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Abstract 

This paper presents the results of comparative calculations by the finite element method of 
shrink fits having simple geometry on examination of the follo'Ning aspects: yield criterion, 
hardening rule, temperature-dependence of the material parameters and the type of the 
uniaxial stress-strain curve. The necessary reference results for the comparison have been 
obtained by using partly analytical methods published by the author and others, partly the 
general purpose commercial finite element code COS:,;10S. The most significant difference 
has been detected at terr,perature-dependent material parameter:;. 
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1. Introduction 

Shrink fit is a simple device, produced from two cylindrical parts some­
times of different materials - , which transfers axial force or torque. The 
loading transmission becomes possible without any adhesive, through only 
the solid contact of the parts due to the original interference to remove 
during the assemblage. 

The scope of the present paper is the determination of the residual 
stress-state and, consequently, the transferable force or torque in shrink 
fits due to cyclic thermal loading after the assemblage assuming elastic­
plastic deformations. There have been published several analytical meth­
ods applicable to the calculation of stresses due to the assemblage (e. 
g. KOLL}'IANN, 1978, Gamer and LANCE, 1982, KOLDIANN and ON0Z, 

1983, MACK, 1986). The first step towards the quantitative analysis of 
residual stresses in shrink fits after the assemblage was made by LIPP:vlANN 

(1992). His derivation was later generalized by Kov.A.cs (1991 and 1994a). 
All these methods take, however, several presuppositions and negligences. 
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Such assumptions are e.g. the Tresca yield criterion and its associated 
floV'; rule, a simple hardening rule (linear or exponential). the negligence 
of the temperature-dependence of material parameters, etc. By the use of 
the general purpose finite element code COSMOS it is possible to examine 
whether the assumptions mentioned permit only a rough approximation 
or, on the other hand, which parameters have the greatest influence on the 
residual stress state. In the comparison it is lW\\, important the mechanical 
model and not the effect of the different heat boundary conditions or the 
sophisticated computing methods related to the finite element method. 

The effect of the folIo'wing parameters on the residual stress state has 
been analyzed: 

yield criterion (Tresca or von =\Iises type): 
hardening rule (any, isotropic, anisotropic): 
temperature dependence of the material parameters (Young modulus. 
linear coefficient of thermal expansion, initial uniaxial yield stress): 
type of the uniaxial stress-strain CUI'ye (bilineaL nonlinear). 

2. General 

In the following the basic equations of the analytical analysis are summa­
rized. 

Let us take the simplest form of the shrink fit: t\\"() thin disks are 
mechanically assembled and then thermally loaded. The inner part is the 
shaft of radii Cl and U, The outer part is the hub of radii band c. respec­
tiwly. The initial interferenCE' bet\wen shaft and hub disappears through 
the mounting process and, consequently, it cause::i an initial joint pressure 
]J60. If the thermal loading i::i a heating, then 
four types of defol'Illatiull ar(~ possible 

1. elastic shaft ~ elastic hub: 
2. elastic-plastic shaf, elastic hub: 
3. elastic shaft elastic-plastic hub: 
4. elastic-plastic shah elastic-plastic hub. 

In the Case -4 the plastic zones appear at the inner side of the disks 
(Fi:;. 1). ('sing the dimensioIlless geometrical parameters R = 1'/0, Ei = 

Ea = :C a lb. the following equations hold: 
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The first equation is the equilibrium equation in the radial direction, I,\'here 
u,., ut are the radial and circumferential stresses, respectively. The second 
couple of equations expresses the geometrical relations between the radial 
strain E,·. the circumferential strain Et and the dimensionless radial dis­
placement C =u/r. The total strains are decomposed into an elastic and 
a plastic part: 

Ei==ff+Ef~ E~ = E~ + E~. (.3a-c) 

1 \"'-0 types of constitutiw equations are valid: for the elastic parts of the 
strains the Hooke's la,\, holds. that is 

(4) 

e le ),.) 
Et = ~ ut - Vur T QU. 

b 
(5) 

'whereas for the plastic parts the validity of the Tresca yield condition is 
assumed, that is 

(6) 

Considering perfectly elastic assemblage, the yield rule associated to the 
above yield condition reads 
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In the above formulae {) = T - To represents the temperature (To is refer­
ence temperature), the subscripts 1, 2, 3 show the conventional principal 
directions. Denoting the inner and outer disks by the subscript i and a, re­
spectively, we can attach the following boundary and continuity conditions 
to the above equations: 

(Jri(qi) = 0, 

[EP(~i) = 0], 
[(Jri(~; - 0) = (Jri(~i + 0)], 

[(Jti(~i - 0) = (Jti(~i + 0)], 

[U(~i - 0) = U(~i + 0)], 

(Jri(l) = -Pb, 

l"ti(l) - "ta(l)1 = io/b, 
(Jra(l) = -Pb, 

[EP(~a) = 0], 
[(Jra(~a - 0) = (Jra(~a + 0)], 

[(Jia(~a - 0) = (Jta(~a + 0)], 

[U(~a - 0) = U(~a + 0)], 

(Tra(qa) = 0, 

(9) 

(10) 

(ll) 

(12) 

(13) 

(14) 

(I.) ) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

where qi = a/b and qa = c/b are dimensionless radii of the disks, Po is the 
actual (temperature-dependent) joint pressure and io denotes the initial 
interference between shaft and hub. The equations in brackets only hold in 
the plastic zones. The solution of the above equations gives the final joint 
pressure PbI and the stress distributions after the thermal loading. The 
detailed results can be found in LIPP}l.:lk;';;'; (1992). (elastic-perfectly plastic 
case) and in Kov.~cs (1991). (elastic-plastic isotropic hardening case). \Ve 
assume that thermal unloading only causes elastic deformation, therefore 
the residual stress state can be obtained by superposition (BLA;';D, 1956) as 

(22) 

(23) 

where subscripts 1 and 2 refer to the thermally loaded and unloaded state, 
respectively, and 6.(J rand 6.(Jt are the elastic stresses due to a joint pres­
sure -6.Pb calculated from the temperature elevation -{} using the same 
equations as above. 
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Table 1 
Geometrica! and material parameters 

q' _1.a E }o u ° . 105 

[GPa] [:0,IPaJ [l/K] 

Shaft 0.1 69 280 0.3:3 2,4 
Hub 1.2 210 -±30 0.29 1.2 

3. Numerical 

In order to compare the effects yarying the features mentioned in the In­
troduction. as model an aluminum-steel disk conple has heen chosen. The 
rnpchanical ",·"n.D~''''C are lisred in Table 1. 

In the numerical calculation. ten axisymmeTric elements y';ere used 
radiall:;. (5 in the shaf:. 5 i.n the hub. respectiwly) and 1 element axially. 
The assemblage 'was modeied by three node-to-line gap elements at the 
contacting surface. First, the initial suess-state has been calculated by 
yanishing the given initial interference (io/b = 0.003) as a static loading 
(elastic analysis). The loading path has been later accomplished by the 
temperature eleyation (elastic-plastic analysis) and finally by the elastic 
unloading. 

The initial joint pressure \vas PbO = 4·5.9 :\IPa and the thermal cycle 
consisted of a heating from 130 = 20°C up to VI = 180°C and then, of a 
cooling down to room temperature. The comparison of the stress distri­
butions has been made on the final (i. e. unloaded) state.The yield stress 
depends on the temperature. This relation was approximated linearly by 
(LIPP}.jA:\:\. 1992) 

(24) 

mi = 0.22 [\IPa/Kj, nta = 0.16 [MPa/KJ (FACPEL and FISCHER, 1981). 
The temperature dependence of E and 0. is given in Table 2. The actual 
values \vere interpolated. 

Table 2 
Temperature dependence of material parameters 

°c 20 .50 100 1.50 200 

Ei [GPaj 70 66 62 .58 .54 
Ea [GPa] 210 210 208 20·5 200 

°i [*105 cC] 2,4 2 .. 5 
Oa [*105 QC] 1.2 1.28 
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Fig. 2. Comparison of yield criteria 

Fig. 2 sho\';s the comparison of the yield criteria by using an elastic­
perfectly plastic model. The radial stresses are practically the same. The 
hoop stresses slightly differ from each other, mainly in the outer part. The 
relative difference betvveen the elastic-plastic radii ~i, ~a (break points on 
the hoop stress curves) is less than 1 Yc in the inner part and about 5% in 
the outer part, respectively. 

In the legend of the Figure 'COSMOS' refers to the commercial finite 
element code. 

Fig. 3 shows the comparison of hardening effects. 'FEM' refers to a 
finite element program developed by the author (Kov.4.cs, 1994b). In all 
cases the :VIises yield condition 'was used. It is ob-;;ious from the diagram 
that hardening does not modify the results. Hmvever, it must be remarked 
that the greatest equivalent plastic strain did not exceed .510-4

. If the 
uniaxial stress-strain curve is nonlinear (i.e. the elastic-plastic interface is a 
third order polynomial, ;,ye get almost exactly the same stress distributions 
(see Fig. 4). 

The largest deviation has been got by using temperature dependent 
material parameters (Fig. 5). Temperature diminishes the elasticity mod­
ulus E, therefore, the material has a larger elastic capacity the deforma­
tion was pure elastic. The linear coefficient of thermal expansionG becomes 
slightly larger at higher temperature, which implies larger thermal strains 
and, consequently, larger stresses -- the deformation is elastic-plastic. If 
all three parameters (E, G, Y) are temperature dependent, the contrary ef-
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Fig. 4- Stress distributions by different stress-strain curves 
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fects result elastic-plastic deformation in the shaft and pure elastic defor­
mation in the hub. Although the hoop stress distributions are different, 
the radial stresses are practically the same. 
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Fig. 6. Residual stresses temperature depel'ld'"nt yield stress 

Taking into consideration the temperature dependence of the yield stress, 
the effect is similar to that of 0:, however, the amount of deviation \yas much 
larger: at the original temperature elevation the fit fully plastified. Fig. 6 
shows the results by less thermal load. \,'here the maximum temperature 
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7. Effect of friction on the axial stress distribution 

v.-as 1.91 = 160°C. The relative difference between the elastic-plastic radii ~i 
is more than 10% in the shaft. 

The effect of friction is shown in Fig. 7. By rigid contact the axial 
stress becomes large enough near the joint. in the order of the radial stress. 
HO\\"eveL this relative large axial stress does not modify the radial stress 
distribution. The stress jump at the joint is due to the rigid contact. The 
oscillation near the joint can be explained by the small number of finite 
elements. This selection has been described accurately enough the radial 
and hoop stress distribution. however, it caused the unrealistic oscillation 
here. 

4. Summary 

The extreme de,"iations of the results were the following: 
~ The minimum residual joint pressure was by about 6% less than the 

initial one. the maximum was equal to it (in pure elastic deformation). 
The difference benveen the smallest and largest dimensionless plastic 
radii happened to be 14% in the inner part and 20% in the outer part 
of the fit. 

~ Exceptional deformations occurred by llsing temperature dependent 
elastic modulus, when there was only elastic deformation, and by 
using temperature dependent yield stress, ,,,hen there ,vas full plastic 
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deformation detected. The latter case would mean a plastic collapse, 
making impossible the load transmission. 

Concluding the numerical calculations, we obtained that the residual radial 
stress distribution, which explicitly affects the joint pressure, remained al­
most the same by changing the mechanical model. The temperature depen­
dence of material properties essentially modified the hoop stress distribu­
tions - the most sensitive parameters are E and Y. The shape of more re­
alistic stress-strain curve is indifferent in the range of possible plastification. 
The fit fully plastifies much sooner than the effect of nonlinearity could be 
detected. Friction mainly affects only the axial stresses near the joint. 
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