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This paper focuses on perame

and machinery. It derives the sia f free and forced vibration of period
ically operating systemns, and investigates the distributions of instability domains for low
variation excitation. The extensive and absiract theory will be discussed briefly, by using
a specmc interpretation. Possibilities of applications of the results are also described. The
main purpose of the paper is to facilitate deepening in the comprehensive theory and, at
the same time, to cover the fundamental knowledge needed in spreading mechanical and

vibration applications.
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i. Introduction
A wide range of mechanical systems may be considered. roughly, as a sys-
tem of rigid bodies. or alternatively, mechanisms and machinery. They can
be considered to be dynamic in that, after having ehmmated the structural
constraints, their motion can be described by ordinary (second-order) sys-
tem of differential equations. In general, a discrete model of finite degrees
of freedom can be applied even if, due to elasticity of components, local
motions and vibrations are superimposed to the rigid-body motion. The
equation concerned, that is motion equation, can be replaced by a power
series related to rigid-body motion, and thus, the local motion can be in-
vestigated independently of the global motion. In the simplest case, the
approximate differential equation is linear, and its coeflicients, i.e. its pa-
rameters vary — either directly or indirectly — as a time function.
Irrespective of traunsieuts, e.g. starting or stopping conditions, the
alteration of parameters is mostly periodicel. For example, let us consider
the cranking and control mechaunism of a piston engine operating at a nearly

constant speed [1. 2. 3, 4]. a gear drive [3, 6, 7], a belt and chain drive
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[7, 8] or a robot performing a fixed working cycle [10]. In the cases given
before and also in other technical applications (e. g. [11. ... 17]) all, or
some. of the parameters. namely the overall masses, damping and stiffness
vary periodically as a function of time. Also the purely time-dependent
force or amplitude excitation is periodical, thus, its history is similar to the
parametric excitation. In the following, fundamental results for this type
of system will be considered. Primarily, we focus on the analysis of the
stability conditions, since the concerned systems are prone to self-induced,
parametric resonance. ln practice, it is very iinportant to know the response
of these svstems from the point of the view of motion stability.

The required mathematical tools, based on the theorems by FLO-
QUET, LyAPUNOV, POINCARE, are of course available in the relevant litera-
ture, e. g. in monograph [19] and in part. in various other papers on math-
ematics [20, 21, 22] or on mechanics [13. ..., 18], or elsewhere. In spite of
the proliferating number of applications, the extensive mathematical the-
ory is tedious to understand. and its use often reflects unawareness. As a
consequence of the facts given above, this paper summarises the most es-
sential theorems. Of course, the discussion of the theorems cannot be ex-
haustive. since it would extend the frame of this paper. Motion stability of
periodically operating svstems is discussed for both free and forced vibra-
tions. and distribution of resonance spois for small paramerter changes will
be presented. Some thou
and vibration aspects of

hts will also be presented on physical, technical
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he theories. Hopefully, this approach facilitates
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acquiring the needed theoretical and pra

1 equation

Together with gy(f). time derivatives gg. Qg are also known, hence and
<) 10\ /> 20+ M0
its partial derivatives are specified time functions. Thus, for local motion,
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that is for vibration x = g — qg, the fo
differential equations:
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M(#)% + D(t)k + S(#)x = £(¢)

is valid. In the equartion given above. M, D and S. respectively, represent
the first order (general and reduced) members of the matrix of tensor of

mass, damping, and stiffness. At the same time, the force vector f repre-
sents the zero order member. Furthermore, valid is the periodicity condi-
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in an even shorter form

x=Alt)x+alt), AG+T)=A@). a(t+T)=alt).

This differential equation is a linear. homogeneous one, it has a periodic
coefficient, therefore. in the general terms, it is Hill type.

c. It is known that the solution of linear differential equations can
be composed from the solution x;(t), meeting the initial condition &y = 0.
Xy = x(tg) of the homogenecous part (a = 0). and from the particular
solution xp(t) of the inhomogeneous equation belonging to the zero initial
condition, such as:

i

x(t) = xp(1) + xp(1) . xp = X()xo, xp(t) = X() / X (Pa(r)dr .
T=0
The solution fundamental matrix X (¢) is to be built up of the independent
vector solution of the linear differential equation in such a way that X(t =
0) = I be a unit matrix. If, by chance, coefficient matrix A is constant,
then the solution matrix is an exponential function

X(t) = ™ = exp(At) .

We will see later that the Lyapunov’s stability of the movement decisively
depends on the history of the free vibration. Consequently, first investigate
the characteristics of the homogenous solution x. that is, the self or free
(transient) vibration.
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3. Stability of the Free Vibration

If matrix A is specifically constant for time domains 11,75, Tm. as it
is the case with Meissner’s equations, the solution matrix is the product of
the part solutions of the form given before:

X)) =Xi(nNXio1(Ti1) ... X4y(M) . t=7+ ;. 0<7<1;,

Li=1,2,....

Since A(t) is a function of time period T, the product defines a constant
matrix C that is called monodromy operator (or period mapping, or fun-
damental matrix) as follows:

X(+T)=Xt)C, C=X(T)=][XT
i=1 =1
1=1,2 LM

For the existence of C, it is indifferent whether A{#) is constant in the
domain. or varies continuously (just like the well Lnox 1 Mathieu equation).
The point is that, if C is known, the solution can simply be obtained for
each T

XKnT)y=X"(T)=C". n=0,1,2....

. Should the state of the system converge from any initial position xg 10
an ethbuum < = (, it 1s necessary to satisfy:

At the same time, this is the sufficient condition. In order to understand
that, in the intermittent positions. the state x can become zero. divide the
pemodlc mapping into two arbitrary parts % and Xo. The following can
be derived by identical mappings:

1S
.
ny

Thus, monodromy for initial time ¢ = T3, rather than for £ = 0, can be
obtained from C = C;; by similarity transformation:

Cip = X, Cn X1
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So. whatever reference starting time is chosen, satisfying the requirement
for C implies to meet

noindent Accordingly, if during a period T reckoned from time ¢ the solution
xp, = X (t)xo is decreasing, then after a time the free vibration necessarily
i.e. it be y stabl

Accordingly, the notural vibration 1s asympiotically stable if any ergenvalue
of the monodromy 1s less than I in absolute value (Lyapunov’s theorem
The motion is stable if, among the eigenvalues of less than one, there is at

least one of value 1. The same is true, again, if A = 1 also occurs with single
* (=] b fud

multiplicity (theorem of Andronov and ¥ Else, the motion may be
unstable. and a parametric resonance may develop. with an exponentially

increasing magnitude.

Note that a general and mathematically more exact discussion is
longer and more cumbersome. Those interested may study, first of all,
works by PONTRYAGIN and ARNOLD, [19, 20, 21]. The LyaPUXNOV and
ANDRONOV-WITT theorems formulate the sufficient conditions not only
the stability of solutions of linear equartions but also for the periodical so-
lutions of the original equation. (This is the outcome of the Lvapunov’s
stability theorem.)

d. If C is known, the stability of homogeneous system with periodi-
cal coefficients can be reasoned out similarly to the time invariable systems
with constant coeflicient. This is not incidental at all. For periodic equa-
tions a relevant equation of constant coefficient of B = In (C)/T can al-
ways be determined. such that the two equations take the same states by
period T (or 27, in the real number space). The relationship

L‘
10

u et

C=VY(T)=exp(BT). thatis Y =BY

1s unanibiguous, irrespective of similarity transformations. Note thatit can
be proved that a non-singular C always has an unambiguous logarithm in
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complex. The proof is easy for single eigenvalues, but for multiple eigen-
values it is far from being elementary. as it can be seen e. g. in [20]. In the
real case, difficulties may occur due to the fact that an arbitrarv C may
also contain reflections. It is not certain that B is real, too. In complex.
reflections can be considered as realilty rotation, while in reality, normally
C? = X(27) involves real rotation only. Here ‘involves’ refers to the theo-
rem of polar decomposition.
e. The consequence of the relationship given below is referred more
frequently in the literature. This is the Floquet’s theorem. On the basis
of this theorem, the solution X () is a product of a periodic function P(t)
and exp{B1):

K(T)=P(T)exp(Bt). P(t+T)=P(t).

If the monodromy for the equation above is produced based on the facts
mentioned in the previous paragraph, we get:

X(t+T)=P(t+T)exp(Bt)exp(BT) =P(t)exp(Bt)expBT) = X(¢)C

which. in turn, includes the proof of Floquet’s theorem.

Thereafter a particular solution x; of the motion equation indepen-
dent of the initial condition, the forced vibration, will be investigated. T
this end, theorems d, = referring to equivalent time in‘variant systems Will
be neglected, only obvious outcomes of theorems &, b and ¢ will be used.

h conventional and parametric »e::u:atious are mostly concomit-
eneral, only the DaldDJGLII(, ex Cl on related 1o Lhe homogeneous
. ‘ . S ,

e G

condition is also satis
can be rated through ration al numbers. » I :
tion a(t) i1s constant.) This constraint is irrelevant in most o
problems since it is automatically met.

a. Let’s determine amplitude of forced wvibration x, similarly as for
natural vibration, for finite periods 7. Let’s start out of the condition that
the value of constant vector

T

%(T) = X(T) / X~ 1(t)a(t)dt = ¢

<
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is known for primary period 7. Repeating integration from period to period
vields:

x,(2T) = C*(I+ C Ve = (C? + C)e,
%,(37) = C I+ C T+ C e =(CP+ 7+ C)e

- 2 n
Zp(nT)=C+C +... +C" =8
Since the expression for sums of series is also true for martrices,
. n+1 .

hence, due 1o the interchangeability of factors, we receive:

T n T 1 = T —~—1
S,=I-CHCII-C) =(I1-CHI-C) ¢C
Hence, the particular solution sought for:

A(nT) =%, (nTie. HpnT)=(I-C) Z(T)-CNI~-C)Y E(T).

v

If the natural vibration is asymptotically stable, then the second term o
forced vibraticn should decay. The limit value is:

lim x,(nT) = (1-C) e =(I-C) 'xp(T) = %poo -

Summing up everything, condition of stability of forced vibration x; is
the regularity of matrix I~C. However, the functions that are periodical
according to T are also periodical according to nT', hence:

det(C" ~1)#£0. thatis |Af —1|#0, ie [N]#1.

It is a less strict condition than the earlier one. The asymptoiic stability
of natural vibrations implies stability of forced vibrations. It can be said
that resonances of the concerned systems are due to variation of coefficient
A(?), i.e. the parametric excitation, rather than the restricted periodical
force, or amplitude excitation a(¢). Note that the result is very close to
the Andronov-Witt theorem. Namely. if the inhomogeneous equation is
considered to be a homogeneous equation of degrees of freedom 2N — 1,
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then in the spectrum of C, the eigenvalue of unit value necessarily appears.
If it is of single multiplicity, the motion is certainly stable.

b. The formula obtained for the particular solution is essentially self-
explanatory. It means that for a ¢t large enough the stable system returns
to the same condition Xy at each period 7%

Xpoe = Oxpee +%(T) = X(T) [ e + [ X7 (012 (f)df}
=0 /

Thus, our conjection can be that the subsistent component of forced vibra-
tion is a periodic function. In fact:

[ t \ T
Xt | Xpse T / X-E(T}a(T)dT =X (t+T) (xpx b X-l(r)a(f VdT
i =0 y \ =0
that is
L v, .
Kpoo + / A {malr)dr =
J
7==0
/ T N
L [ et - i o
:f\,%}{p%—:— / e 1\7)&(T>d7+ ,,/ A l(TTl)a(r—:—‘)d”r;
\ =0 -=0 /
Since here X(7 + 1) = CX(r), and alr + T) = a(7), the right-hand side

becomes:

]
3“

stability and periodicity conditions of the forced vibration are mu-
uall equivalent. The history of the asymptotic, permanent vibration is

not affected by the fact that the initial conditions are mostly uncertainly
known. Now, the initial condition may be specified as:

ot

X0 = Xpoo (I — C) ' x,(T) .




Significance of these results is in the fact that it is sufficient to investigate
to a single period of motion comprehensively on the global behaviour of the
system. The components of motion can be reasoned out, they are similar
from period to period.

¢. The amplitude of periodic vibration is limi if (A # 1, and %,
is finite. This is true even if the other two components of the general solu-
tion are divergent, resonant, that is unstable. Although motion instability
is 1 ot due to the inhomoge:

>0us term, the persistence of the stationary vi-
bration requires certain excitation a{t) {(a can also be constant). Namely,
in the considered linear systems the mum'ai vibration either decays or is in-
tensified, its persistence has a slight (practically zero) probahility because

inal, rather unstable than

of the daw ovw that occurs reg 111().1'1}". This mar

a. Let us consider homogeneous equatio

k= (A +P)x, Pu+T)=P). |PI<]|Ag.

where P is of a small value by an appropriate norm, and is a purely peri-
odical function {disturbance, perturbance). Let’s find solution of the equa-
tion like in Chapter 2. about solution xp ef the system of constant coeffi-
ctent Ay from x(t) = xp(¢) +

%o(t) +d = (Ao +P(1)(x0(t) +d) .

Neglecting secondary small term Pd, deviation d: obeys the following
equation:

d=Ayd +P(t)x0(?) .

Thus, solution of the inhomogeneous equation for initial conditions tg = 0,
xol{to) = Xn. d¢ = 0 according to item 2.c
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b. Factors of integrand are known. Exp (Apt) can be expressed in the
form:

2n
oAt — SoAelTEIN j =12, 2N,
j=1

if, by chance, eigenvalues pj = 6; +iw; of the system with constant param-
eter differ from each other. And of course,

2n

e M= N ALl TR 222N
k=1

where 6; are damping (6; < 0), w; are natural frequencies, ¢ is the imagi-
nary unit., Denote the primary circular frequency of the function P(¢) of
periodicity T by Q = 27 /T. Produce P(#) by its complex Fourier series as
given below:

Pi) = 5B Po=0, m==21,42,...
Mm=—o0

For a real P, constant coefficients P_,, and P,, are complex conjugates
each other. Recall the correspoudence between real and complex series.

o]
iy

Scalar and matrix series are formally identical.
c. Let’s per

r
1

orm integration in the final formula of item a:

-, =iy
’ Tdr =
—ws ynlllT
> AP AL — i
Pk (~(‘\}f - o,f} -+ 5(*‘-.’;’: - <y -+ mfz)

bp—0; =0, and wy—w;+mO=0.

If damping 6; is negligible. or there exist two of them nearly balanced. then
mstability may occur at any of combined frequencies

*‘J_] - W

= . Vh=1,2,... . N . m=1.2....
+m J: Y [
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For a real Ay, this case is almost regular. Namely, eigenvalues y; are pair-
wise conjugate, or are real numbers in themselves. such as e. g.:

£ — . : feie Pt 5. P ¢ N
Cij=N — (SJ . and LN = oy 7= 1.2.... .1 N .
:‘&CCOI‘dingh’. parameuu, resonance may take Dldce even if darnpmg occurs

in the system, that is when the integer multiple of the exciting frequency
{1 equals twice either of the natural frequencies w;:

a combination of

Q/2u cannot bc Lé'i] ed. Thus, intervals belonging t

frequencies are finite as a rule. In this respect, systems with constant or
variable parameters ave rather different. Widths of instability domains
and bands, respectively, may be estimated, and it can be demonstrated
that with increasing the order number m the band width, and in turn. the
resonance intensity decrezses. Damping makes resonance bands narrower.
and eliminates those that have less intensive divergences above certain m.
Thus, in the case of occurrence of damping, there is a minimum frequency
lemmat, such that at lower frequencies no parametric resonance develops. This
limit affects. of course, the parametric excitation of a specific intensity. By
increasing the excitation amplitude, the frequency limit is lowered.

Stochastic disiurbance in the systemi shadows sharp limits. and at
low frequencies the random alteration of parameters has an effect sumilar
to damping. Nevertheless. in practical cases, parametric resonance occurs
only for small m values. It is interesting to mention, that even a weak
parametric excitation may wultiply the numbers of critical domains of the
system. Additionally, the resonance limits are also excited. Relative to
that of the systems of constant parameters, the extension of the dangerous
domain of frequencies is increasing depending on the strength of damping.
The extension in the upper domain is approximately two-fold, and, in gen-
eral, it decreases in the lower domain to its half or third.

With 1ncreasing changes of parameters, resonance bands grow wider,
then result in extended. often overlapping intervals. called instability do-
mains. The resonance map often appears to be rather intricate (sometimes
it is fractal-like). These maps can only be produced by numeric computa-
tions. Of course, for simple cases. stability diagrams can be found in the
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relevant literature (e. g. [12, ..., 17]). Even if the appropriate diagram for
a specific problem is found, it is better to get acquainted with the theoret-
ical backgrounds.

Auxiliary motions in technical systems are in most cases definitely
harmful. They cause a detriment of the accuracy of functioning, generate
vibration and noise, therefore, reduce the duration, usability, etc. of the
machine. For the machinery, the worst is operation at the resonance fre-
quencies. The vibration of the machinery sooner or later will exceed the
linear (e.g. knocking) limits. The amplitude is going to be large, but it still
remains limited. In the worst case, the amplitude will result in a permanent
change of the system, and may demolish it. In the proximity of certain res-
onance bands, mainly of those with even order numbers (m = 2,4,6,... ).
stationary vibration may be important in itself, and non-linear vibrations
may develop earlier than the resonances.

In order to reduce the risk of resonance, changes of parameters have to
be ‘smoeothed . and the syvstem should be “funed up’. There are several possl-
bilities tn constrain parametric excitation. Most known ones are balancing
by mass, increasing damping artificially, changing stiffness or mass of the
clements. or, besides these, certain active compensations may be applied.
Design parameters can possibly be selected so that the operation frequency
be above the highest. or below the lowest critical values. or between two ad-
jacent resonance bands of possible low ord 1 or numbers. If the machinery is

intended to generate excitation, our aim is just the opposite. If design pa-

op
rameters are randomly varied, without a stability ma p, then, inst ead of the
cre

expected reduction of vibration, we often get an inc
Thus, it is expedient to expose the expectable behav iou
parametric excitation earlier in the design phase. We ha\'e to be also cou-

oo

scious of fact that with increasing loads and operating

T

resonances may occur in mechanisms that have
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