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Abstract 

The quality of an approximating function using measured data may be characterized by 
the magnitude of difference between approximating and exact functional relationship. 
Smoothing spline has been used as approximating function. Based on measurements, a 
method is presented for determining a band around the approximating spline containing 
the graph of the exact functional relationship between physical variables on a calculable 
probability level. 
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1. Introduction 

Measurements in engineering practice are mostly expected to reveal deter­
ministic relations between the considered variables and to determine an 
approximate functional relationship based on the recorded values of vari­
ables. In the course of measurements, variables of the deterministic re­
lationship are affected by random effects, allocating procedures for deter­
mining the functional relationship to the scope of regression analysis (see 
VINCZE, 1968) for details. The approach to problems of the involved meth­
ods often fails to meet demands of engineering practice, since mathemati­
cal conditions for making useful statistic statements cannot be technically 
provided. 

A feature common to practical problems of measurement evaluation 
is the existence of a deterministic relation y( x), for the sake of simplicity 
between the two variables examined, measured values of both variables be­
ing subject to measurement errors, and the mathematical form of relation 
y(x) being unknown. Measurements endeavour to disclose theoretical re-
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gression y( X) but to that, information from measurements is insufficient. 
Thereby determination of approximate regression g(x) has to be made up 
with. Function class comprising g( x) is arbitrarily selected, nevertheless, 
any information offered by theoretical background and instrumental exam­
ination of the tested process may be reckoned with, together with reason­
able and practical aspects. All these features make neither the class of func­
tions nor the function g( x) itself unambiguous. Comparison between func­
tions taken from different function classes, established by different methods, 
mostly relies on a variance-type expression given by RUSTON (1969) as: 

where ~i is the measured function value, and g(xd is the corresponding 
approximate ordinate. The approximate regression with the lower D2 is 
considered to be the better. This is the well known method of least square. 
A decision based on this criterion has to be made with caution, minimum 
of D2 being zero, accessible e.g. by an interpolation polynomial of the due 
power. 

NYIRI (1991) gave a generalisation of the least square method based on 
Whittaker's idea for nonequidistant data where both variables are affected 
by errors. 

Here a new aspect of qualifying approximate functions will be sug­
gested. Self intended support of comparison is theoretical regression y (x), 
and an adequate approximation is offered by g(x) with a curve 'close' to 
that of y(x) in the range of measurement. The method to be presented 
suits to determine a confidence band about a given approximate regression 
g(x) including the curve of the unknown y(x) at a calculable probability. 
In knowledge of the band size it may be decided whether g(x) is accept­
able or not to solve the given engineering problem. 

Producing a cubic smoothing spline proved to be an appropriate pro­
cedure to determine function g(x). 

2. The Smoothing Spline 

A smoothing spline g(x) consists of cubic parabola arcs connected contin­
uously to the second order at joints Xi. Third derivatives are, however, dif­
ferent on the two sides of the joint. SP.~TH (1978) suggests that this dif­
ference Ti be proportional to the difference between spline base point ordi­
nate ~i, and spline ordinate gi: 
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where Pi is the smoothing parameter, either different or equal at spline sec­
tion joints. Base points (Xi, e£), parameter values Pi and boundary specifi­
cation at spline ends are given. Coefficients of cubic polynomials describ­
ing spline sections are wanted. A cubic polynomial is determined by four 
constants, to be defined in many different ways. Here they will be chosen 
as follows: the four constants are ordinates gi; and gi+1, as well as numeri­
cal values of second derivatives g" i and g~~l' at starting and end points Xi 
and Xi+1 of spline section i, respectively. Defining the spline section i over 
the section of length Xi+1 - Xi D.Xi: 

D.Xi - (X - X;) X - xi 
g(x) = gi D. + gi+1 ~+ 

Xi ~Xi 

+ ~/-(X - x;)3 + 3(x - Xi)2 D.Xi - 2(x - Xi)D.x7 + 
gl 6D.Xi 

11 (X - Xi)3 - (X - Xi)D.x7 
+gi+1 6D. x i 

(2.1) 

is the equation of the spline section Xi :s; X :s; Xi+1' 
Obviously, continuity of the first derivative over Xi is provided by 

D.Xi-1 11 D. x i-1 + D.x;" D.xi 11 
--6-gi- 1 + 3 gi + -6-gi+1 -

1 1 1 
---gi-1 + (-- + -)gi 

D.xi-l D.xi-l D.xi 

1 
~gi+1 = O. 
~Xi 

(2.2) 

A boundary condition may be zero spline curvature at the end point, or a 
given value for the first derivative, e.g. g~ and g~ at the first and last spline 
points, respectively. The boundary equations in the equation system for 
spline constants are 

and 

~X1 11 D.x1 11 1 1 I 
--gl + --g2 + --gl - --g2 = - gl 

3 6 D.x1 D.x1 
(2.3) 

D.Xn-1 11 D.xn-1 11 1 1 I () 
6 gn-1 + 3 gn + D. gn-1 + D. gn = gn' 2.4 

Xn-1 Xn-l 

Boundary and joint conditions are united in an equation system 

" B Ag + g = b (2.5) 
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where both A and B (B is symmetrical) are tridiagonal matrices, with co­
efficients taken from Eqs. (2.2), (2.3), and (2.4): 

"T (" 11 ") g = gl, g2 , ... ,gn , 

gT =(91,92, ... ,gn), 

b T =(-g~,O, ... ,g~). 

The next step will be to compute differences Ti of third derivatives at the 
joint. From (2. 1) 

III () 11/ () 1 11 1 11 9 X = 9 Xi = --;;;:-gi + -;;;:-gi+l 
uXi uXi 

constant throughout section i. Thereby: 

Ti 
11/ III ) 1 11 (1 1 ) 11 1 11 

9 (Xi) - 9 (Xi-l = --gi-l - -- + -- gi + --gi+l 
~Xi-l ~Xi-l ~Xi ~Xi 

that is, r =-B g"; B is a symmetric matrix. Let D be the diagonal matrix 
of smoothing parameters PI, ... ,pn W hile ~ the vector of given spline base 
point ordinates e (6,6, .. ·, ~n). Now, smoothing condition may be 
written as: 

_Bg" = D(~ - g) 

or 
_Bg" + Dg = DE. (2.6) 

Solution of Eqs. (2.5) and (2.6) for g and g" for given ~, D, A, B, b is 
made in two steps. From Eqs. (2.6) multiplied by the inverse of D: 

(2.7) 

substituted into (2.5): 

Ag" + B~ + BD-lBg" = b, 

that is 
(A + BD-1 B)g" = b - B~, 

where A+BD-1B is a pentadiagonal matrix allowing a rapid determination 
of g". At last, g is obtained from (2.7). Properly assigning subscripts to 
band matrix elements keeps the storage needs low, proportional to n. For 
zero curvature at the end point, the procedure is similar but the equation 
contains fewer unknowns. 
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3. Estimation of the Confidence Band 

Introducing notations in Fig. 1 y(x) and g(x) are the wanted theoretical, 
and the known approximate regressions, respectively. Both are assumed to 
be differentiable in measurement interval [a, b]. Random variable ry is inter­
preted in the same interval; its realizations are values of the independent 
variable to be adjusted in measurements. In theoretical regression ( = y(ry) 
is assigned to the variable ry hence an error-free measurement would result 
in a sample for random vector variable (ry,y(ry)). Measurement results for 
both independent and dependent variables are, however, affected, by mea­
surement errors f.L and v, resp., of normal distribution, of zero expected 
value. Assume f.L and v, as well as f.L and ry to be mutually independent. 

y M (measured point) 

1\ 

x 

ll=X 
( 

K 

Fig. 1. Theoretical and approximate regression 

Accordingly, coordinates of measurement point M in Fig. 1 have been 
given by variables J<i, = ry+f.L and ~ = (+v. At last, let us introduce random 
variable 8 and difference function s(x) such as : 

8 + g(ry + v) = y(ry) + v, 

s(x) = y(x) - g(x). 

(3.1) 

(3.2) 
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Fig. 2. Measured points and smoothing spline 
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Difference function sex) is assumed to be decomposable to a finite number 
of invertible sections in interval [a, b). Expressing 6 from (3.1) - and ap­
proximating g( 7] + J-L) by its first order Taylor polynomial: 

6 ~ s(7]) + v - J-Lg'(7]). 

Let us determine the conditional expected value of 6 under condition B = 
{s( 7]) = m}. In conformity with assumptions made for variables J-L, v and 7]: 

M(6IB) = m. (3.3) 

Equality (3.3) points to the significance of variable 6 : its conditional ex­
pected value equals ordinate m of difference function sex). Our endeav­
our is just to assess maximum and minimum of conditional expected value 
(3.3) (hence, of s( x) ) while x proceeds along interval [a, b). 

For this purpose: 
- we determine density function f (w Im) of variable 6 under condition 

B; j(wlm) is the weighted sum of normal density functions of expect­
ed value m as has been proved by one of the authors, HALASZ (1986). 

- we determine density function k(m) of variable s(7]) according to 
REZA (1966). 

- we write relationship between conditional density functions as done 
by RENYI (1954): 

(3.4) 
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from which, after rearranging and integration, density function f (w) may 
be received: 

00 

few) = J f(wlm)k(m)dm. 
-00 

Thereby it has been proved that density function few) of variable {) is a 
compound of normal density functions f(wlm) weighted by k(m). 

Expected value m of the component density function f(wlm) is ex­
actly the ordinate m of difference function s( x). Decomposing compound 
few) to its components, selecting components with maximum and mini­
mum expected values (Tl and T2), gives the size of the confidence band, 
namely, for 

it is 
g(x) + Tl :;; y(x) :;; g(x) + T2 (p). 

Computation of significance level p relies on equality 

T2 

P = P(Tl :;; s(ry) < T2) = J k(m)dm. (3.5) 

Tl 

Theoretically there is nothing against numerical determination of weight 
function k(m) but it requires full decomposition of mixed density func­
tion few), while determination ofT1 and T2 requires only estimation of ex­
pected values of extreme components. Therefore, approximation given in 
the dissertation of HALASZ (1986) is often satisfactory: 

(3.6) 

to be estimated according to empirical density function approximat­
ing f(w). 

4. Applications of the Method 

To apply the computing method described above requires absorption and 
much computing. Its effective practical application is assisted by a user-
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I test function I---- f(w), fdw) 
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Pig. 3. Density and test function 

friendly, interactive software. That is why a code has been developed at 
the Department of Hydraulic Machines TUB, with essential functions: 

a) Input of measured data from a data file or keyboard, data storage, 
graphic display of data. 

b) Construction of approximate regression by means of smoothing spline. 
Purposeful selection and adjustment of the weight function for the 
spline is supported by a menu system and graphic display on screen. 

c) Computation of the sample for the variable 8, for establishing empir­
ical distribution and density function; that is estimation of f(w). For 
the next step to decompose the density function - it is insufficient to 
construct the empirical density function as a usual step function, but 
the density function has to be continuously approximated. Therefore, 
a smoothing function has been fitted to points of the empirical dis­
tribution function (purposefully applying again the smoothing spline 
procedure), and differentiated to yield an approximation of density 
function f ( w) . 
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d) Decomposition of the compound density function and estimation of 
expected values of extreme components were made by the decompo­
sition method of MEDGYESSY et al. (1968). Screen display of the test 
function helped direct reading of the desired expected values. At last, 
significance level has been determined by approximation (3.6). 

e) Diagrams representing steps and output of the band estima tion meth­
od may be displayed on a plotter or line printer. Our program package 
produces a file readable for a graphical program system, its facilities 
may be utilized in constructing diagrams. 
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Fig. 4. Confidence band (96.4%) 

The application of the program package is exemplified in Fig. 2, 
smoothing splines a, b, c together with measured points are shown. Curve 
a, constructed by the first approximation of spline weight function rather 
deviates from measurement points, but as a result of continuous refine­
ment, smoothing spline c approximates measured results well. For this ap­
proximate function, empirical density function of variable {j and the test 
function have been constructed (see Fig. 3). Fig. 4 shows diagram of the 
confidence band around the smoothing spline, as well as the estimated sig­
nificance level. 
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