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This study deals with & rendeom wealk simulation of particle transpor
from a stationary, isotropic turbulent flow: This i

and deposition
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ation of the well-known
Lagrangian approach, which treats the disperse phase as manv particles. The trajectory

each particle is calculated according to the equations of the motion assuming a discrete

-

zn implemen

ed guantities describe the behavior of the particle-fluid svstem,
and these have been used to validate numerical solutions of a kinetic {probability density
function transport} equation which models the same system. In this work we have only
considered relatively large particles; particle-particle interaciions and the influence of the
particle phase on fluid phase have been neglected.
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The task of predicting the deposition rate of solid particles or liquid droplets
from a turbulent gas stream onto a surface is a common engineering prob-
lem in air cleaning, erosion of turbine blades. plate-out in nuclear reactor
coolant circuits, etc.: other applications can be found in fields as diverse
as occupational toxicology and river channel topology.

Mechanisms responsible for particle deposition include (but are not
restricted to) inertial impaction, gravitational settling. electrostatic forces,
lift forces, and diffusion. It has long been known that for electrostatically
neutral particles with diameter in the range of a few pm the dominant
mechanism is inertial impaction (KALLIC and REEKS, 1989).

There are two possible approaches for modelling particle deposition.
The first is the Eulerian approach (also known as two-fluid approach),
where the particles are treated as a continuous phase. hence one can de-
rive the mass, energy, and momentum conservation equations. The second
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choice is based on the Lagrangian approach, where trajectories of numerous
individual particles are computed by solving the equations of motion, and
the ensemble-averaged quantities describe the behavior of the particle—fluid
system.

2. Steady-State Particle Transport in Turbulent Flows

A general kinetic equation for particle transport in turbulent fluid flow
has recently been developed by REEKS (1991), and this study concerns
the validation of a model for the steady-state deposition of high-inertia
particles based on this equation.

Consider an axi-symmetric pipe in which the fluid flow is uniform and
axial. For the sake of convenience we assume that the axis moves with the
flow (i.e. with velocity @).

Then the following form of the kinetic equation madels the steady-
state distribution of the particles normal to the boundary provided that
the axial distribution of particles is uniform.

For large particles the kinetic equation reduces to a Fokker-Planck
equation
5
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Here W(g, ) is the ensemble-averaged phase-space particle density,  is the
perpendicular distance from the wall which bounds the flow, © the wallward
particle velocity, and ¢4 the normal component of the grautational settling
velocity.

The variables and coeflicients in this equation have been scaled using
the characteristic particle respo e time 7, and the local homogeneous
particle velocity ¢~ , where ¢7 1s detezmiz-ed by the diffusion coefficient u™
(at § = 12 ) as fOHO‘n 8

o =

The quantities denoted by 7 are given in wall units, i.e. they are non-
dimensionalized by the friction velocity and the kinematic viscosity of the
fluid (KaLLIO and REEKS, 1989). In general ¢ is spatially dependent, but
for large particles 1t is approximately constant (equal to the value at the
inlet) so that
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The variable y™ is normalised with respect to ¢7 77, Which represents a

characteristic particle stop distance. Then ¥ represents the number of

~
-



PARTICLE DEPOSITION FROM TURBULENT FLOWS 145

stop distances over which the transport is modelled (this is analogous to
the interpretation in the kinetic theory of gas dynamics, where the domain
size is considered in terms of the number of particle mean-free-paths).

To complete the model we must prescribe boundary conditions at
j=0andj =Y (Fig. I).

A boundary condition at § = ¥ could be built ocn the assumption
that at the inlet we have a constant source of particles with given positive
velocity distribution.

Provided that ¥ is sufficiently large, this asymptotic distribution will
be approximately Gaussian with variance o’
first boundary condition as

((d

. So iti natural to write the

B s /2 3 ;
w(Y,t)=n \/~6Xp<——} for v >0, (2)
Vo 2
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wher gives the concentration of particles with positive velocities at ¥
(the ') For simplicity we set n” = 1.

the wall we have ths flux balance
0Tw(0.87) =~ [ Y@ (0,070 [0T)deT for T <0.  (3)

where ©(27|¢7) denotes the conditional probability density relating the
transition of a positive particle velocity from 7 to a negative one (97)
after collision.

So this boundary condition depends on the form of ©. We have consid-
ered a simple deterministic process, which includes some energy loss during
particle-wall collisions. Furthermore, if the impact velocity of a particle is
smaller than a given critical velocity then that particle is adsorbed. The
rebound velocity is given by

a - /. 2 ~ P -
vo= —-\/UT — 92 12> Ve,

where 2. is the critical impact velocity. This gives
~ e pn ~t ~
w(0,27) = w(0,27), v > D (4)

Note that the value of ¢, determines the type of the boundary, i.e. in the
case ¥ = 0 the surfaceis perfectly reflecting (no energy loss, no adsorption),
while ¢, — o¢ corresponds to a perfectly adsorbing boundary.

A brief description of the numerical method for solving this two-point
boundary value problem is given in Appendix A.
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3. Important Quantities

In studying solutions to the model given by FEgs. (1), (2) and (4) the
following quantities are of interest.
The current:

The concentration:

T w(y.o)didy

Further it is of great theoretical and practical interest to consider the par-

ticle velocity distribution at the wall. This is given by

é(f): Ww(O.t?) '
J (0, 2)do

=X

In this study a comparison is made between the values of these quantities
as predicted by numerical solution of the kinetic model and the following
approximations derived from the random walk simulation (outlined in the
next section).

The current:

IR

. 1 i
7 (i) 15 > v
S0V

where 7;; is the time-averaged number of particlesin bin centered on {y;, v;)

and
M = Z Z 5.

: J
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The concentration p(y) is approximated from the simulation as

~ ¢ 1 _
p(yl) — \/ﬁéy ;712]7

where ¢ is the delay time between particle release and can be thought as
a transformation in the time variable (thus compensates for delay-time
effects).

The

term is needed to normalise the inlet velocity distribution

1
V2w
relative to the boundary condition (2).

The average concentration:

(p) = %Zﬂ(yi)éy-

The deposition rate:

10)

(p)

The velocity distribution: If the number of particles in bin v; at the wall
is denoted by 7; in the simulation then

1.
w(0,v;) = ERCE

v

where 0v is the width of the bin in the v direction, so the velocity distri-
bution function has the form

R
v Zﬁj

J

4., Random Walk Simulation

We simulate the turbulent flow as a discrete eddy-field. Each eddy has
some carrier velocity v and a specified life—time AT

Since high-inertia particles will not be significantly influenced by tur-
bulence in the near-wall region, we may approximate the eddy lifetime
and the carrier velocity as seen by the particles as spatially independent
(boundary layer effects only play role for small particles).

For the simulation it is easiest to work in terms of these fluid charac-
teristics, i.e. to scale the velocities on ¢ ( the rms velocity of the fluid),
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times on 7} F ( the Lagrangian integral time-scale), and the spatial variable

on 0‘{2"‘1;‘ ( the stop distance), as follows

L’+ t+ y"r - Y'I— u+ ’U+
v = I I:T y= + L Y’: T u= £+ vg:_i_'
Ty T ouTr CuTy Ou Ou

v

vg is the gravitational settling

~~ 1 is the particle response time given by

where y1s the position, vis the particie velocity, v is the carrier flow velocity
o

where 77 is the particle relaxation time (in wall units). For large particles
we have 77 >> 100 and, from KALLIO and REEKS (1989) we see that
TL+ < 100 so that v << 1. In this work we have set v = 0.01 throughout.

The v(u — v(t)) term corresponds to a Stoke’s drag assumption from
which it is clear that the velocity of a particle will not change much crossing
an eddy neglecting the gravitational effect (vertical pipe).

We model the autocorrelation of u as exponentially decaying and, in
view of the normalisation, with a unit integral time-scale, so we can choose
the fluid velocity from a standard normal distribution and the eddy-lifetime
from the exponential distribution (with unit mean).

To get the equilibrium particle distribution given by the boundary
condition (2) the initial velocities must be drawn from the distribution

2

1

v exp --:2— . The time averaged particle distribution at the inlet will

then conform the required half-Gaussian (consider a finite width strip at
the inlet, the particle residence time then is inversely proportional to its
velocity).

So we should take

Vinlet = 4/ _21n(2)’
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where z, g are uniformly distributed random numbers from (0,1).

The initial velocities must be scaled to achieve the correct particle
rms velocity relative to the fluid rms velocity (see section 5).

Integrating system (5) yields:

y(t)

Il

; 1 7 .
yok (u+ )+ = {"0 —(ut L—gﬂ (1—e™),
¥ v

o(t) = (u+ 2) + {'Jo— (.u+'ﬁl)} e, (6)

li

where vy denote the initial particle position and velocity, respectively.

We can imagine the trajectory of the motion as a curve in the three-
dimensional (y,v,?) phase-space.

By discretising this phase-space (i.e. discretising the state variables)
we can extract information about the average particle behavior based on
the guantities specified in sectien 3. This can be achieved by storing this
discretized phase-space (the ‘cube’).

(We note that storing the whole cube is only necessary wher
interested in phase-space density distributions, otherwise we can define
two- and one-dimensional arrays for storing ‘projected’ information).

Because of memory limitations the cube should be defined for 0 <
Y <Y vpin €U < Umax and 0 < ¢ < ey

Hence our discretised phase-space consists of s
sides 6y, 6. 6; in the y,v, and ¢ directions, respectively.
o we one system (-3‘ for a given initial ‘velom
eddy-lifetime . Afte
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lems that were identified during this Work.

We must determine the time (impact time) when the particle hits the
wall and since Eq. (6) is nonlinear we have used a bisection method to
establish this instant.

Also because of the nonlinearity, we should be careful, since the par-
ticle can leave and re-enter the phase-space during one time step.




To avoid this we determine the position of the particle when the sign
of its velocity changes, i.e. the value of t such that

v(t)=0= - + [l‘o —(u+ ”';a } e 7t (7)

!

It can be shown that y(¢) does have an extremum if
volu + =) < 0.

Solving (7}

g e re leaae rate ¢ and the time-step &, equilib-
rlum states were generated in the simulation process. This was ascertained
by consideratio the mass M as a function of time. see Fig. 2

When M is roughly constant. we average the quantities over an ap-
propriate time interval. hence we obtain the Steady—state solution.

It is clear from the nature of Monte-Carlo simulations that the more
articles one uses, the less the noise. So the implementation allowed for
he possibility of releasing more particies into the flow at the same time.

3 shows a comparison of results from two simulations using 1 and 10
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particle releases.
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5. Comparison of the Simulation Resulis with Numeric
Solution

i

wn

To compare the solutions from the random walk simulation and the kinetic
equation we need to relate the two scalings. This connection is given by
(see SWAILES and REEKS, 1994b)

In the simulation we solve the equations of motion scaled on fluid charac-
teristics

b(t) = ¥ [(2(t) — u) + gl
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Fig. 2. The number of particles (mass) as a function of time
where
V= £
Hence
+ o
g = o,
A4 1+ ";/m-l
This gives
14~ e

t=uv/—— and §=y/v(1+7)

which define the relationship between the two coordinate systems.
Since k™ has units of velocity it follows that
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Fig. 3. The effect of noise reduction

We can demonstrate this formally from the definition

P =L
o
as follows
Bt = L = Jvriwtdv” _ [votwe™dp _
pT gpot? fwtdvtdyt (r+,~1+§' JwotdvotTdy
[owdo ot

o fwdpdy

Consequently we get
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Fig. 4. Dependence of the deposition rate on mean-free path

Fig. 4 shows the value of deposition rate for a range of
perfecily adsorbing boundary.

The program for solving the kinetic equ o calculate
cfor Y > 03sciorY =0 we , 1994a).
Similarly for the concents
S _%u T
p = P = ‘\,{/ = P
o
Fig. 5 shoxw the spatial concentration for various ¥ values.
- 1 . o .
Note that the concentration approaches 5 across the pipe as ¥ de-
creases.

As Y increases the distribution at the injection point approximates
the standard normal distribution. Consequently the particle concentration
at this point increases from % to unity. In addition, as Y increases, the
concentration profile will decrease linearly over a greater proportion of the

domain, so that the concentration at the wall necessarily reduces to zero.
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Fig. 5. Dependence of spatial particle concentration on ¥’

. : : (Y 1, S—
Note also the interesting result that p ~_7—> = 5 for all values of Y. This

is due to the ‘persistence’ of the Gaussian distribution across the domain —
this is evident in Fig. 5, and is also reflected in Fig. 6 which shows values
of the mean velocity (inversely related to p), and the particle rms velocity
as functions of distance from the wall, and for a range of values of Y. The
figure also shows values obtained by simulation.

The relationship between particle velocity distributions at the wall is

given by
d(3) = | ——3(v).
1+

Effects of interactions between the critical impact velocity v, and the grav-
itational settling velocity vy are shown in Figs. 7 and 8. Fig. 7 shows the
particle velocity distribution at the wall for v. = 3 and vy = 5, while Fig. 8
depicts the distribution for v = 5 and vy = 5. In both cases = 10.
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Fig. 6. Spatial variation in mean and rms particle velocities

Fig. 9 and 10 show phase-space distributions for v, = 5 and v, = 3,
respectively (vg = 5 and Y = 1 were used in both cases), while a typical
phase-space distribution for a perfectly adsorbing boundary is shown in
Fig. 11. The two pictures in the figures correspond to simulation and
numerical solution (from left to rzght). Note the difference at the wall,
which is due to the finite width of cells in the simulation.

8. Conclusion

The simulations performed gave excellent agreement with numerical solu-
tions of the steady-state kinetic equation obtained by a spectral method.
In this respect the simulation results can be regarded as validating the
kinetic equation.

The advantage of the random walk approach is that other deposition
mechanism and forms of boundary conditions can easily be built into the
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Fig. 7. Velocity distribution at partially adsorbing boundary

simulation. However, more CPU time is required than is needed for solving
the corresponding boundary-value problem given by the kinetic equation

n

Appendix A
Spectral Method for Seolving the Kinetic Equatio

Approximate solutions for the kinetic equation can be found (for further
details see SWAILES and REEKS, REEKS et al., 1991) in the form

N
B(5,8) & Y 6n(§)6a(0) (A1)
n=0

-3 UN -

where ¥,s are orthonormal Hermite functions.
Making this approximation exact at collocation points vg,
leads to a first order system PW' = QW with W =

the zeros of YNy —
(wO(:&v 'L‘()), ey 'wj\"(ih U.N))-
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Fig. 8. Velocity distribution at partially adsorbing boundary

The matrices P and { involve the diffusion coefficient [, so in general
they are spatially dependent (however, during this study we have consid-
ered large particles, for which the approximation f = 1 is valid (REEKS,
1991)). This reduces P to a diagonal form diag{v.), henc first order
system for W can be written as W = PTIQW.

The boundary conditions for this system at § = ¥ follow from (2),
and at y = 0 from (4) using the fact that the transformation @ —— ¥~
determined by (A1) is invertible. This boundary-value problem then can be
solved numerically. (The numerical solutions with which we compared the
results of the random walk simulation were obtained by using an adaptive
finite-difference scheme with deferred correction provided by NAG routine

DO02GBF (GLADWELL, 1987)).
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