stripe. 

There are infinite number of general manipulators, and finite number 
of schematic manipulators, which are all isomorphic to each other. In order 
to represent all these isomorphic manipulators by one, it is useful to define 
canonical maniplt.lators (},,1 c C .Vis). A canonical manipulator can be un­
ambiguously obtained from a group of isomorphic manipulators. Set .:\,-1c 
is finite at given values of nand 111. The following algorithm describes a 
simple procedure to transform an arbitrary normalized structure matrix to 
its canonical form. 

ALGORITH'" 3 Assume. given CL normalized structure matrix: 
Step 1: Generate matrix C according to the following rule: 

if 

if 

if 

Aj,; 

A.j.; 

A'j,; 

0 then 

-1 then 

1 then 

C;.j = 0 

C· 1.) = 1 

C· 1.) = 2 

(30) 

where i = 1, ... ,n; j = L .... 111. One row of matrix C can be considered 
as a trinomial number (e;): 

c; = IC;.1IC;.21·· . ICi.71l 13 , (31) 

and the ,,,hole matrix can be represented with a serial of such numbers. 
Step 2: Maximize the trinomial numbers from top to down (according 

to rows of C) applying the follov;ing rules: 
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• certain digits in a trinomial number can be changed with each other. 
but in the same time the same digits must be changed in all other 
trinomial numbers: 

• in a trinomial number it is allowed to change all '1' to '2', and vice 
versa. 

\Vhen a certain trinomial number (Ck) is under maximization, the pre­
vious trinomial num hers (Cj, I < k) cannot be decreased. 

Step 3: The same as step 1. but in reversed direction. 

EXA~IPLE 3 A simple example for the application of Algorithm 3 IS pre-
sented below: 

l ~1 1 1 l 2010 3 21003 2100 3 

r 

1 

il 1 
-1 -1 

-+ 22113 -+ 2121 3 -+ 2121 3 -+ -1 -1 

J 12123 11223 22113 
0 1 

-1 1 L 0 -1 -1 
(32) 

The introduction of canonical manipulators is useful mainly in construc­
tional synthesis, because the search for optimum tendon transmission of a 
mechanism with given D-H parameters can be cut to two fundamental steps: 
(1) search for optimum structure in the canonical manipulator subset: (2) 
search for optimum parameters in the manipulator set. 

5.3. Num.be1' Analysis 

The theoretically possible numbers of tendons and pulleys play an important 
role in constructional synthesis. 

LE~DIA 8 The minimum number of tendons of a feasible manipulator is: 

mmin = n + 1. (33) 

Proof 4 :\ umber of tendons must be more than the number of degrees-of­
freedom. otherwise Eq. (16) would not have homogeneous solution in con­
trast with Lemma 2. If m is equal to n + 1, a feasible solution al'ways exists. 
for example, in accordance with the following rule: 

1 -1 0 0 0 

r 1 1 -1 0 0 
A (34) 

1 1 -1 0 
1 -1 

The above matrix IS feasible, because it has a rank of n, its homogeneous 
solution is: 

lU
H = ":[1 2 ... 2n - 1jT. (35) 
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thus m H can compensate any negative elements of the particular solution, 
if coefficient K E fir is big enough. 

A tendon can be routed in three different ways around a joint: above, 
below or through an axis. Accordingly maximum number of tendons of 
normalized manipulator: 

(36 ) 

Consider a feasible manipulator~ It follows from Lemma 8. that the most 
distal joint should be wired around at least by hvo tendons, otherwise it 
would not be operable. The next joint must be wired around at least one 
more tendons, otherwise Lemma 8 would be injured for the sub-manipulator 
constituted by the nvo distal segments. Similarly, further proximal joints 
necessitate always one further tendon. In this way all tendons are as 'short' 
as possible, thus number of pulleys (i) will be minimum: 

n 2 + 3n 
i min = 2n + (n - 1) + (11 - 2) + ... + 1 = 2 (37) 

The manipulator obtained is feasible according to Eq. (34). 
If degenerated pulleys, where a tendon crosses a joint axis. are not 

counted. the minimum number of tendons can be obtained from matrix (34) 
by replacing so much 'I" elements with '0' elements as possible. That results 
the following feasible structure: 

-1 0 0 0 r 0 -1 0 0 
A 

1 0 0 -1 0 

J 0 0 0 -1 

(38) 

accordingly the minimum number of tendons: 

imin = 211 . (39) 

The number of pulleys is maximum, if number of tendons is also maximum 
and all tendons are conducted to the most distal segment. That would yield 
t max = nm = 113" - n tendons. On the other hand. it is not reasonable to 
count unnecessary pulleys, i.e. the degenerated distal pulleys. which belong 
to distal part of a tendon, that cross only joint axis beyond a certain joint. 
Consequently, the real figure becomes smaller: 

(271 - 1)3" + 1 
i max = 2 (40) 

If degenera ted pulleys are not counted at all: 

i max = 2 ·3,,-1 . 71 . (41) 
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6. Solution of Inverse Torque Task 

The inverse torque equation is ambiguous, optimum solution depends on the 
optimization criteria according to Eq, (15), Although, optimization should 
minimize internal forces, which increase frictional effects and necessitate 
higher motor torque, that purpose can be satisfied in many ways. 

The min-sum criterion can be considered as an approximate energy 
criterion. which aims to minimize the energy consumption of the manipula­
tor: 

f J' ' l - 1 - 1 . , , - 1 m --r mm . ( 42) 

Since c(m) is a linear function. the optimum solution of a given inverse 
torque task can be obtained with the methods of linear programming. Ele­
ments of the capacity vector can take negative values too. thus Eq, (15) can 
be solved as a general task with the 2-phased simplex method (G.~SP.~R and 
TDIESI, 1990). 

The non-linear min-max criterion can be considered as a kind of mass 
criterion during manipulator design because of approximate proportionality 
between maximum current and mass of DC motors: 

max(m·l, m2, ... ,mm) --+ min. (43) 

Reordering the (12) system of direct torque equations, 11 components of 
motor torque vector can be expressed as sums of linear combinations of the 
remainder m - 11 components of motor torque (fi) and linear combinations 
of the 11 components of joint torque (g;): 

( 44) 

where i = 1. ... . 11. The unidirectional character of the transmission can be 
represented with a system of inequalities: 

(45 ) 

(46) 

where k = 1, ... , 7? Eqs. (45) and (46) define an intersection of m closed 
half-spaces limited by hyperplanes in the (m - 11 )-dimensional space, and 
the solution can be obtained by searching for the extreme value according 
to criteria (43) fulfilling Eq. (44). The analytical solution is often difficult, 
thus numerical methods must be applied. 

Let us examine some speciaL but typical cases in more details! 

EXA:VIPLE 4 Symmetrical tendons are a pair of tendons, which are wired 
around the joints of a manipulator symmetrically, always on the opposite 
side of a pulley or in case of degenerated pulley. both tendons cross joint 
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aXIS. Assume an n x 2n type of normalized manipulator, which has only 
symmetrical tendons according to the following composition rule: 

-1 
o 

o 

1 -1 
1 -1 

o 0 

1 
1 

1 

-1 1 T -1 

-1 

(47) 

According to Eq. (19). the solution of inverse torque equation IS a sum of 
particular and homogenous parts: 

1 -1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 1 -1 0 0 0 1 0 

nl = 0 0 0 0 0 , + 1\:1 0 + 1\:2 1 + ... + I\:n 0 

0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 

(48) 

where the m x 11 type of matrix (A -T) on the right hand side is pseudo 
inverse of AT. Optimum solution is obtained based on either the min-sum 
or the min-max criteria. if: 

1\:' ) 

max(O, -'n) . 

max(O, -(Ij - 'j+d) 
(49) 

(50) 

where j E {L 2 .... ,11 I}. In some steps, the solution of the inverse position 
task can also be expressed with the above pseudo mverse: 

(51) 

Similar equation can be applied for velocity. 

EXA\IPLE 5 Given a 11 x (m + 1) type of manipulator. Let us extend the 
structure matrix with vector c. wLich contains only constant c > O. c E at 
elements. For the direct torque equation it yields: 

(52) 

where 'p is a pseudo torque. used for calculation purposes. In a brief form: 

'*=BTnl. (53) 

where ,* is the modified joint torque vector and B is the modified structure 
matrix. 
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Assume that rO\v m of matrix BT can be expressed as a linear combi­
nation of the other rows: 

(54) 

where /\1, ... ,/\n E OR. and /\1 "# O. After rearrangement it yields: 

(55 ) 

Taking Eg. (27) also into account. '1 could not be smaller than a certain 
linear combination of other motor torque components. which is impossible 
at a feasible manipulator. It follows that vector c is independent from the 
other rows of BT. thus the modified structure is regular. 

Consequently, the inverse torque equation can be obtained with matrix 
inversion: 

n1 = B-T r* . (56) 

which can be decomposed to a particular and a homogeneous part: 

(57) 

where matrix B~~ contains the first n. and vector b the last column of 

matrix B-T . Because of unidirectionality, any rows of Eq. (51) must be non­
negative. That yields m conditions. which can be fulfilled with a minimum 
value of 'p, if: 

( 

",n B-T ) L.,i=l j,i 'i 
Ip = .111aX - -T . 

J=l.. ... rn B. 
),rn 

(58) 

It must be noted that any component of the motor torque vector is minimum, 
if the pseudo torque is minimum, thus both the min-max and the min-5um 
criteria supply the same result in the case of In x (n + 1) type of manipulators. 

In algebraic \\-ay or with the law of energy conservation it can be proved 
that the inverse position equation can be expressed in the following form: 

B-1 , 
q = st;b<P, (59) 

where index 'sub' indicates. that the last row of matrix B- 1 is eliminated. 
The given value of vector c!> must be feasible with respect to Eg. (14). Similar 
inverse equation applies for velocity. 

7. Synthesis of Open-Ended Tendon Structures 

It is a typical design problem that a transmission system with optimum 
features must be synthesized for a given mechanism. A solution is presented 
in below. 
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ALGORITHy! 4 Assume that there is a mechanism, and its HD parameters 
are given. 
Step 1: Generation of all possible normalized structure matrices at given 
values of m and n. 
Step 2: Selection of feasible structures according to Algorithm 2. In order 
to reduce computations. previous filtering can be done based on Lemmas 5 
and l. 
Step 3: Selection of structures, \yhich are not isomorphic with each other 
according to Algorithm 3. 
Step 4: Previous selection of admissible structures based on heuristic crite­
rIa. 
Step 5: Optimization of geometrical parameters for admissible structures. 
selection of the best of them. 
Step 6: Construction of the optimum manipulator. 

Heuristic criteria in Step 4 can be for example the follO\ving: 

• cost constraint: number of pulleys should not be too many. 
• symmetry constraint: value of maximum motor torque should not de­

pend too much on the direction of the force acting on the manipula tor. 
• proportionality constraint: number of pulleys at a joint (t;) should 

decrease to distal direction (e.g. ti ::; 2(n - i)). 

The optimum structure can be found with a more detailed analysis in 
Step 5. For example, behaviour of the admissible structures can be analyzed 
with simulation in order to select the structure, which is optimum by the 
following criteria: 

• m1ll1mUm mass criterion: selection of structures which necessitates 
the lowest maximum motor torque, thus mass of the motors can be 
minimum. 

• modularity constraint: selection of structures which necessitates about 
the same order of maximum torque at each motor, 

• production constraint: diameters of pulleys should fit a certain 
selection, 

• cost constraint: number of different pulley diameters should not be 
too many. 

The above algorithm was verified during the design of the transmission sys­
tem of the TUB-PC dextrous hand. In fact, only the three distal rotational 
joints of a finger were respected (n = 3), because the proximal translational 
joint is operated in a different manner (manually). In Step 1, In E {4, 5, 6} 
was taken, which resulted eight 3 x 6 type, four 3 x 5 type and one 3 x 4 
type of admissible schematic structures in Step 4. According to Step 5, the 
best of them was a 3 x 4 type, selected with static simulation based on tra­
ditional robotic methods (LANTOS. 1997). The construction of a real finger 
is presented in Fig. 1. 
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Fig. 7. The construction of a finger of the Tl'B-PC dextrous robot hand 

8. Description of Real :iVIanipulators 

So far it was assumed that tendons are rigid, 'which is not true in practice. 
If elastic tendons are considered, spring constants of the tendons (kj) must 
also be respected with a stiffness matrix: K = Diag(kj). For example, at 
the TCB-PC finger, the following equations can be obtained: 

q 

A I _1_K - 1 B-T * q T 2 1" . 
Rm 

-1, 1 -1 -1 
Bsub lP - R2 Bsub K In, 

m 

(60) 

(61 ) 

,,-here Rm denotes radius of motor pulleys. Torque equations are the same 
as Eqs. (12) and (56). To make the model even more exact. effect of mass 
and of friction could be taken also into account. 

9. Summary 

The field of open-ended tendons is interesting, because the theory can be 
directly applied in the design of various robotic equipment. The article 
aimed to generalize known results with a few restriction only. since the 
primary goal of the work was to elaborate an efficient algorithm for the 
design synthesis of dextrous hand transmissions. One challenging problem 
for future researches is to generalize the description of real manipulators 
with respect not only to tendon elasticity, but also to mass. friction and 
even the non-linear features of the transmission to enable dynamic analysis 
of open-ended tendon transmissions. 
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