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Abstract 

In this work we discuss two basic alternatives of stabilizing an inverted pendulum - by 
applying a horizontal force to its base or by use of a speed controller which implements a 
kinematic constraint into the mechanical system. 
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1. Description of the Mechanical System 

The mechanical system consists of a pendulum hinged to a mobile cart 
(see Fig. 1). The cart and the pendulum are constrained to move in the 
sam~ vertical plane. The cart consists of an electric motor with a gearbox 
connected to a pair of wheels. As can be seen from Fig. 1, our system has 
two degrees of freedom and its motion can be described by two generalized 
coordinates: the angle () of the pendulum and the horizontal position q of 
the cart. 

2. Mathematical Model 

To obtain the equations of motion, we give the kinetic energy of the system 
in the form 

where the following notation is used: 

Mc the mass of the cart with the wheels; 
Jw moment of inertia of the wheels, gearbox and rotor altogether; 
T . radius of the wheels; 
MI mass of the pendulum; 
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Fig. 1. Experimental device 

s distance between the hinge and the mass centre of the pendulum; 
Jp moment of inertia about the mass centre of the pendulum. 

This kinetic energy will be used in forming the mathematical model 
of the system ih cases of two different control strategies. 

2.1 Balancing with a Horizontal Force 

By means of the electric motor, we apply a horizontal force F to the cart, 
which is determined by a linear feedback of the state variables q, q, 0 and 
iJ of the system. We use the well known Lagrange's equations of motion of 
the second kind for holonomic systems in the form: 

(2a) 

d (aT) aT 
dt aiJ - 80 = Qe, (2b) 
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where Qq and Qe are the generalized forces obtained from the virtual power 
of the active forces: 

6P = Qq6q + Qe60 = (F - S)6q + (M1gssin 0- G)60. (3) 

Sand G stand for the dissipative horizontal force and the dissipative torque 
at the pivot axis respectively and 9 stands for the gravitational acceleration. 
Because of the use of ball bearings, the magnitude of G is negligible. The 
force S though, has a significant role in the system due to the DC motor 
connected to the wheels. We assume that it has a viscous nature, i.e. S is 
proportional to the velocity: S = Dq, which is a reasonable approximation 
in case of direct current motors. After substituting (1), and also Qq, Qe 
from (3) into Eqs. (2) we obtain the equations of motion 

(Mo + MIFi + MlS8cose = MlSe2 sine - Dq + F, (4a) 

MIsqcose + JIe = Mlgs sin 0, (4b) 

where Mo = Mc + Jw /r2 and J1 = M1S2 + Jp. If the state vector x T = 
(0,0, q, q) is introduced, the linearized equations of motion become: 

x=A·x, (5) 

0 1 0 0 

-MJsk2 
(MOJl +M1JI') 

-MJska 
(MoJ1 +MIJI') 

A= 
0 0 0 1 

-M12s2g+J1k1 J,k2 J,kg J1(k4-D) 
(MOJ1+M1JI') (MoJl+M1JI') (MOJl+MlJI') (MOJ1+M1JI') 

where the horizontal force F is chosen to be a liner feedback of the four 
state variables: 

(6) 

By applying appropriate gains kj, j = 1, 2, 3, 4, we would like to insure the 
asymptotic stability of the trivial solution x'{j = (0,0,0,0). This could be 
achieved if the real parts of the eigenvalues of A are definitely negative [2]. 
The characteristic polynomial of A assumes the form: 
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The stability region of (7) in the parameter space of kl' k2, k3 and k4 
is determined from the well known Routh - Hurwitz criterion, which is 
expressed by the following four inequalities: 

(i) MlSk2> Jl(k4 - D)j 

(ii) (Ml sk2 - Jl(k4 - D») (Mls(kl - (Mo + Ml)g) - h k3) > 

(MOJl + MlJp ) (MlS(k4 - D)g); 

(iii) (k4 - D) ((Mls(kl - (Mo + Ml)g) - Jlk3)(MlSk2 - Jl(k4 - D»

(MOJl + MlJp )(Mls9(k4 - D») > (Mlsk2 - h(k4 - D»)\3j 

(iv) k3 > o. 
From (i)-(iv) it is evident, that all coefficients ki (i = 1, ... ,4) should be 
positive, in other words, it is necessary to use all the state variables in the 
feedback. 

If one does not require to position the cart at q = 0, it is not necessary 
to measure q. This is easily checked if we realize, that in this case the 
coordinate q does not appear in equations (4). This allows us to use the 
state vector yT = (e, 0, q) and to repeat the above procedure. We obtain 
conditions (i)-(iii) with k3 = 0 substituted in them. 

Further, if k4 = D is also true, then the variable q also disappears 
from Eqs. (4) and thus we can rewrite them in terms of (e,O) only: The 
linear stability in the phase plane ((J, 0) then is defined by (i)-( ii) only, so 
when t --t 00 the cart may travel with some constant speed qo. Note, that 
because of the presence of the frictional force S = Dq it is still necessary 
to use q in the feedback. 

Here we have neglected the natural time delay, which is always present 
in the system. The stability region described by (i)-(iv) in the parameter 
space is smaller in the case of a significant time delay: there is an additional 
upper bound for the parameters ki. An exact calculation of the stability 
chart for the simplest case (k3 = 0, k4 = D = 0) has been carried out by 
G. STEP AN in [1]. 

2.2 Balancing with Speed Controller 

As it can be seen from Section 2.1, a naturally unstable mechanical sys
tem could be stabilized with additional forces introduced in it. Although 
these forces may be of various kind, most frequently they are provided by 
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actuators - in our case, by an electric motor, which are sold together with 
controllers. The best solution for our problem would be to use an IxR
compensation, because this controller type guaranties the desired force, 
proportional to the input signal. Sometimes we do not possess the best 
type of controller, but it is still worth trying to use it. In this section we 
show, that a speed controller used to control the horizontal velocity of the 
cart is able to balance the pendulum in a similar way, as it was done in 
Section 2.1. This solution however, involves an integration in the feedback, 
which complicates the controlling algorithm and increases the time delay 
in the system. 

If we wish to stabilize an unstable system, a standard approach to the 
problem would be to use a feedback of its state variables. Because the input 
of the system in the case of a speed controller is a voltage proportional to 
the desired velocity of the cart, it seems to be reasonable to apply the 
kinematic constraint of the form: 

(8) 

We deal with a nonholonomic mechanical system and therefore the equa
tions of Routh - Voss [2] should be used: 

d (OT) 8T 
dt oq - oq = Qq + vAu, (9a) 

!!:.. (O~) _ oT = Qe + VAI2 
dt of) of) , (9b) 

All q + AI29 + Al + A2 = 0, (9c) 

where An = 1; AI2 = -112; Al = -me; A2 = -'1/3q. Taking into account 
(1) and (3), Eqs. (9) become 

(Mo + MI)q + MIS cos(f))9 = MIS sin(f))92 - Dq + v, 

MIS cos(e)q + JI9 = MIgs sin(f)) - '1/2V, 

q = me + '1/29 + '1/3q· 

(lOa) 

(lOb) 

(lOc) 

In the Eqs. (10), two new terms appeared (v and '1/2 v) , which correspond to 
an additional force and torque, applied to the cart and to the pendulum, 
respectively. Unfortunately, the pendulum swings freely about its pivot 
and no torque could be transferred from the cart to the pendulum. This 
means, that the coefficient '1/2 cannot be set to a non-zero value, otherwise 
the solution of equations (10) does not describe the motion of the system. 
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Now, from Eqs. (10) with 7]2 = 0, the linearized equation of motion can be 
simplified in the form: 

Since the first and third coefficients have opposite signs, the 0 = 0 solution 
is unstable whatever the choice of 7]1 and 7]3 is. 

Despite of the discouraging results above, it is still possible to use a 
speed controller for stabilizing the inverted pendulum. For example, if we 
determine the speed as 

t 

q = J (K1 0(r) + K2e(r) + K3q(r) + /qq(r) )dr, 
o 

or we use the equivalent constraint 

(11) 

the motion of the cart and the pendulum would be the same as if we applied 
a horizontal force F determined by (4) and (11). Namely, 

where q and e could be expressed in terms of the generalized coordinates 
and velocities from (4b) and (11). If we compare the linear approximation 

(12) 

with the linear feedback (6) in Section 2.1, a correspondence between the 
coefficients kj and Kj could be established: 

(13) 

With transformation (13), the stability conditions (i)-(iv) from Section 2.1 
could be reformulated for the parameters Kj and thus similar qualitative 
results could be obtained. 
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3. Experiments 

We have used computer control combined with the speed controller to verify 
the theoretical results. In the experiments, only two of the four state 
variables were measured and sampled. These were (J and q with sampling 
time about 1.2 [ms]. The integration in the feedback was done by the 
computer (an IBM AT 486) and thus the estimated value for q contained 
some numeric error. This caused an error of about !::J.q = O.l[m] in the final 
position of the cart. The time sequences of the measured (J and estimated 
q can be seen in Fig. 2 and 3 bellow. 
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Fig. 2. Damped oscillation of the controlled inverted pendulum angle 

The stochastic noise on the signals has been explained and identified 
as a slight chaotic behaviour of the system when linear and nonlinear digital 
effects, like sampling time and quantization, are also considered in the 
deterministic mathematical model [3]. 
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Fig. 3. Cart motion 
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