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Abstract

This paper deals with the calculation of gasket load drop caused by internal pressure
at flange joints. The method published here makes possible to take into consideration
the stiffness effect of the integrated part of the flange ring. The equations published
refer to large size welding neck flanges but the method itself can be applied at any other
types of flange joint, too. During the determination of the flange rotational stiffness the
model shaped up by MURRAY and STUART [4] for calculating stress-state of welding neck
flanges should have been made more precise. The preciseness of this method, as well as
the convergence of trial-and-error calculations used were proved by results of calculations
carried out on flange joint.

Keywords: pressure vessel, flange joint.

1. Introduction

Tests have proved that gasket load Fry generated at seating condition in
the flange joint presented in Fig. I is decreasing on introduction of inter-
nal pressure. This fact may cause leakage in the case of unsatisfactory bolt
pre-load. Therefore, in order to reach leak tightness the value of gasket
load drop should be known so that the value of bolt pre-load could be de-
termined by taking into consideration this effect. Models known from lit-
erature [2, 5, 6, 7] assume that the reduction of gasket load results from
the elastic deformation of the joint. There were applied approximations in
equations based on the above assumption to obtain closed formulae as a
solution. As a result of these approximations the published equations do
not take into consideration the real shape of the integrated part when de-
termining flange stifiness. The above mentioned approximations especially
at welding neck flanges used in the case of high-pressure cause error. This
paper discusses a calculation method based on analytical equations mak-
ing possible consideration of the above effect in a relatively simple way.
The equations published refer to large diameter welding neck flanges at
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pipelines and pressure vessels but the method itself can be applied at an-
other types of flange joint, too. Results of calculations presented in Chap-
ter 5 prove the preciseness of this calculation method.

2. Assumptions

Fig. 2 shows the loads acting on flange investigated as an element of flange
joint under seating (a) and pressurized condition (b). As the figure shows,
the pressure induced header end load Fp will change the system of inter-
nal loads in the flange so both the bolt and gasket loads are changing in
accordance with Fgs. (1) and (2) comparing to ones at seating condition.

Fey = Foo + Fp — AFT, (1)

Fry = Fro — AFp. (2)

In order to determine the gasket load drop (AFr) in the literature the
loosening coefficient [5, 6, 7] was invented and it is defined by Fg. (3). The
loosening coefficient for a given engineering material and geometry as a
structural characteristic was regarded and used as a constant,

AFp  Kg+42-zr-2p-K 3)
Fp _KC-{—KT-*-Q'Z%-K.

In the Eq. (3) K¢ and K7 are the spring stiffness of bolts and gasket, while
K is the rotational spring stiffness of the flange loaded by a couple. The zp
invented in the Fg. (3) is the virtual arm [6] used to substitute the equally
distributed load generated by internal pressure for Fp header end load
acting on zp offset from bolt circle as Fig. 3 shows. Further on a method
will be presented allowing a more precise calculation model so that more
precise prediction of the bolt pre-load needed to a given internal pressure
can be obtained. In accordance with models presented in the literature
[4, 5, 6] the flange rings at large diameter flange joints can be modelled
as elastic ring so at the determination of flange stiffness the displacements
of ring can be calculated from equations valid for elastic rings. In order
to reduce the mistake coming from asymmetry of external and internal
surfaces of tapered hub connected to flange ring, there was invented the
so-called mean surface for reduction which bisects the wall thickness AB’
(see Fig. 4) as well as it continues in the mean surface of the constant
wall-thickness cylindrical shell symbolized by AB and it is nominated as
calculating surface [8]. During the solution, just as with MURRAY and
STUART [4], the tapered hub was regarded as an axisymmetrically loaded

D=
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Fig. 1. Sketch of the investigated welded-neck flange joint
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Fig. 2. The system of internal loads at seating and pressurized conditions

thin cylindrical shell with AB mean surface having a linearly varying wall
thickness. Then the edge forces and moments calculated as acting on the
surface above were reduced on the true bisecting surface AB’ of the tapered
hub. The parameters arisen at the stiffness calculation of the integrated
part of the flange ring were determined with variables given in Fig. 4 and
a dimensionless coordinate expressed by Eq. (4)

{i} — 5.264 . (1 _ 1/2)0.25 . d}mOS . a~0.5 . ZL'ObS, (4)

where o = tg« and v = 0.3 the Poisson ratio of the flange material. The
changes in effective gasket width caused by the deformation of flange ring
were neglected at the model, that is the nominal width of the original ge-
ometry was taken into consideration in stiffness calculation. This approxi-
mate solution is acceptable at gaskets with high diameter and small width.
In Chapter 3 assuming ideal elastic gasket material model but taking into
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Fig. 4. Model of the tapered hub

consideration the effect of the integrated part of the flange ring, the loos-
ening coeflicient of the joint defined by Eg. (3) will be calculated. In Chap-
ter 4 equations giving stress-state of integrated part of the flange-ring will
be discussed. Finally, in Chapter 5 a numerical example presents the use
of the published calculation model.

3. Loosening Coefficient of Flange Joint
in the Case of Ideal Elastic Gasket Model

Fig. 5 represents the equilibrium of loads at flange ring and integrated part
under seating (Fig. 5.a) and pressurized conditions (Fig. 5.b). Out of the
system of loads acting on flange ring the meaning of Fy and Feyp is bolt
load under seating and pressurized condition while Fry and Fpy are the
gasket loads under seating and pressurized condition. Let us choose the
required residual gasket load under pressurized condition Fry > Frmin so
the bolt pre-load under seating condition in accordance with Egs. (1) and
(2) can be calculated as:

Feo= Fro=D-Fp+ Fry, (5)

2 T . . e .
where Fp = (é{% -p is the total header end load originated from internal
pressure and D is the loosening coefficient of the joint. Among loads acting
on flange ring the effect of integrated part can be expressed as shearing
edge forces Qpo, @py and moments Mpy, Mpy, Mp; acting at the cross-

section connected. The edge forces Qpo, @py and moments Mpy, Mpy
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ensure the continuity of displacement as unknown parameters while edge
moment My comes from the reduction of the axial load Fj on surface AB.
Using the virtual arm of loads zp (see Fig. §) and the rotational spring
stiffness of the flange K, the angular displacement of flange ring owing to
internal pressure can be calculated as:

Ax = K «(zp - Fp — zr - AFr). (6)

In the case of large diameter flanges the flange ring can be regarded as an
elastic ring so its angular displacement calculated according to Egq. (6) can
also be given by using Fig. § with Egs. (7, 8):

Ax = x1BU — X1Bo = [F121 + Fazg — AFrap—

d
— dl’/T(AMB + hsAQB)]Z;Ig_EW (7)

where

AMp = Mgy + Mp1 — Mgy, (8.2)

AQp = Qpu - Qo (8.b)

further on I means the moment of inertia of flange ring cross-section about
the radial axis of symmetry while E means the modulus of elasticity of the
flange material.

Using Egs. (6) and (7), the rotational stiffness of the flange and the
virtual arm of loads can be obtained from the following equations:

ds

K= 15 ©

Fia+ Bz, (AMp+ hsAQB)

Fr Fr (10)

*
zp =

It can be stated on the basis of Egs. (9) and (10) that in the expression of
the loosening coefficient defined by Eg. (3) the effect of integrated part is
expressed only by the virtual arm of loads zp. In accordance with Eg. (10)
to determine the virtual arm of loads zp the internal edge forces and mo-
ments acting at the connection of flange ring should be known. These un-
known internal forces and moments can be obtained from the following
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Egs. (11) and (12) representing the continuity of displacements in the con-
nected cross-section as Fig. § shows.

wipo = MpoWmB + QBoWgB, (11.a)
x180 = MpoXup + Q@BoXgB> (11.b)
wigy = MpyWyp + QpuigB + PP, (12.a)
x18U = MBuXu s + QpyXgs + PXp- (12.b)

The parameters defined in Egs. (11) and (12) are: wipe and w, gy the
radial displacements of point B of the flange ring, while x3p¢ and x;py the
angular displacements at the connecting cross-section. These displacements
as a function of forces and moments acting on flange ring can be calculated
from equations given below:

_ Msod% Qsodsdi

W1B0 = 7 hs+ ~4AE (13.a)
X1Bo = %—23-, (13.b)
W1BU = Aisj—cg’,i‘%hs + 9—%5}-, (14.a)
X1BU = -A%Ugg (14.b)

where Qso, Qsvu, Mso, Msy represent the forces and moments distributed
over unit length of circumference at the centre of gravity of the flange ring
cross-section and they were calculated using the Eg. (15) and (16) under
seating (Fig. 5.a) and pressurized condition (Fig. 5.5). That is:

d
Qs0=-Qpo (;f-) ) (15.a)
S
Fooz d d
Mgg = =5%T _ Qpohs (f) — Mg (-j-) , (15.b)
S S




188 A. NAGY

d d
Qsu = ph (f) - QBU (f-) , (16.a)
s s
. _ Pzt Pz + Fryzr (El_) _
Mgy = dom QBuhs i
d
— (Mpy + Mp1) (i—) ; (16.b)

further on: I means the moment of inertia of flange ring cross-section (as
it was used previously) and A means the area of the flange ring cross-
section while, F stands for the modulus of elasticity of the engineering
material. The Wy and X3, where 8 = (M B, QB, P) parameters appearing
in Egs. (11) and (12) mean the radial and angular displacements of the
integrated part. The radial and angular displacements caused by the unit
bending edge moment Warg, X)rp (see Fig. 6.a), by the unit shearing edge
force Wop, Xgp (see Fig. 6.b) and by the unit internal pressure Wp, X p (see
Fig. 6.c) can be calculated with equations below:

_ﬁ = elﬁjg'l,b}(:l-:g) -+ e (17.6,)

X3 = e3[Cir1)p¥ite) (ZB)—
~ Cair2)s¥isn) (E8)] — esCip¥i(3p) — es, (17.b)

where 7 = (0,1); 7 =(1,...,4); 8 = (MB,QB, P) further:
e1=z5"°. (18.a)

Inthecaseof 8= MB or 8= QB ey =0, if § = P then:

es = 0.125E7 12 — v)o '[d1 + a(zp — a:A)]szl. (18.b)
ez = 2.632(1 — V2)0.25a—0.5d1—045$51’ (18.c)
es=zp". (18.d)

In the case of 8 = M B orﬁ:QBeszo,ifﬁthheq:

es = 0.125E7 12 — v)a "t dic . (18.e)




T 7 7 4
Q, b, C,

Fig. 6. The rotational and radial stiffness of the integrated part in case of uniform
bending moment (a), shearing force (b) and internal pressure (c)
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Table 1
The values of bg; appearing in Eq. (19)

w
-
Ll

=

MB

QB

LSV SR L N
o - o OO O -

0 0.02(2 - v)e?d?

1 Mp + T2
2 0
P 3 0.036(2 — u))d‘;'
E(1-v")""z%4
2 —v)d} 0.134d 0.125
4 (an.sii [(1 = Vz)o.z}ux%s + ST

The 9; and 1/)3- = 513”%@ assign the Schleicher functions and their derivatives.
The € constants appearing in Egs. (17.a) and (17.b) can be calculated by
solving the boundary conditions equations below:

bpi = aijCjp, (19)
where (3,7) = (1,...,4).
The values for bg; used in Eg. (19) can be taken from Table I, while coeffi-

cients a;; can be calculated as a linear combination of Schleicher functions
(20.a) and (20.b). In the case ¢ = (1,2)

ai; = M or(2B) i=(1,...,4), k=(1,...,8). (20.2)
In the case 7 = (3,4):

a/ij :T]z]kgbk((‘f)A) j-—'— (1,...,4), k: (1,...,8), (20b)
where non zero elements of ;5 can be seen in Table 2, further [f1,...,¢8] =

[1,...,%4,%1,...,%4]. In accordance with Eg. (5) on the connected cross-
section of the flange ring at seating condition the shearing force Qpgo and
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Table 2
The non-zero elements of 7;j% used in Eq. (20)

l/2)_0'75&2'5d;0‘5:c

M2 = —Mi21 = M34 = —7N143 = 0.438E(1 ~ B

—71s = —7Tize = —737 = —7ag = 0.166 E(1 — v?) " ad2yS

—7116 = M2s = ~Mi3s = Mar = 0.57TE(L — %) 0527 2 L®

1/2 )_0’25a1'5d;1'5$

211 = 22 = N233 = 244 = L.52E(1 - B

216 = —7225 = 7238 = —n247 = —0.577E(1 — u2)“°‘5a2d;1z%5

~M311 = ~7322 = —7333 = —7344 = 1.41427°°

312 = —7821 = Ma3a = —7asg = 0.76(1 — v7) 70280840571

71315 = 7326 = M337 = 7348 = —0.288(1 — %) Padyz 1P + 2700

~7316 = M325 = —N33s = 73ar = 0.537(1 — 12) 7025084757 270

~Na11 = —T422 = —Tugs = —N4as = 2.632(1 — 1F)0 080571

412 = —T421 = Mazs = Naaz = 2.632(1 — 12)02a08¢ 05,71 4 2,828,715

—7415 = —7426 = —T437 = —7448 = 1074(1 _ 112)-0’25(10'5(1?'51:;2 + le.s

—7116 = 425 = —7438 = Taa7 = 3.722(1 — Uz)o.zsa—o.sd;o.sle + ‘7’21'5

bending moment Mgy can be only calculated knowing the loosening coeffi-
cient of the joint. That is why the precise value of loosening coefficient can
be only obtained through several steps. The solution starts with selecting
the required residual gasket load under pressurized condition Fry > Frnin.
Then using Egq. (12) the shearing force @py and bending moment Mpy
should be determined as the Fig. 5.b shows. Further on choosing arbitrar-
ily starting values for Mpy and Qpg with the help of Egs. (8) and (10) the
first approximation of the loosening coefficient can be obtained. Using the
first approximating value of the loosening coefficient the values of Mgy and
Q o with Egs. (11) can be determined. Repeatedly substituting them into
Egs. (8) and (10) the next approximation for loosening coefficient can be
gained. Following this method, in several steps the precise value of loosen-
ing coefficient can be obtained. The convergence of the method is testified
by a numerical example in Chapter 5.
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4. Stress-state of the Integrated Part

Knowing the loads on flange ring, the stress-state of the integrated part
can be determined. At first the internal system of edge forces and moments
acting on AB calculating surface should be determined (see Fig. 5). In
order to specify the actual stresses both on internal and external surfaces of
the integrated part the system of loads described above should be reduced
on AB' bisecting surface as it is shown in Fig. 5. This method permits
the reduction mistake [8] originating from asymmetry of integrated part
so the equations giving the stress-state of the flange [1, 4] can be made
more precise. Following the above way of thinking the stress-state of the
integrated part can be.determined under seating Egs. (21) and pressurized
conditions Eq. (22). The results are as follows:

6 M
O1RK0 = a2:11:1;0 V1+a?, (21.a)
6.M
O1RB0O = — aZ;};Oa (21b)

Noro ueMlR") , (21.c)

alz? p4[d1 + alz — z4)]|az

_ 2
O1RKU = (GMIRU + (d —aza) ) 1+ a?,

(22.2)
_ [ _8Migy (d1 — az,)?
J1RBU = alz? p4[d1 +a(z - z4)laz |’ (22.b)
Nopy ,  6Migy
T9REU = ( TV ) (22.c)

where in accordance with the symbols used in Fig. 5 01rK0, C1RB0, TopK >
. B
1 rKij» V1RBUs CapKy mean the stresses under seating (0) and pressurized

(U) conditions on the external (K) and internal (B) surfaces of the inte-
grated part in the longitudinal (1) and circumferential (2) directions. The
longitudinal edge moments M; gy, Mgy and the circumferential edge forces
Naro, Nopy acting on AB' bisecting surface of the integrated part can be
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expressed in the following way:

_ Mpoéus + Qpoégsn
MIRO - dl ¥ CY(IB — mA) ’ (23)

Mg ém + Qeuégr +p(Ep — g5(z) — ga)

di +ofz — z4) (24)

Mipy =
where

&s = g1[C(2it2)p¥(2i+1) (8) —T2i+1)p¥(2i42) (#)]e" + galE2i41)p ¥ 2iv2) (B) —
— Tir)pPirn) (B)z — 93(T;p95(2)2"°.  (25)

In Fgs. (24) and (25) the meaning of symbols applied are:

g1 =0577E(1 — v*) %52, (26.a)
g2 = 0.438E(1 — Vz)—0.75a2.5d(1).5, (26.b)
g3 = 0.166 E(1 — v*)"1a’d;, (26.c)
g1 = 0.02(2 — v)(1 — v*)aldi, (26.d)
g5 = 0.125a(d; — az4)(z — z4). (26.¢)

i=(0,1),7=(1,...,4), 8= (MB,QB, P) further

2Eaz’[Mpobars + QBobos]

Nopg = , 27
2R di+alz —z4) (@7)
2Eaz’® [ Mpyéups + b0B + pé
Nogy = Mpudus + Qpybos +pép] +0.5p(d1 +alz-z4)),
d1 + a(:z: - :I:A)
28)
where

8p = TipPi(3), (29)

i=(1,...,4),8=(MB,QB,P).
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Fig. 7. The absolute convergence of the loosening coefficient during the trial-and-error
calculations
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5. Numerical Example

The aim of this numerical example is to represent how to use the calculation
method shown in Chapters 3 and 4 and to prove in practice the convergence
of the applied trial-and-error method. The calculations presented here
refer to a flange joint like the one with dimensions: dg = 1057 (mm),
de = 1009 (mm), dr = 953 (mm), dg = 895 (mm), sp = 24.6 (mm),
s4 = 10.3 (mm), h = 51 (mm), L = 43.5 (mm) seen in Fig. 1. To produce
seating condition at the investigated flange joint there were n = 44 pcs.
bolts with nominal diameter dy = 18.9 (mm) having the resultant spring
stiffness K¢ = 4.05 - 107° (B®). The sizes of the gasket producing leak-
tightness were by = 15.8 (mm), hy = 3 (mm), dr = 953 (mm). During
the calculations the value of operational pressure was p = 1.6 (MPa) and
the required residual gasket load was Fry = 189930 (N). Assuming ideal
elastic gasket material model the loosening coefficient of the flange joint was
determined. The compression spring stiffness of the gasket was regarded
as a constant that is using the elasticity modulus Ep = 700 (MPa), K1 =
9.06- 1078 (%*) was obtained. The loosening coefficient of the joint was
determined by the trial-and-error method shown in Chapter 3. To prove the
convergence of this calculation method in practice in Fig. 7it is presented
that the loosening coefficient trends to the same final value (D = 1.216)
independent of the arbitrarily chosen initial values of AMg and AQ%.
Finally, the preciseness of the equations referring to the rotational stiffness
of the welding neck flange and the stress-state of the integrated part are
proved by Figs. 8, 9and 10. These figures represent the results of the finite-
element investigations used as a control test. In these figures the angular
displacement of the flange ring and the maximum value of Mises stress in
the integrated part can be seen at pressurized condition as a function of
cone-angle (Fig. 8) and the thickness of flange ring (Fig. 9 and 10). In these
figures the continuous curves show the results of analytical, while points
represent the values of finite-element calculations.

6. Conclusions and Possible Directions
to Improve this Model

The numerical results shown in Chapter 5 clearly prove the convergence
of the applied trial-and-error method and applicability of the model. The
method worked out for calculation is applicable at different constructions of
flange joint if its dimensions make possible to regard flange ring as an elastic
ring and the effect of the integrated part can be determined as internal edge
forces and moments by analytical equations. The characteristics of the
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gaskets widely used in engineering practice are the non-linearity, the creep
and stress relaxation under long-lasting static loads significant mainly at
high operational temperatures. Therefore, as a further improvement of the
calculation method published, the possibility of considering non-linearity,
creep and stress relaxation of the gasket when determining the loosening
coefficient should be found. This improvement would allow the use of this
model at joints operating at high temperature.
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