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Abstract 

Theoretical dynamic modelling of friction clutches and principles of application of this 
model at drive systems is presented in this paper. Provided that the friction clutch consists 
of two rigid shafts connected only by friction, we face with the problem simulation of drive 
systems. Drive systems have no unique dynamic model due to the fact that the model 
of the whole system on the transitional process of the engagement of the clutch is quite 
different from that when the driving and driven shafts are connected rigidly. So the task 
is to create an unique model and to present the principles of application of this model for 
drive systems. 

Keywords: friction clutch, computer simulation, drive system, planetary system, auto­
matic speed-change gear. 

1. Introduction 

As it is well known, the possibility of engaging and disengaging rotors run­
ning with different shaft speeds is one of the most important advantages of 
friction clutches. Disc clutches are applied as clutches or brakes frequently. 
If both rotors of the clutch rotate, then it works as a clutch, while the 
rotation of one is inhibited, then it works as a brake. 

From dynamic point of view the friction clutch has two states. If the 
friction discs slide on each other, then the clutch transmits torque by means 
of sliding friction. In this case the transmitted torque is a function of the 
pressure acting on the discs, the relative velocity, the temperature of the 
surface, and last but not least the conditions of lubrication. If the friction 
discs rotate together, then the transmitted torque is smaller than the limit 
torque necessary for slip, it can be even zero. 

The second order Lagrange differential equation is frequently applied 
for describing the dynamic model in the programmes designed for the dy­
namic simulation of drive systems [1], [2], [5]. If the parts are considered 
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to be rigid then only the known rotating masses, driving and load torques 
and clutch (or brake) torques are present in the Lagrange equation. During 
the transition process of engagement of a clutch or brake, the transmitted 
torque is the sliding torque, then it can be determined directly providing 
that the friction coefficient is known. On the other hand, in the period of 
complete engagement the torque of the clutch or the brake cannot be given 
a value directly. Therefore in these cases we regard the dynamic model, as 
if the clutches and brakes did not exist in the system at alL and the two 
elements coupled this way become attached to the same degree of freedom. 
Consequently, the number of degrees of freedom of the system decreases with 
one in the instant when the sliding terminates. This means that the model 
is not valid further on, and a new dynamic model is needed to investigate 
the system in the following period. 

The application of the ne,v dynamic model is troublesome, especially 
in the case of automatic transmissions, where several brakes and clutches are 
built in the system. The structure of the programmes used for simulation 
becomes too complicated, and they usually apply specific solutions designed 
for specific problems only. This article proposes a model that solves this 
problem. 

In order to specify the problem exactly, let us see a simple example. 

2. Basic Problem 

In the simplest case the svstem consists of only a prime mover, a clutch, 
and a driven machine. (See Fig. 1). 

Clutch 

Engine Driven 
machine 

Fig. 1. Scheme of the system 

The coefficient of friction is assumed to be constant during the engage­
ment process. On this assumption in case of a specific clutch construction 
the sliding torque of the clutch, Ts , depends only on the contact pressure. 
Let us assume that the contact pressure depending on time, as well as the 
sliding torque, Ts , are proportionaL which is similar to the ones presented 
in Fig. 2 [6], The engagement process can be analysed if the torque of the 
clutch and the working characteristics of the machines are known. 

At t = 0 we apply load on the prime mover (le engine) running with 
idle running speed. Due to the load, the angular speed We of the driving 
machine will decrease. vVhen the increasing clutch torque reaches the level 
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Fig. 2. 

necessary to start the T'mo limit torque of the driven machine, the rotor of 
the driven machine starts to rotate. The W m , angular speed of the driven 
machine, will be equal to the angular speed of the prime mover at t3. Having 
equal shaft speeds, the state of the clutch will be changed from sliding to 
rigid state, the clutch torque decreases suddenly, and the system accelerates 
until it reaches the angular velocity corresponding to the operating point. 

We must define a discrete variable for ded ucting the equations of the 
system. 

State 0, 
1. 

if 
if 

In case of State 0: 

We = wm = (Te - Tm)!(Be + Bm) . 

The clutch torque can be determined with the following equation: 

(1) 

(2) 
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where 
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Fig. 3. Dynamic model in case of State = 0 

: angular speed of prime mover (le engine), 
: angular speed of driven machine, 
: torque of prime mover, 
: torque of clutch, 
: torque of driven machine, 
: moment of inertia of prime mover, 
: calculated moment of inertia of driven machine. 

Usually the torques of the prime mover and the driven machine can be 
determined knowing the angular speeds: 

Te(we) , 
T~(wm) . 

Obviously the condition T~ < Ts is valid, where Ts is the sliding torque. 
In case of State = 1: 

--I-t+t .. [f- - T 
e T 

• _.. Jll. -1+--

Fig. 4. Dynamic model in case of State = 1 

We = (T~ - T~)/Be , 
wm = (Te - T~)/Bm . 

In this case the absolute value of the clutch torque is the sliding torque. 

Te = +Ts(Pn (t)), 
T~ = -T~ (Pn (t)), 

if We 

if We 

> W m , 

< W m , 

where Pn (t) is the time function of the contact pressure. 

(3) 
(4) 

(5) 
(6) 

(7) 

This procedure is suitable for engineering considerations made dur­
ing the designing of the clutch. However, if more sophisticated systems, 
e.g. automatic transmissions are considered, where several (2 through 4) 
clutches engage and disengage at the same time, after each engagement pro­
cess the system needs a new model. In theory, 2n models are required for 
investigation of the sliding state of n clutches simultaneously. 
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3. Observation of Friction Phenomena 

The problem to be solved is obvious: How does the clutch change its states, 
and how can both states be characterised bv a unified dynamic model. Ac­
cording to the theory of KRAG ELSZKIJ [3]: during the" interaction of two 
surfaces the asperities of the harder surface penetrate into the surface layers 
of the softer material and they scrape along the softer surface. 

i· c-

i -
I 

I , 

Fig. 5. 

In case of a clutch the surface of the cast steel or cast iron disc is harder 
than the paper based friction facings. When we apply load on one side of 
the clutch, the harder asperities start to deform the surface of the softer 
material in tangential direction. The asperities will not move on the harder 
surface until the shear stress of the contact zones reaches a limit value. 

Let us define a relative quantity that describes the shear stress level of 
the contact zones: 

T 
~=-

Tmax 
(8) 

where T is the shear stress of the contact zones. T rnax is the limit value of 
the shear stress. If ~ < 1, then the discs stick to each other, while if ~ = 1 
then the discs slide on each other. It should be noted, that ~ describes the 
sliding state of the mating surfaces. 

The elementary torques due to friction forces generated in the real 
contact zones cannot be calculated, since the position of contact zones is 
a random one. For sake of simplicity. let us assume, that 'Taverage' average 
shear stress is generated on each element of the friction surfaces of the driv­
ing and the driven discs. This average shear stress is equal to the quotient 
of the total friction force and the; An' nominal contact surface. 

Fs 
T == Taverage == -4 . 

.. " n 
(9) 
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So the total friction torque is: 

T = J T • r . dA = Taverage Jr. dA . (10) 
A A 

It is obvious, using the simplified conditions, that the transmitted torque is 
a linear function of the average shear stress, that is: 

T T T 
~------:-

- Tmax - T"max - Ts ' 
(ll) 

where Ts is the limit sliding torque, which can be determined with the 
following formula: 

T"max = Ts = j.l . Pave rage J r dA . (12) 
A 

4. Clutch Model 

In order to determine the instantaneous values of the clutch torque, let us 
take into account the elasticity of the shafts, too. An elastic mpdel can be 
seen on Fig. 6, where S is the reduced torsion spring stiffness of the shafts, 
gears and tangential springs, if any. L is a torq ue limiting device, 'with the 
same limit torque as the sliding limit torque of the friction discs. It should be 
noted that this limit torque is a time function. D is the reduced damping 
that models the internal and external friction of the elements mentioned 
above. 

s 
- .. L.o. p::=:\-

e 
D 

Fig. 6. Elastic clutch model 

The state equations of the system [4]: 

We (Te - Tc)/Be , 
Wm = (Tc - Tm)/Bm . 

T 

(13) 
(14) 

According to the model the clutch torque is composed of the load of the 
reduced torsion spring and the torque of the damper element. The 'L' 
torque limiter element limits the connecting torque to the sliding torque 
maximum. 

Tmax = T~ (Pn (t),j.l (Vrel, t)) , (15) 



where Pn 
f1 
Vrel 
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: time function of the surface pressure, 
: friction coefficient, 
: relative speed between contact zones. 

If there is no sliding, then the following equation is valid: 

175 

where Xo is the initial position of the torsion spring (at instant t1 that 
precedes t), from which ~ can be expressed as a function of the other state 
variables 

where there is no sliding in-between instants t1 and t. 

In case of sliding, ~ = 1 and ~ = O. 
We can get { if we derive Eq. (17), when it is assumed that time 

period t - t1 is small enough for neglecting the changes of T~ (t) sliding 
torque during one such period. 

{ 

c=_l_. [S(w -'-'.) )+D(w -w )] if 
c, T~(t) ,e m e m 

~=O ~ 

~ < 1, 

~ = 1, 

(18) 

5. Principles of Application of the Model in Drive Systems 

Clutches, speed change gears, and torque converters are frequently realised 
between prime movers and driven machines in drive systems. Gears transmit 
torque from the input shaft to the output shaft of speed change gears. In 
case of speed change gears with planetary gear drives an additional thing 
must be taken into account: the torques of the brakes and clutches. The 
scheme of the drive system can be seen in Fig. 7. 

The model can be simplified if we reduce the moments of inertia to the 
independent shafts [4]. As an example, let us observe the sketch of a drive 
system in Fig. 8. The angular velocities of the independent shafts will be 
state variables. The state equations using these state variables are: 

i=l. .. n, (19) 
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En~; (1)j T;f1~ D~ ~ Automatic -0 <:2 fW I Transmission 

Driven machine 

Hydraulic converter 

Fig. 7. 

where n : number of independent shafts. The moments of inertia 
must be reduced on these shafts. 

Wi : the angular velocity of the shaft number i. 
Tij : torque reduced on shaft number i. This can be the torque 

of the prime mover. the driven machine. the clutch or the 
brake. 

T~(we) , 
Tm (wm) 
Te (Pn (t) , I1(Vre l, to), t; (t)) 

(20) 
(21 ) 

(22) 

where Pn (t) : the time function of the surface pressure, 
J1 : friction coefficient, 
Vrel : relative speed between contact zones. 

There are some other state variables, namely the t; variables of the 
clutch. The state equations for these variables are: 

where m 
Sk 

if t;k < 1 , 
k=l. .. m, 

if t;k = 1 . 
(23) 

is the number of clutches, 
is the red uced torsion spring stiffness of the shafts, gears, and 
tangential springs joined to the clutch number k. 
is the reduced damper describing the internal and external 
friction of the gears and shafts. 
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Fig. 8. 
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6. Presenting the Use of the Model Through an Example 

The scheme of a drive system and its dynamic model can be seen in Fig. 7 
and Fig. 8. The key to solve the problem is to choose the independent shafts 
and derive the state equations of the system. It is obvious that the engine 
shaft and the turbine shaft are independent. 

As it is well known, a 0-1 type planetary gear drive has two input 
shafts and one output shaft. Consequently, if we know the angular speeds 
of two shafts of the planetary gear, then the angular speed of the third shaft 
can be calculated [7]. In other words, the number of degrees of freedom at 
an 0-1 type planetary gear drive is two. The planetary gear drive system of 
the drive system can be seen on Fig. 9 and Fig. 10. 

The models of the planetary gear drives are presented by a triangle on 
Fig. 10. This presents an element with two degrees of freedom, for example 
the 0-1 type planetary gear drive. Since one planetary gear drive has two 
degrees offreedom, four planetary gear drives have eight. On the other hand, 
there are six joints in-between the shafts of the planetary gear drives, so the 
planetary gear drive system has only two degrees of freedom. Subsequently, 
it has only two independent shafts. In this case shafts 5 and 6 are considered 
to be independent. 

Therefore it can be written: 

Xl6] 
X26 [W5 W6], 
X36 

X46 

(24) 

where the Xij constants can be calculated knowing the teeth number of the 
gears. 

Shafts 1 through 4 can be considered to be internal shafts according 
to Eq. (24). The angular speeds of these shafts can be expressed as the 
functions of the angular speeds of the independent shafts. 
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Fig. 9. 

There is only one unknown torque at each planetary gear drive, that 
is knowing the torque at one of the independent shafts the torques of the 
other shafts can be calculated. In our case the four unknown torques of the 
four planetary gear drives are determined by the four clutch torques. These 
torques (Tc2 - n1, 1'b2, Tb3, n4) are functions of the variables ~i. The torques 
acting on the shafts of the planetary gear drive system can be expressed with 
four suitably defined torques: 

where 

T12 t12 0 0 

~ t T" 

T13 t 13 0 0 
Tn 0 t22 0 
Ti3 0 t23 0 

T21 T31 T41 1 , (2.5 ) 
T32 0 0 t32 
T33 0 0 t33 t~, j T42 0 0 0 
T43 0 0 0 t43 

t· . 1J are constants that can be calculated if the teeth numbers 
are known 

Tij is the torque acting on the shaft j of the planetary gear 
drive i. 

In order to calculate the torques in Eq. (2.5) let us see the torque­
equilibrium equations of the internal shafts. The moments of inertia of the 
internal shafts are neglected. 

Tc2 - Tbl - T12 - T21 O. (26) 

T1l - Tb2 = 0, (27) 

Tl3 + Ti2 + 1'33 + Tb3 0, (28) 

T23 + T32 + T43 + Tb3 0, (29) 
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ShO 

Fig. 10. 

where Tc1 and T~2 are the clutch torques, 
Tb; is the brake torque. 

After solving the system of linear equations, the result is: 

[ Tu 

1 = 
T21 
T31 
T41 

0 -1 0 0 ., 
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Out 

1 t12 0 0 [ To2 (,d - n, (,,,) ] 
1 t12 - t13 1 I n2 (';b2) 

0 n3 (';b3) . t33 t33 t33 
t23 t32 t13 - t12 - t23 t 12 t32 

-1 n4 (';b4) ----- --
t43 t33 t43 t43 t33 

(30) 
Since shafts 5 and 6 were chosen as independent ones, the moments of 
inertia must be reduced on these shafts. Without going into the details, 
the reduction can be carried out the following way: 

where I 

m 

4 

B5 + L x~5B; , 
i=1 

4 

Bm + LX~6Bi' 
i=l 

is the moment of inertia of the shaft )l o. i. 
is the moment of inertia of the driven machine. 

(31 ) 

(32) 
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The state equations are: 

W 
Te (we) - Tp(we) 

(33) e 
Be 

Wo 
Ti(we,wo) - T~1 - T~2 

(34) 
Bo 

u:.,'5 
Tc1 - T31 - T41 

(35) 
B5 , 

0 6 = 
-T42 - Tm(W6) 

(36) 
B6, 

where Tp and Tt are the torques of the pump and the turbine of the torque 
converter. 

{ ~c1 = T 1 (t) [Sc1 (wo - W5) + Del (00 - 05)] if ~el < 1, 
· s,c1 
~c1 = 0 if ~el = 1 , 

(37) 

{ 
· 1 
~c2 = T (t) [Sc2 (wo - wd + Dc2 (c.:.,o - 0dJ if ~c2 < 1. 
· s,c2 
~c2 = 0 if ~c2 = 1 . 

(38) 

{ 

. 1 
6i = T . . (t) [Soi (Wi) + Dbi (w~)] if ~bi < 1, 
• s.O, 

~oi = 0 if ~oi = 1 , 
i=l. .. 4, (39) 

where T~1,Tc2,Tbi are function of~el,~c2,~bi (Eq. (30)). 
Ts,x is the sliding torque of the clutch or brake No. x. 

7. Conclusions 

Provided that the friction clutch is a set of two rigid rotors connected by 
friction, we have to face a big problem in simulation of drive systems that, 
the drive systems having no unique dynamic modeL the calculations conse­
quently are very complicated because of the systematical changing of differ­
ent models. On the process of the engagement the friction surfaces slide on 
each other, the current model is based on the model shown on the Fig. 4, 
the contact torque is the sliding limit torque. When the revolutions of the 
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driving and driven shafts are equal, the friction surfaces only have to trans­
mit the necessary torque, which is less than the sliding limit torque. In 
this case although the Eqs. (3) and (4) are valid, the Tk contact torque in 
the equations is unknown and it cannot be calculated directly. Therefore 
to construct a unique model we need to define a new state variation, which 
determines the current value of the contact torque. This is nothing else but 
the average shear stress of the contacted friction surfaces, which is about 
a linear function of the torque twisting the shafts. So the unique model 
must include a reduced torsion spring that models the twist of the shafts, a 
torque limiting device that limits the twist of the shafts to the sliding limit 
torque of the friction discs, and in addition a reduced damping that models 
the internal and external friction of the elements mentioned above. 

A demonstration was also carried out to complete the principles of 
application of the model in driving systems. The author believes that more 
researches and discussions will follow in order to develop the model and 
make more applications of the model on more fields, but not only in the 
automatic planetary speed-change gears. 

References 

[1) KRAFT. F. K.: Zugkraftschaltungen in automatischen Fahrzeuggetrieben, Diss. 
Karlsruhe. 1972. 

[2) TOTH, S.: Die dynamische Simulation der planetengetriebenen. automatischen Wech­
selgetriebe. Periodica Polytechnica Ser. ]'vfech. Eng. Vo!. 40, No. 1, pp. 15-29 (1996). 

[3) KRAGELSZKIJ yIIHIN: Gepszerkezetek surl6das- es kopasszamftasa. Miiszaki 
Konyvkiad6, Budapest. 1987. 

[4) PETRIK, O. - HUBA, A. Sz . .\sz, G.: Rendszertechnika. Miiszaki Konyvkiad6, Bu-
dapest, 1982. 

[5) SZABO. I.: Hohere Technische Mechanik, Springer-Verlag, Berlin-Gottingen­
Heidelberg, 1964. 

[6) TERPL..\N, Z. - NAGY, G. - HERCZEG, I.: ?vIechanikus tengelykapcso16k. Miiszaki 
Konyvkiad6, Budapest, 1966. 

[7) TERPL..\N, Z. APRO, F. - ANTAL, M. DOBROCZONI, A.: Fogaskerekbolyg6miivek. 
?vIiiszaki Konyvkiad6, Budapest, 1979. 


