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Abstract

ing measurements is in fa

t gathering information. This
according to the efficiency of the information gathering process.

For this purpose parameters to describe efficiency both in the context of gaining
information compared to our a priori knowledge and the efficiency of the sensor to display
channel are introduced. The measuring instrument is described as an information trans-
mitting channel and efficiency is described using measures well accepted in information
theory (entropy, mutual information, information gain, etc.).

The new method has an ability to describe measuring instruments solely on the
basis of their potential for providing information and independently of their mechanical
structure. working principle, etc.. The advantage of the method over conventiona! ones is
that instrument qualification can be based on a principle related more closely to the core
function of measuring instruments, that is, gathering information.

Measuring instruments can be interpreted as too
c

instruments are qualified

Keywords: measuring instrument, qualification, information theory.

i. Introduction

Since the publication of Shannon’s fundamental works [1],[2] scientists have
paid more and more attention to the exploration and examination of infor-
mation theory’s potentials in diverse fields (technical, economical sciences,
biology, aesthetics) [5].[6].[7] in parallel with the development of the math-
ematical background [3], [4], [8].

Realising the growing potentials and universal applicability of infor-
mation theory, we propose a method that applies it to the problem of qual-
ifying measuring instruments.

It has been accepted that measuring instruments or their accuracy
are described by error functions defined over the operating range [8]. An
example is the concept of accuracy classes, which qualifies the instrument
according to its allowed error expressed in percents of maximum capacity.
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However, since the error is found as the reciprocal of accuracy the pre-
scribed error margins can only be indirectly used to describe accuracy and
they give no information regarding the parameter being measured and the
instrument’s information transmitting capability. Thus it seems to be nec-
essary to introduce a new method or parameter that would have the ad-
vantage of being more objective than those used today. The method (pa-
rameter) developed by the authors qualifies measuring instruments by tak-
ing into account the statistical structure of the parameter measured and
the instrument’s information gathering efficiency.

2. The Possibilities Provided by Information Theory

Among the concepts of information transmitting

Chaunel (more precisely channel transmittance) and

~ Information Gain

seem to be well suited for the qualification of instruments.

From an Information Tneory perspective any object that transmits
information from one polint to another in time or space may be called a
Channel [1]. Let us suppose that information is represented by the value
of some random variable 7 (input) which will appear at the other end of
the Channel as another random variable X (output;. This information

transmitting process is illusirated in Fug. 1.

I
Emitter — Channel R Receiver
Fig. i

surements

U (the focu DY 1
external s the ob]ecL under measurement.
The value X a ing o instrul ‘s display, beside the input [7, is
determined by a number of — known or unknown but, due to technical diffi

1ernal and external) - factors. Random fluctu-

1 similar fluctuations of U and X, rendering
the probabilistic modelling of these latter very convenient. It 1s the inher-
ent quality of the measuring instrument 1o be able to provide information

culties, not recognizable (i
ation of these factors results

s in

of
on U through the readout X. This process of taking measurements can be
modelled in fact with the channel model in Fig. 1, by substituting ‘Instru-
ment’ for ‘Channel’.
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According to Information Theory, stochastically linked variables U
and X provide information on each other’s value. The information pro-
vided is quantified by the so-called Mutual Information I(U, X). Commu-
nication theory uses the above quantity for describing Channel (transmit-
ting) quality.

The other concept from Information Theory suitable for the descrip-
tion of instruments is Information Gain, since the measuring process can
be regarded as an information gaining protocol. Our aim is to collect in-

21

formation on the vet unknown value of U with the help of the measuring

When taking measurements (for the first time) Q{u) is best described by a
Uniform distribution. containing the smallest possible amount of informa-
tion. However, in practical situations there is always some a priori knowl-
edge on [ available. A simple example is an interval [U7i,, Unax] where we
expect the value of U to fall in. Such intervals can be of different kind as
illustrated in Fig. 3.

Due to a common reference — in case of a correctly selected instrument
— this interval is the same as the measuring range of the instrument and

will be refined later.
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Fig. 3.

3. Discretization of the Random Variables

Although the quantities measured are often regarded as conii

practice there must be a finite difference Au(Au # 0) between

nuous, in
values to

be discernible. In all practical situations there is a minimum Au (a char-
acteristic of the instrument called resolution) for which it is true that the
instrument fails to discern two values differing by less than Au. Within

the measuring range of the instrument

AT U;ﬂ_ax - rv—;win
Ny = e —min
Au
exists. Let
Ug = Umin
U =U5 +7Au J=0,1.2....,. \u
bounds for the intervals, let
g =PU€U;-1.U]), j=12,..., N

be the probability of a measured value falling in the above interval
let

P(U € [Unin: Umaxl) = 1 -

(3.1)

)_\
po
o

~—

(3.3)
. Further,

(3.4)
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That is, the probability of the measured value being within the range of the
instrument is 1. In other words, the set of all ¢; is a certain event. That is

Z g =1. (3.5)

pi=P(X €[XP X)), i=1.2.....Nx. (3.6)

S opi=1 (3.7)

pi; = PUX e (XL, Xit A {u e [T, T5])) (3.8)
53 b (3.9)
j=11i=1

4. Applying the Channel Concept

In Information Theory the Mutual Information for I and X is given by [2]

Ni N
(X, U)= Z Z . (4.1)
1==1 ': zq]
Further, the uncertainty of random variable X is described with
N.
H(X)= - sz‘ log p: . (4.2)
=1

the so-called Shannon’s entropy [2]. A similar expression may be given for
the uncertainty of the variable U.
In Information Theory, with the aid of

_ Pij
Pj
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conditional probabilities, the so-called conditional entropy

N. N
H(XIC)—ZPJZmJ og pifj » (4.4)
=1 i=1

has also been introduced. This measures the uncertainty of the value X
with condition U [2].
Using uncertainties the Mutual Information becomes

([ € l[/ mins L-;a\}\) 1 ( .

H
Ot
S

IU.X)=H(U)- HUIX) . (4.6)

The Mutual Information above gives the amount of information the readout
X has on U/. If U7 and X were independent (that would indicate severe
malfunction of the instrument!) then we would find

by
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and as a result the Mutual Information would be zero.
Comnsidering that for I(X.07) (according to Egs. (4.3), (4.6))

U)< H(X) (-

)

< I(

,,«c

!P
o

always holds, it is convenient to introduce

X.0) H(X|T
= IE‘.’E L=1- ﬁ.\_‘l-_t } H(X)Y£0 1.0
Hi(X) H(X)
The value this variable can take is within [0,1] since H(X|U) < H({X)

In Information Theory Information Gain is defined as follows

This can also be expressed as

Ny

D(P|Q)=—H(U) - 5;log g;

.
(@1
(W]

~—
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reduction of uncertainty, where p; is a realised value of the distribution p
with reduced tail area.

Let us denote the entropy representing the larger uncertainty observed
before (a priorl) the measurement made by

N
Ho(U)=—) g;logg;. (5.3)
i=1

Considering that D(pl|Q}} > 0. the definitions of p;. ¢; and (5.2) we find that

N
—H(U) > ) bjlogg (5.4)
=1
N N,
-:’,i_/(/]logqj>—2_l log q; > 0 (5.5)
j:’; i=1
From the above results we get
D(P|Q) < Ha(U) . (5.8)
Observing Eg. (5.6) another quantity describing Information Gain may be
defined as
LD = —fF——- . (5.7)
dakb )

This quantity also will take a value in the interval [0, 1].
The combination of Egs. (4.9) and (5.7) leads us to the introduction of

B= RIED (5.8)

a general characteristic of measuring instruments that qualifies them on
the basis of the quality of both the Information Gain and transmission.

The Case of Discrete Distributions

To find the general instrument characteristic I(X,0") in Egs. (4.9) and
(5.7), D(p||@Q) and Hq(U) must be computed (estimated).

In the case of considering a Uniform distribution for
Q = (q1.q2.... .qn,). that is in any [U;_1,U;] interval of [UL;,. Unay] the
value of U will fall with probability

q; = j = 1‘2 . -’\'.U s (61)

1
N’
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then Eg. (5.3) becomes
H,(U)= log Ny . (6.2)

Similarly, for the second term of Eg. (5.2) we find

N,

- Zﬁj log ¢; = log Ny . (6.3)
J=1

Using the above results the Information Gain
D(P||Q) = log Ny — H(U) = Ho(U) - H(U) (6.4)

is just the difference between the two (before and after taking the measure-
ment) uncertainties (iff @ has Uniform distribution !).
Substituting Eg. (6.4), (5.7) now becomes

(6.5)

As it has been shown the quantities given by Egs. (4.9) and (5.7) are both

smaller than unity and consequently their product in Eg. (5.8) is smaller,

too. Thus all three quantities are suitable for describing quality.
Substituting EFg. (3.1), (6.4) becomes

(Z:'—r;ax - Ur:mr)

D(P|@) = log - H(U) . (6.6)

Au

Next we need to find values for J{X.U) and H(u) iz Eg. (6.6). For this
purpose let us consider some known continuous distribution.

7. The Problem of Continuous Distributions

In the majority of technical situations the results of measurement are best
represented by some continuous — mostly Normal — distribution. Due to
certain benefits — and a smaller number of minimum data points — it is
worth taking advantage of the properties of the Normal distribution.

When X and U random variables are continuous, the Mutual Infor-
mation in (4.1) becomes

-]
pomsd
<

I . £ flzyu) N ,
I(».X,D)://f(as,u} log —}{(%5%)[—\/) dzdu (7.
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and Information Gain can be expressed by the following integral

D(PIQ) = [ 5(u) log (EQ) du .

g{u)

In the case of finite (Au # 0, but sufficiently small) resolution

Ny
LY TY O
H(U)=~ ) pjlog p;
Jj=1
entropy with the approximation
Pj = 13(57)_\11 = 1.2.... .1 A v‘u

(7.2)

TN
-1
T

p—

where u; denotes the value at the middle of the interval [[;-;.U;]. Unlike
Eg. (7.1) or (7.2), the above quantity cannot be expressed as an integral

since in the case of Au — 0

Ny R
Alzl,rll Z.f’wﬂ) log p(u;)Au — J,/ plu) log p(u)du .
J:
Ny s
. T~ o=
Alixgof%lp(uj);lu — / plu)du .

Thus Eq. (7.5) becomes

Au—0 Au—

lim H{U) = - /fy(u) log p(u)du — limo log Au — oo .

(7.8)

This means that entropy H (U') is not identical to the expressionin Eq. (7.7)
and consequently is not suitable for the purpose of measuring uncertainty.
Although it is common to call the above integral the entropy of the con-
tinuous distribution (and it proves to be a useful quantity in many cases)

it is not the same as the original concept.
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Counsidering that instruments always have a resolution Au that is
larger than zero and with sufficiently small Au the differences

Ny
/ﬁ(U) log p(u)du — > p(1;) log p(T;)Au (7.9)
j=1
and
Ny
/ﬁ(u}du - > p(@)Au (7.10)
1=1

are small, the entropy may be approximated by the formula

H({U) ~ - /]3(\&:) log p(u)du — log Au . (7.11)

gt
=

e useful nature of the above quantity is demonstrated in Fig. 4

QS.O e & ¢
© 5 ., & =
2.5+ . ® a

p ¥ oa

© 2

s &
2 2
2.0+ o) &
2 discrete

H(U) = log

where 4 = loghB.
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8. An Example for the Choice of Continuous Distributions

Let f(z.u) be the density function of a two-dimensional, h(z) and p(u)
a one dimensional Normal and g{u) that of a Uniform distribution (see
Appendix A). Considering the above distributions and switching from an
arbitrary (log) to — one that suits the nature of the application better -
natural (In) logarithm (which means that information is measured in ‘nat’)
the Mutual Information in Eq. (7.1) becomes

{ "['—‘- : U i Ue ]_Umm Z*4::'13‘«]
q(u) — § max ~ Y omin (8'2)
L 0 otherwise
Information Gain in Fq. (7.2) becomes
D(P|IQ) = In(Upx — Unin) — In(V2meau) . (8.3)

The above quantity is a function only of the scale parameters of the two
distributions and independent of the instrument’s properties.
According to Eq. (7.11) the formuia

H(U) ~ In(v2reoy) — In Au (8.4)

approximates entropy in the case of Uniform distribution with density func-
tion g(u) (see Appendix B) and

Ho(U) = In(Ulhax — Urin) — In Au (8.5)

is the result when a Uniform distribution with Density function g(u) is
considered.

Substituting into Eg. {8.3) (and adding the term (+1n Au —In Auy) =
0) the Information Gain becomes

. Uliax — U200 2mecy \
— max min - X .6
mﬂ@)h(m—ar—) m(ﬁﬁw> (8.6)

Combining the above with Fgs. (8.4) and (8.5) we get

D(P||Q) = Ha(U) = H(U) . (8.7)
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Examining Eq. (8.7) together with Fg. {6.4) we see that Information Gain
(but only if a Uniform distribution is considered) is the difference between
uncertainty before and after taking the measurement. This interpretation
of Information Gain would be nice to use in more general cases. For this
end (and for no other reason or purpose) we introduce arbitrarily another
Information Gain, similarly to Eg. (8.7):

D(P||Q) = Ha(U) - H(U) . (8.8)
where, from Eq. (7.11)
Ho(u) = —/pa(u) Inpa(u)du — In Auq , (8.9)
HU) ~ - /p(u)lnp(u)du A, (8.10)
Choosing pa() = g(u) Uniform and p(u) = p(u) Normal distributions

D(P|Q) = In(Ugax — Uin) — 1n Aug, — In(V27e0y) +1n Au
(8.11)
Au

-

(pHO.«) = ln([?\;ax - l—;irx) - ln(v\/gﬁ_eo—“ ) +1n

Nug

This alternatively interpreted Information gain is seusitive to the resolu-
tions and can even be increased by changing the ratio of the two resolutions.

In the rest of the paper we will use this new interpretation instead of
that given in Eq. (5.7) to describe the quality aspect of Information Gain
as follows

Ho(U) Ha(U) ’
Consequently the general characteristic in #Fg. (5.8) changes to
B=uIiD - (8.13)

9. The Efficiency of Information Gain

After substituting Egs. (8.9), (8.10) and considering p(u) Normal, g(u)
Uniform distributions the Eg. (8.12) quality characteristic becomes

pp=1- % T= .
In (ML‘ = Uy \
Aug )

(9.1)
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It is our expectation for Fg. (9.1) to give a higher value for an instrument
with better resolution. In the following we verify this expectation and
examine the characteristic’s response to changes in Aug.

From FEgq. (8.11)

D(PHQ\) =1 <C’r=na“ — Umin Au > >0. (9.2)

m—
V2meo, Aug

From Ejgs. (8.4) and (8.5)

H([’}zln( 2,~e“'“>>o (9.3)
Au
Ho(U) min [ Zomms = ”> 0
\ \ug
+(U) = 1n <—Lm“> >0 (9.4)
iig ) 1T Aua | -
Combining Fgs. (9.1}, (9.2) and (9.3) we find that
Au < V27eqy (9.5)
A, < Ur;ax - Crrznin s (96)
Aug < KAy . (9.7)
where - -
o= —mEL_Tmin 9.8)
Vimeoy (08
Since even allowing
Au = 2mweou (9.9)
it still holds that
C—;‘Aax - Ur;in - - -
Aug < kAU < ——=="V27ecy = Unax — Unin - (9.10)

\2weoy

Consequently if Eg. (9.7) is fulfilled Eq. (9.5) always holds.

Thus the requirements (9.5) through (9.7) are sensible only for values
of Au and Au, falling in the shaded area in Fig. 5. Examining the quality
characteristic for values of Au and Au, in the shaded area we find that:

a) Increasing (decreasing) Au makes pp increase (decrease) in the inter-

val [0.1].

b) Increasing (decreasing;) Au, makes pp decrease (increase) in the in-

terval [0,1].
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A
Aug AugiikAu
Aug = Du
/ o=
Viredqy, ’
Zme g, Au

Fig. 5.

From this we learn that it i1s the quantity Awu, whose effect on up
fulfils our expectations based on engineering common sense. Consequently,
we will interpret Au, as the resolution of the instrument and Au as some
reference resolution. That is

Num = Au, . (9.11)
Aur = Au . (9.12)
It also follows from the above that the definition of a priori and a posieriori

entropy — since they a dependem on the resolution — has to be completed
by adding that any va 1ue 15 valid only at a given pair of resolutions Auq,

J

and Au,.

up without limit. In reality, increasing the abo*ve qaamlt} over a certain
mation Gain. In fact. if U], — U], is sufil-

without any instrument whether U les in
[Ufins Umax) or not and from this point on the ‘Information Gain’ is inde-
pendent of the instrument. This problem is addressed in the next section.

limit brings no further Infors
ciently large it may be judged

”’»J

10, Introducing New Interval Bounds

In order to avoeid the previous mentioned problems relating to the interval
[Uins Umax] it is necessary to introduce it in a way that would serve the
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needs of instrument qualification better. Let us select the new Upnin, Umax
so that the measured quantity U will fall in the selected interval with a
prescribed high probability

Pliin U L Umex) =1~p . (101)
where p is a very small quantity. Writing Eq. (10.1) somewhat differently,
we have

_P([' € [i?min‘ ftmax}“/ = P(L < L min) =+ P(Eﬂ > i'ma:-:) =p. (102)

r

Let us write our condition on p in a symmetric form

e~ D ) ) )
P{U < Upin) == = 0.001 (10.3)
‘/j
and
e D )
PlU > Umax) = 5= 0.001 . {10.4
By introducing the variable
U~ My -
T = - \/E . (10 3)
Su

where m, is the expected value of random variable U7, conditions (10.3)
and (10.4) mayv be written

P(t < —t;) = 2 = 0.001 | (10.6)
P 10
Plt>t) = 5= 0.001 . (10.7)
With ¢, we have
= Sy . ;
Umin = My — tp ok (10.8)
ﬁmax =my +t S . (10 9)
P \/ﬁ

Considering the (worst) case of n =1

Umax ~ Umin = 2tpsu = 26,04 . (10.10)

Taking n = 1 degrees of freedom p/2 = 0.001 gives t,/2 = 636.610. Sub-
stituting into Eg. (10.10) we get

Umax — Umin = 127304 . (10.11)

In the following we will use this result in Fg. (9.1).
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11. Defining the Reference Resolution

After computing the constant term and considering Egs (9.11), (9.12) and
(10.11), (9.1) qualification parameter becomes

In (4.133 Xiﬁr)

p=t-o (12732

(11.1)

where ¢, is estimated from the sample, Aun, is the instrument’s resolution
and Au, is the reference resolution. A few examples to demonstrate the
effect of the reference resolution on fip are given in Table 1.

Table 1

Aur
Aum Cu %—O'u %’Lau %ﬁau T(lmm‘
Lo, | 0.838 0755 0.654 0577 0312
do. | 0850 0.777 0680 0606 0.363
theo. | 0879 0.820 0.742 0.636  0.457

From the examples we learn that a suitable value of Au, will be in the
interval [oy, 1/504] but 1/100, is still sensible.

Since the Information Gain in Fg. (8.11) is proportional to the ratio
Aur/Auqy, the values under the main diagonal of Table 1 give good results.
Considering this and Fg. (9.4) it holds that

A
<.
3
=
[}
9
X
=
o
Q2
2
i
oo
(8%

Dum < Lus

On the other hand, the sensitiveness of Fg. (11.1) to ¢ — when it does not
include instrument error — indicates that this quantiiyv is a characteristic
of not only the instrument but of the Information gaining process as well.
However, the sensitiveness to o, is quite weak. Trom a practical point of
view, the above qualification parameter seems to be suitable for the purpose
of qualifying instruments.

k

12. The Efficiency of the Information Transmiiting Process

In order to find a value for I, the quantity measuring Information Trans-
mittance efficiency, it is necessary to compute I(X.U) Mutual Information
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and H(X) Entropy (or H(X|U) Conditional Entropy instead of I(X,0)).
From Eq. (8.1) we see that it is sufficient to estimate the correlation coeffi-
cient 7rg. For this, measured pairs of values of U and X are sufficient. We
measure
a) U with a high precision calibrating instrument (values u;)
b) values of X with the instrument to be qualified (values z;).
Measured values are substituted into

52 =T u; -1
oy = i@ D 2 ) (12.1)

his variable takes a value close
Iy its application may be

In(1—rZ,) (12.2)

xhibits a very steep slope for rz, > 0.9 (see Table 2 and Fig. 6). Thus
quality instruments need two or more ‘9’ decimals to be properly described.
However, to give an estimate of accurate to two or more decimals calls for
100 (or orders of magnitude more) data points that is practically unfeasible.
This is explained by the fact that for rzp = 0.01 and 724 > 0.99 the loss of
Mutual Information

&

R o_-—;—(n(i—r

2

)

Al = = Argy = ——5Arzy , (12.3)
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Table 2
Tru —%ln(l—ri,_{) Tru —%ln(l—rr’;u) Tru —%ln(l—r%u)
1. 0.1 0.0005 T. 0.87 0.71 13. 0.995 2.30
2. 0.3 0.05 8. 0.9 0.83 14. 0.999 3.11
3. 0.5 0.14 9. 0.93 1.00 15. 0.9999 4.26
4. 0.75 0.41 10. 0.95 1.16 16. 0.99999  5.41
5. 0.78 0.47 11. 0.97 1.41 17. 0.999999 6.56
6. 0.8 0.61 12. 0.99 1.96 1%. 0.9999999 7.71
Table 8
Tzu Al I
1. 0.99 0.4897  1.96
2. 0.999 4.997  3.11
3. 0.9999 49.997 1.26

is substantial (see Table 3).

This also means that the increased error is a problem, too. When
we have three or four decimal ‘9" in the correlation coefficient the error is
far greater than the information. This implies that Mutual Information
cannot be estimated with this method. order to avoid such problems it

In
is necessary to classify instruments into two classes.
Class I absorbs instruments for whic

v
b the correlation of X and U

13. Estimating the Entropies Directly

To make a direct estimation of the entropies H(X ) and H (X L") the method
described in [3] may be used. That is, the intervals [U), U L X ), Xl
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(where Uy, Upyy and X@): X(ny denote the first and Nth members of a
series in increasing order) are divided into %k sub-intervals where

N =1k, (13.1)

N is the number of data points. With positive roots of Eq. (13.1)

AX =2 72 , (13.2)
A . ‘
o Uiy — Uiy , ;
AU = — vl (13.3)
k
the interval bounds are defined as follows
= Un, +iAU . i=0.1... k. (13.4)
X=X +iaX . i=01,... k. (13.5)
Then we count positive my (i, = 1,2,...,k) falling in the areas

[Xi1. X % [Uj=1.T;] - which is a function of the data. Having my we

I3
mp =y my, =12 .k. (13.6)

Tit ;e Til;e
H(X) ~ Z 1 13.7
H(X) ; ¥ In 5 (13.7)
HEX) =S m\ Sl 1’%—1 . (13.8)
=1 LY =1 2z z

Substituting the above into Eg. (4.9) we estimate

_(HXD)

=1 B0 (13.9)

14. Constructing a Reference Resolution

In order to avoid a fully arbitrary Reference Resolution (even in the al-
ready defined intervals) it is necessary to base it on an expression that is
independent of our subjective judgement.
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Table 4

SIGMA-type ABBE-type Digital readout Mechanical

mikator vertical gauge micrometer micrometer
Ip 0.8448 0.8326 0.7734 0.7734
I, 0.7636 0.7239 0.7035 0.6828
u 0.6451 0.6027 0.5441 0.5281

Let us derive this expression from the partitioning & used for the
estimation of entropies (13.7) and (13.8). We select the intervals defined
in Eq. (13.3) as reference resolution, that is

Um -l

Aur = Au =
U Uu %

(14.1)

This also satisfies condition (9.4) since the probability of Uiy~ U < 6o
is high. That is
P((Uyy) = Upny) <bou) =1, (14.2)

By substituting Fg. (14.1) into Fg. (14.2) we find that the probability of

Un— U ‘
Agy =2 ZFW 8 (14.3)
k k \
is high. Now even with & = 2 (9.4) is fulfilled:
Aur < 30y < 4.1330 . (14.4)

Comnsidering the above. both Egs. (11.1) and {13.9) can be computed and
consequently

M

#=pujip (14.5)

is easily found.

15. Computing Instrument Characteristics from Measured Data

In order to find the Instrument Characteristics four different instruments
were used to take 25 measurements on each of 10 different test objects.
The data was used to compute the quantity up describing Information
Gain, y; describing the efficiency of Information Transmittance and the
Instrument Characteristic u, the product of the above two, which qualifies
the instrument according to its accuracy as an information gaining tool.
Results appear in Table 4.
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Analysis of the results shows that the Instrument Characteristic u
developed by the authors is suitable for the qualification of Measuring
Instruments on the basis of Information Theory.

Appendix A

The density Tunction of a one-dimensional Normal distribution:

hz) = = 3(E=EE) (A1)

1 [ (5520) - (2me) (2320 ) ¢ (552)')
flz,u)= e M Tz) i o= 7 o :
T 276:0uy 1 — 124

(42)
Appendix B
In the case of p(u) Normal distribution by analogy Form (A1)
pu) = e P (T (B1)
270y,
» 1 /v—my z 9
lnp(u) = —In(V2m0y) — A A (B2)
- . . 1 7. u—my\?2
/p(u)lnp(u)du = —ln(\/Qﬁau)/p(u)du - E/p(u) ——(-I—————) du
/f)(u)du =1 and /ﬁ(u)(u —my) du = o2, therefore
2
/f){u)lnfa(u)du = —In(V270y) — %zf,—‘ = —In(V270y) — %lne \
o &0y 4

f B(u) n p(u)du = —In(v2meoy) . (B3)

In the case of i
glu) = ————. (B4)

'max — U min




Uniform distribution and p(u) Normal distribution:

[SLRNEEN

[

-1

2. PrEKOPA. AL Valdszinlségelméler. Mi

/.i)(u) IHQ(u)du - —ln(lvv;lax - C’er*nirx) /ﬁ('u,)dll-.

/]3(11) 1n€[(\u)du = ln(U;ax - L;'l;l.lﬂ) .
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