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Abstract 

The equations of motion of mechanical (discrete or continuous) systems can be deduced 
from d'Alembert-Langrange's equation. The equation of motion of micropolar body is 
obtained on the continuous bodies. More conclusions and questions are given from the 
presented arithmetic. 
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1. Introduction 

A lot of forms of equation of motion are known in the mechanics, for 
example Newton-Euler's, Lagrange's, Appell's, Cauchy's equation, etc. 

We will use the generalized d'Alembert-Langrange's equation [1]. 
This equation is valid on both the whole and a part of the material system. 

Consider a material system (Fig, 1) [2]. This system consists of a lot 
of macro-mass elements dm which contain many micro-mass elements dm'. 
These elements cover the whole material system. This system has got mass 
m it is placed in domain V. 

The generalized d'Alembert-Langrange equation [1, 3] in case of an 
arbitrary micro-mass element is 

C' ® (dF' - v'dm') = 0, (1) 

where C' is a tensor of arbitrary rank, dF' is the force, v' is velocity and v' 
is acceleration of a point of the micro element. C', dF' and v' depend on 
the position vector r' and the time t. The notation ® means an arbitrary 
multiplication. 
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Fig. 1. 

S' is the centre of mass of micro-mass elements (s') in macro-mass 
element (Fig. 1). That is 

and 

2:= r'dm' = 0 or 
dm 

rdm = 0 J, , 
dm 

2:= dm' = dm or J dm' = dm, 
dm dm 

in case of discrete or continuous micro-mass elements. The first moment 
of a macro-mass element dm on an arbitrary point 0 is 

J (r+r')dm' = J rdm' + J r'dm' = J rdm' = rdm. 

dm dm dm dm 

The integral is Stieltjes integral now and in the following [3]. The first 
moment of the whole material system is (Fig. 1) 

J J (r + r')dm' = J rdm. 
m dm m 

Eq. (1), in case of a macro-mass element, is 

J C' ® (dF' - ;,-'dm') = 0 

dm 

and the generalized d'Alembert-Lagrange equation on the whole material 
system is 

J J C' ® (dF' - ;,-'dm') = 0 (2a) 
m dm 
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or by integrating it with respect to time from tl to t2 

t2 

J J J c' ® (dF' - v'dm'dt) = O. (2b) 

tJ m dm 

2. Discrete Material System 

The micro element is a material point which has got mass m' with force 
F'. Using Eq. (2a) we obtain 

L I)C' ® (dF' - v'm')] = 0, (3) 
(5) (51) 

where (s) is the full material point system and its part is (s'). Parts (s') 
are disjunctive. C' is now equal to ~'I + l}i'R'I and ® means tensorial (or 
dyadic) multiplication which is marked by two side by side written tensors 
or vectors. I is the unit tensor, ~' and l}i' are arbitrary scalar and vector 
functions. The \][' depends on time t. R' is the position vector (Fig. 1). 
Now Eq. (3) is 

that is, 

L L(~'I + \][' . R'I)(F' - v'm') = 0 
(s) (SI) 

IL L ~'(F' - v'm') + \][' L 2:)R'F' - R'v'm') = 0 
(s) (51) (s) (51) 

but R' = r + r', and ~' and \][' are arbitrary functions. We obtain 

that is, 

and 

that is, 

LL(F' -v'm') = 0, 
(5) (SI) 

F -mv' = 0 

L[r L(F' - v'm') + L(r'F' - r'v'm') = 0, 
(s) (SI) (SI) 

(4a) 

(4b) 
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where S is the centre of mass of the full system and 
rsF == I> 2::: F', rsv'm' == 2:::r 2::: vm, Ms == 2::: 2::: r'F' and 

(s) (s') (s) (s') (s) (SI) 

D "'''' ,./ , s==~~rvm. 

(s) (SI) 

We write a vector product instead of tensorial multiplication and by using 
that Ms + rs x F is equal to the moment of forces Mo on point 0 and 
similarly Ds + rs x vsm is equal to the moment of kinetic vector Do on 
point O. Finally we obtain 

Do = Mo. ( 4c) 

Eqs. (4a) and (4c) are the Newton-Euler equations of motion. 
The system is a free one. It does not contain any constraints. A sys­

tem often contains constraints. Generally the properties of the constraint 
forces are unknown. This is an important problem in mechanics. 

A group of the constraint forces satisfies the principle of virtual work, 
that is, 2::: 2:::(SI) K . 8r' = O. K' is the constraint force and 8r' is the virtual 

(s) 

displacement. Using Eq. (2b) we obtain 

t2 J L L 8r'(F' - v'm')dt = O. 
tl (s) (SI) 

(5) 

Tensor C' is the virtual displacement and 0 is the scalar product between 
two vectors which is denoted by point. F' does not contain the constraint 
forces because zero is their virtual work. The Lagrange's second equation 
follows from Eq. (5). 

Another group of constraint forces satisfies Gauss' principle, that is, 
2:::(s) 2:::(SI) K' . {;v' = 0, {;v is the virtual acceleration. By using Eq. (3) 
similarly we obtain Appell's equation 

as = Qk (k = 1, ... n), aq 
where S is the Appell's function, qk are the generalized coordinates and Qk 

are the generalized forces. 
These equations can comprise the rigid body, too. 

3. Continuous Body 

Let us see the whole system (Fig. 1) as a continuum. Using Eq. (2a) we 
can obtain equations of motion of continuum when dF' is equal to ~O'"'.\7, p 
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the divergence of stress tensor (1' [4] and C' is equal to q>'1 + qr'R'1 and 
o means tensorial multiplication as previously. When dm' = p'dV' and 
dm = pdV Eq. (2a) will be [2] 

1 [1 q>' (CJ" • \1' + q' - p' v')dV'] dV'I+ 
V dV 

+qr' ·11 [R' ((1" . \1) + R' q' - R'v' p'] dV'I = 0, (6) 
V dV 

where p is mass density, V is volume of continuum and q' is body force. 
Transforming the first term of the first integral we obtain, 

1 q>'((1". \7')dV' = 1 [(q>'(1")\7' - (1". (V"q>')]dV' = 
dV dV 

1 q>' (1" . dA' - 1 (1" . (V" q>')dV', 

dA dV 

dA is the surface of a macro element. 
The q>', qr', R' are arbitrary. The first integral of Eq. (6) is 

1 1 q>'(1"dA' + J [1 -(1". (\7'q>') + q' - p'v,] dV' = 0 

A dA V dV 

when q>' is equal to constant. This equation will be 

where 

1[(1'· V' + q - pV]dV = 0, that is (1'. V' + q = pv, (7a) 

V 

1 (1" . dA' == (1'. dA, 1 q'dV' == qdV, 
dA dV 

1 p'v'dV' == pv'dV[2]. 
dV 

The second integral of Eq. (6) is transformed similarly as the first one's. 
The second integral is equal to zero, that is, 

1 [re (1' . V' + q - pv) + (1' - S + ,\ . \7 + l - pIT]dV = 0 

dV 
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from this and Eq. (7a) 

0- - S + >.. • \1 + l - pIT = 0 (7b) 

where the notations are used [2J 

J 0-' dV' == Sd,V, J r' 0-' • dA' == >..dA, 

dV dA 

J r' q' dV' == ldV, and J p' r' irdV == pITdV. 
dV dV 

0-, S = ST, >.. and IT functions are unknown in Eqs. (7a) and (7b). 

4. Conclusions 

The equation of motion of discrete and continuous systems can be deter­
mined from the generalized d'Alembert-Lagrange's equation. 

The surface force of the micro-mass element has to be expressed as 
density of body force. 

Basic equations cannot be written in cases of discrete and continuous 
systems thus further equations are needed for example principle of virtual 
work or Gauss' principle or Hooke-law or generally a constitutive equation. 

• The equation of motion is given for the continuum as the equation of 
motion of micropolar body. 

5. Questions 

We wondered if the stress tensor could characterize the micro-element only? 
Why does force-couple system break? 
How could we keep this force-couple system? 
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