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Abstract 

This paper is basicly a survey that discusses some actual questions on the so-called 
Dirichlet-Voronoi cell of a lattice of dimension n. The first part is about the classical 
results and some principal problems of this subject while we plan a second part on some 
constructive and algorithmic questions concerned with our topic. 

Keywords: lattice of dimension n, Dirichlet-Voronoi cell. 

1. Introduction 

The concept of Dirichlet-Voronoi cell (also Dirichlet cell or Voronoi region, 
briefly D-V cell) was introduced in two classical papers by DIRICHLET [10] 
and VORONOI [24], respectively. Let us give a discrete point set L in the 
n-dimensional Euclidean space En. The Dirichlet-Voronoi tiling of L is a 
tiling with convex tiles 

D (z) = {y E En I Iy - z I ~ Iy - xl for all x EL} z E L. 

That means, D(z) consists of points y of En whose distance from the 
point z (the origin of D) is not greater than its distance from any other 
points of the set L. The tile D(z) is called the cell of z where the function 
I . I is the usual Euclidean norm of En. In the case when L is a lattice 
(i.e. the endpoint set of the integer linear combinations of a fixed linearly 
independent vector system of En ) these cells are translated copies of the 
cell D(O) of the origin. In this paper we investigate only cells of lattices 
thus in most cases we apply the notation D only. The concept of D-V cell 
is useful in solving a lot of various problems. 

First of all, we say some words about applications in discrete geom­
etry. For example, the classical ball packing problem is to find out how 
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densely a large number of balls can be packed together. This problem is in 
general unsolved even today. For measuring the density of such a packing 
we naturally come to the idea of D-V cell. The precise definition of den­
sity ~ of a lattice packing is the following: 

~ = volume of one ball = volume of one ball 
volume of a basic lattice parallelepiped volume of the cell D 

In the plane this problem is solved, the optimal arrangement is the regu­
lar triangle (simplicial) (or regular hexagonal) lattice defined by two edge 
vectors of a regular triangle. For this arrangement the density is: 

~=~. 
VI2 

(See Fig. 1) 

o o 

o o o 

o o 

Fig. 1. The regular triangle lattice and its D-V tiling 

A lot of papers deal with this problem and its analogues concerned with the 
optimal arrangements of convex bodies in a space of dimension n. The most 
important classical results are due to GAUSS [12], KORKINE-ZOLOTAREFF 

[19], [20], BLICHFELDT [4], [5], [6]. 
Second, we mention the so-called quantization of data problem. This 

is the following: Suppose that certain data (symbols) are uniformly dis­
tributed over a large set S in En. If we have a lattice L with basis vec­
tors of determinant 1 and we substitute each point of S for vector x to the 
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nearest lattice point, the average squared error per symbol related to L is 
defined by the integral 

over the D-V cell D of L. The problem is to minimize this average over 
all lattices of determinant 1. CONWAY and SLOANE in [7J support the 
conjecture that for higher dimensions the solution is provided by the polar 
(or dual) lattice of that one which gives the densest ball packing in En. 
The normalized form of this quantity called the normalized second moment 
of D, is a dimensionless real number defined 

G*(L) = ~Vol(D)-l-* J Ixl2dx. 
D 

(It is introduced by H. DAVENPORT in the paper [8J.) 
The last problem in this introduction is related to the numerical 

integration. Let G be a Jordan measurable set of the plane E2, and w 
a continuous non-decreasing real function on [0,00) with w(O) = O. Let 
1{"'" (G) denote the set of real functions f on G such that 

If(x) - f(y) I ~ w(lx - yl) for x, y E G . 

Then we want to choose points xl, ... ,xk E G and real numbers (Xl, ... ,(Xk 

for fixed k = 1,2, ... such that the maximal error 

let be minimal. Using the concept of D-V cells and some other results due 
to L. FEJES-TOTH, BABENKO [1] found an optimal choice for xi and (Xi in 
the asymptotic sense as k tends to infinity. To extend this result to higher 
dimensions seems to be very difficult. 

From these introductory remarks we can see that the concept of D­
V cells is important. In this paper we summarize some classical results on 
the geometric properties of D-V cell. The author will arise some problems 
solved and open as well. A new concept will also be introduced; the idea 
of k-dimensional coveredness of a lattice parallelepiped. We examine its 
connection with a lattice geometric problem discussed in the papers [3], [13]. 
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2. Definitions, Elementary Properties of D 

A lattice L of the Euclidean n-space En is defined by a linearly independent 
vector system of En as the set of all integral linear combinations of this 
system like a basis. We say that the lattice Lt of dimension k (1 :::; k :::; n) 
is a sublattice of L if LI C L. The vector m is a minimal one if it is one 
of the shortest non-zero vector of L. (The length of a vector is regarded 
with respect to the usual Euclidean norm of En.) As in the introduction, 
the D-V cell D(x) of a lattice point x is the collection of points of the 
space which are closer to x as any other points of the lattice. It is clear 
from the definition above that L is invariant under the translations by the 
lattice vectors and the reflections in a lattice point or in the midpoint of 
any lattice segment, respectively. From these follows that any two D-V 
cells are translated copies of each other and, moreover, any cell and its 
(n - 1 )-dimensional faces (called facets) are centrally symmetric convex 
bodies, respectively. The definition of D implies (by virtue of the fact that 
a lattice is a discrete point system) that it is a polyhedron defined by finite 
intersections of certain half-spaces, each of them contains the origin and is 
bounded by the midhyperplane of a lattice segment connecting the origin 
with a lattice points. The collection of the cells D(x) for x E L forms a 
so-called lattice tiling of the space En. This means that their union covers 
the space and their interiors are mutually disjoint. This tiling is face-to­
face, so in particular, any facet of the tile D(x) is also a facet of another 
tile. In Fig. 2 we pictured a non face-to-face lattice tiling formed by the 
translated copies of a rectangle. 

Fig. 2. Non face-to-face lattice tiling 

It is obvious that the D-V cell D is bounded and we assume in this paper 
that D also is closed, so this region is compact. The volume of D is equal 
to the volume of a basic-parallelepiped of L which is spanned by vectors of 
a basis of the lattice. 

An important class of lattice tilings (whose convex tiles will be called 
parallelohedra as well) is the class of primitive tilings. An n-dimensional 
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0 0 0 0 

0 0 0 0 

Fig. 3. Non primitive D-V cell system 

tiling is primitive if any vertex of a tile belongs to and is a vertex of precisely 
n other tiles. In the plane the D-V cells of the regular triangle lattice (see 
in Fig. 1) form a primitive tiling, however, the D-V cells of the square 
lattice are not primitive (see Fig. 3). 

3. Parallelohedroll, Extremal Body 

The concept of extremal body is due to H. MINKOWSKI, he proved the 
fundamental theorem of bounded central symmetric convex bodies. This is 
one of the most important theorems in the geometry of numbers and has 
a lot of consequences and applications in other parts of mathematics. (See 
in [21]). 

Theorem 1 ([21]) A bounded central symmetric convex body K in En with 
the origin 0 in its centre and volume v (K) > 2nv (D) contains at least 
one lattice point different from o. (D is the D-V cell of L, v(·) is the n­
dimensional volume function.) 

An elegant proof of this theorem can be found e.g. in the book of 
P. GRUBER and G. LEKKERKERKER [18]. From this theorem follows im­
mediately that such an O-symmetric convex body which does not contain 
non-zero lattice points (so-called empty body) has a volume at most 2nv(D). 
H. MINKOWSKI introduced the concept of extremal body with respect to 
the lattice L which is an empty O-symmetric closed convex body with vol­
ume 2nv(D) . In his book he investigated this class of bodies and proved 
some interesting theorems on it. First of all he characterized the elements 
of this class: Theorem 2 ([22]) Let K be a (bounded) O-symmetric convex 
body. Then K is extremal if and only if the following two properties hold: 

a, The space En is covered by the bodies L-translates of ~K. 
b, Each point x E En belongs to at most one body ~int K + u where 

int K means the interior of the body K. 



30 

H. MINKOWSKI also proved that an extremal body is necessarily a closed 
polyhedron for which the following properties hold: 

1. At most 2(2n - 1) lattice points belong to the relative interiors of the 
faces of K, 

2. K has at most 2(2n - 1) faces, 
3. On the boundary of K there lie at least 2(2n - 1) lattice points. 

In his famous works [24] and [25] VORONOI also studies this class of 
polyhedra. He introduced the concept of parallelohedron as a convex poly­
hedron P whose translates by a lattice L cover En and they have disjoint 
interiors. By a theorem of H. MINKOWSKI a polyhedron P parallelohedron 
if and only if 2P is extremal with respect to a lattice L. It is clear that the 
D-V cell D of the lattice L is a parallelohedron. Conversely, Fig. 4 shows 
a parallelohedron P which is not the cell of its lattice, but that prototile P 
is an affine image of the unit square D. Since this square is the D-V cell 
of the corresponding lattice it can be asked the following question due to 
VORONOI: 

o 0 o 

o 0 o 

o 0 o 

Fig. 4. 

Whether each parallelohedron is an affine image of a D- V cell? This is one 
of the most famous open problems of this theme. For dimensions n ~ 4 
this conjecture was proved by DELONE [9] while in the papers [24] and [25] 
VORONOI showed that in the space En each parallelohedron which is the 
prototile of a primitive lattice tiling is an affine image of a D-V cell. This 
result was refined later on by some authors. The history of this problem 
has been surveyed in the book [18]. 

Now we revert to the problem of the number of lattice points on the 
boundary of an extremal body. In general we cannot tell more than in 
the properties 1, 2, and 3. Now we investigate the special case when the 
extremal body is an enlarged copy 2D of the D-V cell of its lattice. We 
need to introduce the definition of a relevant vector due to VORONOI. A 
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lattice vector x is called relevant vector if it is actually needed to define 
the cell D. This means that the hyperplane containing the midpoint of x 
and perpendicular to x, intersects the D-V cell D in a facet of dimension 
(n - 1). VORONOI proved the following characterization of relevant vectors: 

Theorem 3 ([24]) The lattice vector x E L is a relevant one if and only 
if it is a unique minimal norm element of the coset x + 2L. In this term 
'unique' means the property that if y is a minimal norm element of x + 2L 
then it is equal to x or -x. 

This result says that ±x is a unique pair of minima of its coset if and 
only if their end points are in the interiors of opposite facets of the extremal 
body 2D. The author has generalized this result as follows: 

Theorem 4 ([14]) If a lattice vector x is in the relative interior of an 
(n - k) -dimensional face of the body 2D (for certain k = 1, ... , n - 1) then 
it is a minimum vector of its coset x+2L. Conversely, if the rank of the set 

Mx := {m E Llm is a minimum vector of the coset x + 2L} 

is equal to k then the elements of Mx are in the relative interior of certain 
(pairwise distinct) (n - k)-dimensional faces of 2D. Furthermore in the 
case of k = n the lattice vector x is a vertex of the body 2D if and only if x 
is a minimum vector of the cos et x + 2L and the rank of Mx is equal to n. 

Here the rank of a vector set means its dimension. Now we give 
some examples to illustrate this theorem. The number of elements of Mx 
depends on the lattice. In the three-dimensional cubic lattice there are 
three types of lattice points belonging to the closed body 2D. The vertex 
coordinates of 2D are congruent to (1,1,1) componentwise mod2 (we take 
the coordinates with respect to the edge vectors of the basic cube of the 
lattice). The vertices are the minimal elements of the coset of (1,1,1). So 
IM(1,l,I)I = 8 and rank M(1,l,l) = 3. 

Regard now the so-called regular-simplex lattice of dimension 3. We 
can construct this lattice from the cubic lattice taking in addition the 
centers of the 2-dimensional faces of the basic cube also to lattice points. 
A basis {ei I i = 1,2, 3} of this lattice points to centres of any three 
cube faces meeting in a cube vertex as origin. In Fig. 5 we see the body 
2D which is a rhombic dodecahedron. We have two types of lattice vectors 
on the boundary of 2D. E.g. the vertex (-1,1,1) of 2D is a lattice point. 
The minimal elements of the cos et of this point - denoted by double circles 
in Fig. 5 - are the endpoints of the longer diagonals of the rhombic faces. 
This means that IM(-l,l,1)1 = 6 and rank M(-l,l,l) = 3. By these two 
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Fig. 5. The regular simplex lattice and its extremal body 2D 

examples we see that the number of the minimal elements of a coset depends 
on the lattice and the combinatorial type of the corresponding face of 2D. 

These examples suggest the following theorem which gives an alge­
braic relation among the lattice points lying on the boundary of 2D. The 
proof of this theorem can be found also in [14]. 

Theorem. 5 ([14]) Let x be a lattice point in the relative interior of an 
(n - k)-dimensional face IT of 2D. (1 ~ k ~ n). Then there are q facets of 
2D (denoted by ITl, ... , ITq) each containing the face IT such that the sum 
of their relevants Yl, ... , Y q is equal to x: 

x = Yl + ... +Yq· 

The number of these facets is not greater than k (for instance in the previous 
example k = 3 and q = 2). The relevants Yi above are orthogonal to each 
other and so 

2 2 2 
X =Yl + ... +Yq· 
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4. On the Nearest Lattice Point Problem 

The so-called nearest lattice point problem is an important problem of lat­
tice geometry, convex optimization and other fields of mathematics. This 
is the following: How to find a lattice point of a fixed lattice L which is 
the nearest one to a given point of the space En? It is clear that the given 
point ( E En is in a D-V cell D(x) of the D-V tiling of the lattice L, and 
the center x of this cell is the nearest lattice point to (. If we can choose a 
lattice hyperplane with the property that it is covered by all the D-V cells 
of L whose centers lie in this hyperplane, then the nearest lattice point 
problem for ( and L can be simplified to the nearest lattice point prob­
lem for the orthogonal projection of ( to this hyperplane and the (n - 1)­
dimensional sublattice of L lying the hyperplane considered. This princi­
ple would give the idea of a good algorithm to solve the original problem. 
Unfortunately, in general, there is no such sublattice in higher dimensional 
spaces. Precisely the following theorem holds: 

Theorem 6 ([13]) For dimensions n=6,7,8 there exists an n-Iattice L in 
which there is no sub lattice L* of dimension (n - 1) satisfying the assump­
tion 

U(D + v I v E L*) :J Lin[L*] , 

where D and Lin[L*] denote the D-V cell of L and the subspace of dimen­
sion (n - 1) spanned by the sub lattice L *, respectively. 

The proof of this theorem (see [13]) relies on the fact that if the sublat­
tice L* has the above-mentioned property then the difference between the 
number of minima of Land L* is not greater than 4(n - 1). On the other 
hand, K. BEZDEK and T. ODOR proved in [3] that in the cases n ::; 3 we 
can choose such a sublattice L* of the given lattice L. (See the problem 
survey [3].) By the papers [2] of BARNES and WALL and the other one [23] 
of LEECH we proved that there is an infinite sequence of lattices in which 
the number of minima is not a polynomial function of the dimension n. 
(For details we refer to the papers [15], [16]). As a consequence there is an 
infinite series of lattices in which the required condition does not hold for 
its sublattices of dimension (n - 1). 

The nearest lattice point problem motivates the following strict ver­
sion of the previous one. 

Whether a nearest lattice point can be found among the vertices of a 
given type of basic-parallelepiped containing this point? 

In the paper [17] we have found a quantity which is characteristic for 
a lattice, if it is sufficiently small then the basis has the desired property. 
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Let {el,'" ,en} be independent lattice vectors and denote by G = 
« ei, ej » i,j = 1 ... n the Gram matrix of this system. The following 
matrix A is a modification of G: 

( 

<e2~el> 
A = e1 

<en,el> 
e 2 

n 

Here eT =< ei, ei >. The quantity mentioned above is the maximum norm 
of the inverse of this matrix A. We remark that the maximum norm of a 
vector x of En is defined as the maximal absolute value of its coordinates 
with respect to a fixed orthonormal basis of En and the maximum norm 
of the matrix A is defined by: 

The theorem is the following: 

Theorem 7 ([17]) If IIA -11100 ::; 2 then for every point <: of the paral­
lelepiped spanned by the vectors {el, ... ,en} holds the property: The near­
est lattice point to <: lies among the vertices of its parallelepiped. 

The following example shows that this condition is only sufficient but 
not necessary. 

Consider the lattice that is spanned by the vectors {el, e2} having 
the same length. Assume that the angle of these vectors is acute. Since 
the basic-parallelogram P[e1' e2j of this lattice is covered by the D-V cells 
of the vertices of P, one of the lattice points nearest to the point <: of P is 
a vertex of P. At the same time for the system {el, e2} 

and so 
IIA-11100 = IIAlloo' 1 ~ __ 1--;;--

1 - cos2 a 1 - cos2 a ' 

where a is the angle of the examined vectors. Of course, this quantity is 
greater than two if 0 < a < 1j-. 

A simple proof of Theorem 7 is the following: 
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Proof: By continuity, it suffices to consider the case when the point ( is 
an inner point of P. Let the lattice vector x* be a solution of the problem 
for (. Then 

This means that 

±2 < (x* - (),ek > +(ek)2 ~ 0 for k = 1 .. . n. 

From this inequality we have 

But the vector (x* - () can be written as linear combination of the vectors 

n 

x* - (= 2)Xi - (i)ei , 
i=l 

where by the assumptions 0 < (i < 1 and x~s are integers. This means that 

I 
< (x* - (), ek > I = I~( . _ 1".) < ei, ek > I < .!:. 

( )2 ~ XI '>1 ()2 - 2' 
ek i=1 ek 

In this formula the sum is a coordinate of the vector A(x* - (). Hence 

IIA(x* - ()lIoo ~ ~ 

and so 

This shows that IXi - (i I ~ 1 for every i where Xi are integers and 0 < (i < 1. 
Thus Xi equal to 0 or 1 which proves the statement. Q.E.D. 

Note that if the parallelepiped is spanned by vectors ej which have 
the same length, say m, then A = * . G where G is the Gram matrix· of 
the lattice. This means that A-I = m· G-I so the norm of A-I is the 
product of the length of the edges of P and the maximum norm of the Gram 
matrix of the dual to the system {eI, ... ,en}. This is a basis of the dual 
lattice L-1 to L. The elements of the dual ba.-;is {fI, ... ,fn} are defined as 



36 A. G.HORV.4TH 

normal vectors of the faces P[e2, ... ,en], ... ,P[el, .. ' ,en-I] furthermore, 
the lengths of these vectors are equal to the reciprocal distances of the 
corresponding parallel opposite faces of P, say _1_, ... ,_1_, respectively. 

ml mn 
This means that the maximum norm of a-I is 'small' if there are orthogonal 
walls of the parallelepiped P. Thus the condition can be used in that case 
if the walls of the parallelepiped are nearly perpendicular to each other. 

On the other hand, it is clear that a parallelepiped spanned by a 
regular simplex holds the desired property, the nearest lattice point to an 
inner point of the parallelepiped can be found among the vertices of it. This 
motivates the following discussion of this paragraph. We first introduce the 
concept of the k-dimensional coveredness of a lattice parallelepiped. We 
now assume that L is generated by the basis {el," . ,en}. Denote by P 
the lattice parallelepiped spanned by these vectors, and let Dn( Q) be the 
D-V cell of a vertex Q of P and denote D the cell of the origin. 

Definition 1 The k-dimensional skeleton of a parallelepiped P is the union 
of its k-dimensional faces. The parallelepiped P of the lattice L is k-dimen­
sionally covered if its k-dimensional skeleton is covered by the union of n­
dimensional D- V cells Dn(Q) where Q runs over the vertices of P. 

It is clear that every lattice-parallelepiped P is O-dimensionally covered, 
furthermore Pis l-dimensionally covered if and only if the endpoints of its 
edges {el, ... ,en} are on the boundary of the extremal body 2D. It is not 
surprising that the k-dimensional coveredness implies the I-dimensional one 
if I ::::; k. As a particular case the n-dimensional coveredness means that 
the nearest lattice point to a fixed point of P can be found among the ver­
tices of P. The question is now how we can guarantee the n-dimensional 
coveredness of a lattice parallelepiped P? The following statement formu­
lates the fact that the nand (n - l)-dimensional coverednesses are equiv­
alent properties. 

Theorem 8 If the parallelepiped is (n - l)-dimensionally covered then it 
is n-dimensionally covered, too. 

Proof: Assume that the union of D-V cells 

K = U{Dn(Q) I Q is a vertex of P} 

doesn't cover the parallelepiped P but it covers the (n-l)-skeleton P\intP. 
Then there exists a point x in the interior of P which is lying in the set 
DTl(R) \ K, where R is lattice point out of P. But Dn(R) is convex (so 
'-on nected), thus there exists such a point S on the (n - 1 )-dimensional 
-K(!eton of P which is lying in Dn(R) and -by assumption- also covered by 
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K. As our D-V cells have disjoint interiors hence we have a contradiction. 
Q.E.D. 

The following example shows that the k-dimensional coveredness does 
not imply the n-dimensional one if k :::; (n - 2). 

Assume that n = 3 and k = 1 and regard the lattice L spanned by 
the basis: 

As in Fig. 6 we can readily verify that the orthogonal projection R! of the 
point R on the plane [el, e2] is in the cell Dn(R). Hence the analogous 
projection Q of R* on the plane [el, e2] is in the region Dn(R*) and P is 
not 2 or 3-dimensionally covered. However, P is I-dimensionally covered 
because the minimal distance of the midpoints of the vectors {el, e2} to 
the lattice points is equal to ~. (The closed cells around the endpoints of 
the edges of the parallelepiped contain the mid~int of the edges.) 

The following theorem relates to the k and (k - I)-dimensional cov­
eredness. Before the formulation of this theorem we introduce some nota­
tions. 

Let Di j ,Oo' ,i" be the D-V cell of the origin with respect to the lat­
tice Li j ,.0. ,ik spanned by the vectors ei1 , ••• ,ei". Denote by ~j ,Oo' ,i" the k­
dimensional face of P containing the origin and being spanned by the vec-
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tors ei1 , ••• ,eik' Furthermore, let Vii , ... ,ik be the k-dimensional subspace 
of En containing the face Pi1 , ... ,ik' 

Theorem 9 If the number k is less than n the following two statements 
are equivalent: 

1. The parallelepiped P is k-dimensionally covered in the lattice L. 
2. Pis Ck-1)-dimensionally covered and for each set of indices for which 

1 ~1 < ... < ik ~ n the following equality holds: 

The straightforward proof is of technical character and omitted here. 
Using this theorem it is not too hard to show that a parallelepiped 

which is spanned by a super acute simplex is n-dimensionally covered. We 
define by induction this type of simplices. 

Definition 2 A two-dimensional simplex is super acute if it is acute trian­
gle. A k-dimensional simplex is super acute if its (k - 1) -dimensional faces 
are super acute and the angles of its (k - 1) -dimensional faces are acute. 
Our definition has been motivated by the fact that an I-dimensional face 
of such a simplex contains the centre of its circumscribed ball. From this 
observation we can see that for all k (1 ~ k ~ n - 1) the D-V cell Dil , ... ,ik 

of the sublattice Lil , ... ,ik is just equal to D n Vii , ... ,ik in the theorem above. 
In case k = 2 the k-dimensional coveredness follows from the assumption of 
super acuteness hence a parallelepiped spanned by a super acute simplex 
is always n-dimensionally covered. 

We remark that the regular n-simplex is a super acute one, this im­
plies that its well-known lattice An (see [7]) solves the nearest lattice point 
problem. 

5. D-V Cells in E2 and E3 

Using Theorem 4 and Theorem 5 in the preceding section we derive the 
well-known combinatorial classification of D-V cells in dimensions two and 
three, respectively. For the classical derivation and other details we refer 
e.g. to the monograph of L. FEJES TOTH [11]. 

In the plane E2 we only have two combinatorial types of D-V cells like 
in Fig. 1 and Fig. 3, respectively. To prove this, we refer to our Theorem 4 
about the relevant vectors. The double lattice 2L has 3 (non-zero) cosets 
in the original lattice L. From among these 3 cosets at least two contain an 
opposite pair of relevant vectors. If in the third coset there is only one pair 
of shortest vectors then our D-V cell is a central symmetric hexagon, while 
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being two pairs of minima then our D-V cell is a rectangle by Theorem 5. 
vectors mod2 from which at least two contain an opposite pair of relevant 
vectors. If in the third coset there is only one pair of shortest vectors then 
the D-V cell is a central symmetric convex hexagon and if in this coset 
being two distinct pairs of minima then (by the Theorem 5) the D-V cell 
is a rectangle. 

The situation in the space is more complicated. Before the discussion 
to this classification we give an elementary lemma without proof. 

Lemma 1 Let P be a central symmetric convex hexagon in the plane. 
All the combinatorially possible decompositions of Pinto 2, 3 or 4 central 
symmetric convex parts like a face-to-face tiling of P can be seen in Fig. 7. 

Fig. 7. Decompositions of a central symmetric convex hexagon 

We need the concept of zone of a D-V cell of the space. Since the faces of 
such a polyhedron are central symmetric any edge e determines a zone of 
faces in which each face has two sides equal and parallel to the given edge 
e. The following lemma describes the types of the zones of a D-V cell. 

Lemma 2 The number of the opposite pairs of relevant faces corresponding 
to a given zone is two or three. If it is two then the corresponding faces are 
orthogonal to each other. 

Proof: In fact, the D-V tiling decomposes into layers, each being uniquely 
determined by one of its cells, starting, for instance, with D at the origin. 
The considered zone of D determines a whole set of equal zones meeting one 
another along whole faces. The layer of D consists of the cells surrounded 
by these zones. The relevant vectors of the faces of this zone are orthogonal 
to the given edge e (which determines the zone) thus they are in a plane 
perpendicular to e at the origin. This means that the centres of D-V 
cells belonging to this layer lie on this plane. Furthermore the orthogonal 
projection of this layer on this plane is a lattice tiling where the tiles are D-
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V cells of the lattice ofihe .co:wridered centres. From the classification of the 
types of D-V cells of the plane we get the statements of the lemma. Q.E.D. 

Now we can formulate the theorem. 

Theorem 10 There are only five different combinatorial types of D-V 
cells in the Euclidean 3-space E3. The most symmetric representatives of 
them are the cub, the regular hexagonal prism, the elongated dodecahedron 
(bounded by a tetrahedral zone of regular hexagons and two caps each con­
sisting of four rhombi), the rhombic dodecahedron and the truncated octa­
hedron, respectively. These most important representatives are pictured in 
Fig. 8 in combinatorially equivalent form. 

III IV 

V 
Fig. 8. D-V cells of the space 

Proof: The basis of our discussion is the number er of opposite pairs of 
relevants. Referring to the statements of Theorem 4, we have to discuss 
the respective cases of er = 3,4,5,6 and 7. We show that corresponding to 
the cases of er = 3,4, 5 there is only one type of D-V cells, in the case er = 6 
there are two different types while if er = 5 there is no such topological face­
edge-vertex complex which can be realized as a D-V cell. These types of 
polyhedra are illustrated in Fig. 8 I, Il, Ill, IV and V, respectively, and we 
have Fig. 9 showing D-V cells Ill, IV, V which are realizable as the cells of 
certain centered brick lattices. Let us start our discussion \vith the case of 

1. er = 3. Since the number of faces of the polyhedron is six by the 
Lemma 2 the D-V cell is a brick. (See in Fig. 81.) 

2. When er = 4 the D-V cell has eight faces. On the base of Lemma 2 
again, there is a hexagonal zone of D that means that the polyhedron 
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Fig. g. The possible D-V cells of a centered brick lattice 

is a hexagonal prism. (See Fig. 8 Il.) (If there is no hexagonal zone 
of D then by Lemma 2 would exist four pairwise orthogonal vectors 
of the three-dimensional space which is a contradiction.) 

3. In the third case (J" = 5. This means that the polyhedron has ten faces 
and at least one hexagonal zone. The orthogonal projection of a cap 
to the plane of relevants of this zone decomposes the projection of the 
zone into two central symmetric convex components. CA cap would 
have two central symmetric faces by central symmetry of D.) But 
the projection of the zone is a central symmetric convex hexagon by 
Lemma 2 thus there is no D-V cell in this case by virtue of Lemma 1. 

4. Let now be (J" = 6. Since the D-V cell has 12 faces, analogously to 
the previous case, we have to decompose a convex central symmetric 
hexagon into three parts, each of them is a central symmetric convex 
polygon. By Lemma 1 we get two different combinatorial types of 
decompositions, the first contains a hexagon and two parallelograms, 
the second consists of three parallelograms. Both possibilities can be 
realized as a D-V cell. See Fig. 8 IIl, IV and Fig. 9, respectively. 

5. Finally, if (J" = 7 then the D-V cell has 14 walls. By Lemma 1 a cap 
of the polyhedron consists of two hexagons and two parallelograms, 
respectively. The corresponding D-V cell is pictured in Fig. 8 V and 
Fig. 9, respectively. Q.E.D. 
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