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Abstract 

In the paper the movement characteristics of a special plug moving in the pneumatic pipe 
are described considering forces influencing the plug that acceleration, velocity, and the 
path made by the plug. 

The state of motion in horizontal and vertical pipe sections, respectively, in a bend 
built into the pipe section will be determined. The bend examined in this paper is laying 
in the vertical plane and is connecting a horizontal pipe section with a vertical one. 

Equations describing the movement characteristics are approximative because au
thors simplify the physical process, neglect different things. In the knowledge of the 
movement characteristics the data of the delivering machine can be determined. 

Keywords: Pneumatic conveying, bends, plug flow conveying. 

1. The Movement Equation of the Plug Moving 
in the Straight Pipe Section 

Describing the mathematical-physical model of the plug the limitations are 
made as follows: 

- The linear measure' L' of the plug is not changing. If the cross
section of the pipe is constant, then the 'e:' proportion of the voids volume, 
the' eh bulk density, and the 'ca' material velocity are also constant along 
the plug length, that is: 

e: = const.; eh = const. 

- The friction of the transport gas along the pipe wall is not taken 
into consideration. 

- To accelerate the mass of gas passing through the plug is disre
garded. 

------------.------- ----- -- -------------------
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- The friction force influencing the material is considered to be pro
portional to the weight of the plug both in the horizontal and vertical pipe 
sections. 

- The changing of the gas density passing through the pipe is regarded 
as an isothermal one. 

- The friction factor' k' is regarded constant so that the dependence 
from the Reynolds number is neglected. 

- The air friction is neglected in the pipe section before the moving 
plug. This indicates that on the surface of the plug @ the pressure is 
regarded atmospheric; we are calculating with the value 

P2 ~ Po· 

- The whole cross-section of the pipe is filled by the moving plug. 
- The front and the back area of the plug are perpendicular to the 

movement direction. 

1.1. The Force Acting on the Permeable Plug 

The transporting gas flow passing through the gaps of the permeable 
plug goes under a pressure drop. From this pressure drop rises the force 
moving the plug forward. 

In the Fig. 1 for the elemental pipe tract cut out in an arbitrary place 
of the plug, following Welschof's idea [1] this equation can be described: 

Fig. 1. Plug moving in a straight section of the pipe. Marks of pressures. density, and 
velocities are on the frontal and back areas of the plug, respectively, in the cross
section marked by 'x' of the plug. 
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(1) 

In the equation by 'w x ' the relative velocity is marked in the free cross
section of the volume element cut out in the place 'x' of the tube, that is: 

Wx = Cgx - Ca. (2) 

With the help of the voids volume proportion, that can be determined 
from the note c = (V - Vad)/V connection, the relative velocity 'wx' can 
be converted into the free cross-section of the pipe as follows: 

(3) 

In the Eq. (1) the hydraulic diameter in Barth's [2] view is given by the 
following formula: 

dh = 4 V - Vad = ~_c_d. 
Aad 31 - c 

(4) 

The friction factor 'k' can be determined experimentally and represented 
in function of the Reynolds number. 

In Fig. 2 the change of resistance coefficients of alumina balls named 
AGELON is represented in function of the Reynolds number. The Reynolds 
number will be defined with the formula: 

Re = _1_ (Cg2 - Ca). (5) 
1 c V 

In Fig. 2 is seen that in the case Re > 1000 the friction factor' k' for this 
material can be regarded with a good approximation as constant. 

The change of state of the gas flowing through the plug is supposed 
to be isothermal. It can be described: 

px px px 
/!gx = /!g1 - = {!g2 - = {!gO -. 

P1 P2 PO 
(6) 

The mass flow of the transporting gas in an arbitrary place 'x' of the plug is: 

(7) 

that is the same size within the plug on the front and the back area that is: 

Regarding the mentioned formulas the Eq . (1) can be written so: 

k {!g2P'2 2 
-d --(Cg'2 - Ca) dx. 

h 2 

(8) 

(9) 
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Fig. 2. The change of the factor 'k' in function of the Reynolds number in case of a plug 
with a different length L', (L = 0.4 - 1,2 m) and consisting of alumina balls 
with a diameter (d = 0.8 - 5 mm). Experimental data. 

With the boundary conditions in place x = Oj px = PI and with x L 
Px = P2 the solution of the Eq. (9) is the following: 

2 2 k 2 
PI - P2 = dh (2g2P2(Cg'2 - Ca) L. (10) 

The pressure drop of the gas flow passing through the plug, !:::..P = PI - P2, 
considering that pi - p~ = !:::..p(!:::..p + 2P2) can be written as follows: 

[ 
k 

]

112 
22' 

!:::..P = -P2 + P2 + dh (!g2P2(Cg2 - Ca) L 

The form of the equation without dimension is: 

A * * [*2 k * * (* *) 2] up = -P2 + P2 + dh * 71"1 (2g2 P2 Cg2 - ca 

(11) 

1/'2 

(12) 

The resultant force' Fe' influencing the plug moving in the pipe is composed 
of the force 'A!:::"p' and of the friction force 'Fs', as well as, in case of a 



THE MATHEMATICAL MODEL OF PLUG FLOW CONVEYING 49 

vertical pipe of the plug weight' A L(!h9'. In case of vertical pipe: 

(13) 

In case of a plug moving in a horizontal pipe: 

(14) 

The form without dimensions of the equation after the separation of the 
variables, for a vertical pipe: 

* 2 * dt = dea . 
1r2!:lp* - (1 + p,) 

(15) 

The Eq. (15) can be integrated by the substitution of the Eq. (12). Consid
ering the condition t* = 0; Ca * = 0 for the time without dimension we have: 

(16) 

In the Eq. (16) the independent variable is contained in the expressions 
'AI' and 'T2'. 

The acceleration of the plug can be determined from the relation: 

dCa * * 
aa = 2g-

d 
= 2gaa 

t* 

After the differentiation of the Eq. (16) we have 

The acceleration of the plug in a form without dimensions is: 

(17) 

(18) 

(19) 

The terminal velocity 'caoo ' can be determined by the butting transition 
t* --+ 00 from the Eq. (16) or regarding the condition ~ = 0 from the 
Eq. (13). 

Replacing the previous condition into the equation for the terminal 
velocity 'caoo ' of the plug moving in the vertical pipe we have: 

(20) 
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Replacing the velocity without dimension Ca * = c~oo into the Eq. (12) after 
rearranging the value of the terminal velocity can be determined from the 
relation: 

* * Caoo = Cg2 - [ 
d*(I+ ) ( 1+ )]1/2 h J.L 2 *+ J1 

~1~2kp2*eg2* P2 ~ . 
(21) 

The path made by the plug can be written as follows: 

s = Ca t. * J *d * (22) 

Using the Eq. (18) we have that: 

* - J K [KIT2' AI'] *d * s - - 0 -T + -A Ca Ca· 
2 1 

(23) 

The expression standing on the right side of the equation cannot be inte
grated so we have used an approximate method for the solution. 

2. The Equation of Motion of the Plug in a Bend of 900 

Connecting Straight Pipe Sections 

During describing the equation of motion the case will be treated when the 
length of the plug is more than the one of the bend of an angle 900 that is: 
L > R~/2. 

Depending on the case of the plug three cases can be distinguished: 
a) The moving plug charges the bend. This lasts as long as the frontal 

area of the plug marked @ reaches the central angle 0: = 900
• 

b) Motion in the bend. This lasts as long as the horizontal section 
before the bend discharges. Then the third phase, the discharge of the 
bend begins. 

c) The discharge of the bend. This finishes when the back of the plug 
CD reaches the end of the bend characterized by the angle 0: = 90 0

• 

2.1 The Moving Plug Charges the Bend 

In the scheme demonstrated in Fig. 3 the frontal area of the plug marked 
@ arrived into the bend to the angle position '0:'. 

To determine the friction force of the plug moving in the bend regard
ing the forces influencing the elemental mass in an arbitrary position 'cp' 
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Fig. 3. The charge of the bend of vertical plane. The determination of forces acting on 
the elemental cut away in the angle position 'cp' of the partially charged bend. 

for the elemental friction force the following equation can be written: 

(24) 

The elemental mass of 'dcp' angle: 

dma = RdcpAeh' (25) 

So the Eq. (24) becomes: 

dFsl = J.LRdcpAeh [g cos cp + c~2l' (26) 

After the integration of the equation we can get: 

(27) 

The friction force acting on the plug moving in, the horizontal straight 
section is: 

(28) 
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The sum of friction forces: 

Fs = Fsl + Fs2 = J..LAeh [Rgsin a + Ca 2a + (L - Ra)g] . (29) 

The force component along the path is: 

dFp = dmag sin tp = RAe"g sin tpdtp. (30) 

After the integration of the Eq. (30) we have: 

Fp = RAehg[1 - cos a]. (31) 

The equation describing the motion of the plug can be written in the form: 

dCa 
m a- = Fe = A~p (Fs + Fp). 

dt 
(32) 

The equation can be transformed. It can be written that: 

_ d(Ra) _ Rda 
ca ---- -. 

dt dt 
(33) 

Regarding that the value of 1:J[- is as follows: 

~ (Rda) = R
d2 c:. 

dt dt dt 2 (34) 

With the equations (11), (29), and (31) we have the equation describing 
the charging phase of the bend as follows: 

? [ 2 ]1/2 d-a 1 k da 2 

dt2 = Cl + Le"R dh eg2P2 ( cg2 - Rdi ) L + P2 

_ J..Lg sin a + !L cos a _ a [J..LR (da)2 - J..Lg]. 
L L L dt L 

(35) 

After making into dimensionless form the Eq. (35) can be described in the 
form: 

2 [ 2 ]1/2 d a . k ~ * * * da *2 
dt*2 =C11 + d" * eg2 P2 ( Cg2 - R dt*) 11"1 + P2 11"011"2-

J..L . 1 [* (da) 2 J..L] - - sm a + - cos a - a J..LR - - - . 
2 2 dt* 2 

(36) 
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The ordinary differential equation of the second order is equivalent to the 
two differential equations of the first order as follows: 

1 dex * a=-=z, 
dt* 

*1 z * * * * * 2 *2 d * [ k ] 1/2 
z = dt* = Cll + dh * {!g2 P2 (Cg2 - R z ) 11"1 + P2 11"011"2- (37) 

J.£ . 1 [ R* *2 J.£] - - SIn ex + - cos ex - ex J.£ z - - . 
2 2 2 

The equations (37) can be solved by the Runge-Kutta method. 
The initial conditions are in the junction point in the straight pipe 

section connecting before the bend (regarding the dimensionless velocity 
'[Ca *]a ') the following: 

t*=ta*, 

t* = ta *, 

ex(ta *) = 0, 

z*(ta *) = [Ca *]a. 
R* 

2.2. Motion in the Bend 

(38) 

This period lasts as far as the end Q) of the plug moving in the straight 
section before the bend reaches the beginning of the bend. 

From the Fig. 4 can be seen that the frontal area of the plug made a 
path's' in the vertical section. 

In the bend the value of the friction force can be determined from the 
Eq. (27) by replacement ex = 11"/2; sin(1I"/2) = 1. Its value is: 

(39) 

The value of the force moving in the horizontal and vertical sections calcu
lating from the friction 'Coulomb' we have: 

( 40) 

The force component along the path acting on the pl.ug moving in the 
bend can be calculated from the Eq. (31) by replacement ex = 11"/2. The 
equation is: 

( 41) 
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Fig. 4. Motion in the bend of vertical plane. This phase lasts as far as the back of the 
plug arrives to the beginning of the bend. 

The component along the path in the vertical section: 

( 42) 

The equation describing the motion of the plug is as follows: 

dea ) ) ma dt = Fe = A.6.p - (Fs + Fp) = A.6.p - (FsI + Fs2 + FpI + Fp2. (43 

Regarding the equations (11), (39), (40), (41) and (42), the (43) 
after transformation and rearranging as follows: 

one 1S 

(44) 
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Derivating both sides of the Eq. (44) we can get the following equation: 

k !?g2P2(Cg2 - Ca) dCa 

!?hdh [k 2 ]1/2 dt 
d

h 
(2g2P2(Cg2 - Ca) L + P2 2 

1J.:;r dCa 9 
- TCa dt - LCa . 

After making into a dimensionless form of the Eq. (45) we have: 

d2 * Ca 

dt"'2 -
k * * (* *) dCa - {!QQ !?g2 P2 Cg2 - Ca at" ~ 

dh * [ k * * ( * er;;- !?g2 P2 Cg2 

* dCa * Ca * 
-J.L7rC ----. 

a dt* 2 

(45) 

( 46) 

The Eq. (46) is equivalent to the following differential equation of first order: 

*' aa 
daa * 
dt* 

dCa * * ---a dt* - a , 

k * *( * *) *.€£.Q. dh. !?g2 P2 Cg2 - Ca aa eh 

* * * Ca 
- J.L7rCa aa - T· 

( 47) 

The equations (47) can be solved by the Runge-Kutta method. The initial 
conditions can be calculated from the solution of the Eq. (37) described 
during the charging of the bend mentioned in the part 2.1 from the values of 
the angular velocity and angular acceleration at the angle position 0: = 7r /2. 
If they will be marked [z*]a respectively [Z*']a then: 

t*=tb*, 

t * = tb *, 

C'/(tb*) = R*[z*]a, 

aa*(tb*) = R*[z*']a. 

2.3 The Discharge of the Bend 

( 48) 

This period lasts as far as the cross-section marked CD in Pig. 5 of the 
moving plug reaches the position characterized by the 0: = 7r /2. 

The friction force acting on the cut out elemental part is equivalent 
to the value calculable from the Eq. (26). Integrating the equation between 
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Fig. 5. The discharge of the bend of vertical plane. The determination of forces acting 

on the elemental cut away in the angle position '<.p' of the partially charged bend. 

'0:' and '11"/2' we will have for the value of the friction force acting on the 
mass part moving in the bend: 

( 49) 

The friction force acting on the plug moving in the vertical section is: 

(50) 

The force component along the path in the bend can be calculated from 
the Eq. (30). That is: 

FpI = RA(!hg cos 0:. ( 51) 

The force component along the path in the vertical section is: 

Fp2 = [L - R (i - 0:)] A(!hg· (52) 

The equation describing the motion of the plug is: 

dCa ( ) ( ) ma dt = Fe = A~p - Fs + Fp) = A~p - (FsI + Fs2 + Fp] + Fp"}., 53 
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Regarding the Eqs. (11), (49), (50), (51) and (52) is after transformation 
and rearranging we obtain: 

d
2
a 1 [k ( da)2 2]1/2 

dt2 = C2 + L(2h R dh (2g2P2 Cg2 - Rdj L + P2 + 

JL9 . 9 [JLR (da)2 9 ] + - Sln a - - cos a + a - - - - (1 + JL) -
L L L dt L 

(54) 

_ R7r (da)2 
JL 2L dt 

The Eq. (54) appears after making into dimensionless form as follows: 

d a k * * * * da *2 2 [ 2 ]1/2 
dt*2 = C21 + dh * (2g2 P2 ( C92 - R dt*) 7r1 + P2 7rQ 7r2 + 

JL . 1 [* (da) 2 1 ( )] + - Sln a - - cos a + a JLR - - - 1 + JL -
2 2 dt* 2 

(55) 

JLR* 7r ( da ) 2 --- -
2 dt* 

The differential equation of the second order (55) is equivalent to the fol
lowing two differential equations of the first order: 

, da * 
a=-=z, 

dt* 

., dz* [k * * * * * 2 *2] 1/2 
z = dt* = C21 + dh * (2g2 P2 (Cg2 - R z ) 7rl + P2 7rQ 7r2 + 

JL . 1 [* *2 1 ( )] + "2 Sln a - '2 cos a + a JLR z - '2 1 + JL -

JLR*7r *2 
- -2-z . 

The Eq. (56) can be solved by the Runge-Kutta method. 

(56) 

The initial conditions derive from the solution of the equation system 
(47) describing the motion mentioned under the part 2.2 when the cross
section CD of the plug reaches the beginning of the bend that is s = 
L - R7r/2. 

Let us sign the values [Ca *]s then: 

a(tc') = 0, t* = t/, 
t* = t/, z * (tc *) = [c~:]s. (57) 
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3. Diagrams Showing the Characteristics of the Moving Plug 

Motion characteristics got from solutions of deduced equations are shown 
in Figs. 6-12. As example we have a plug with a length L = 1 m and a 
bend with a radius of R = 0.5 m .. Before the bend the plug starts from a 
horizontal distance s = 10 m and with a starting velocity Ca = O. After the 
bend the motion characteristics of the moving plug in the vertical section 
are shown by the figures up to the path s = 8 m. 

The plug consists of the already mentioned alumina balls 'AGELON'. 
The following data are: 

3 3 k = 5, c = 0.514, (2h = 1128 kg/m, (2g2 = 1.188 kg/m, 

J.L = 0.48, PO = 10
5 

Pa, dh = 2,82 * 10-3 
m, Cg2 = 5 m/so 

In Fig. 6 the change of the resultant force' Fe' is shown in function oftime. 
As soon as the frontal area of the plug arrives to the beginning of the bend 
it moves with a constant velocity with a good approximation, so that the 
resultant force is Fe :::::: O. 

As soon as begins the charge of the bend the resultant force becomes 
negative on the influence of the friction force, the plug begins to move 
decelerately. This results the growing of the pressure drop on the plug so 
that the force acting on the plug grows. The resultant force grows to the 
maximum in function of time, later it begins to diminish. 

The friction force, acting on the plug left the bend, moving in the 
vertical section, is constant, so the velocity of the plug in the vertical 
section will have a value, in order to the resultant force - like the horizontal 
section - be Fe :::::: O. This takes place with the chosen for example data 
after t :::::: 5.5 S. 

In Fig. 7 the velocity 'ca' of the plug is seen in function of the time. 
In the basis of all that told so far the value of the velocity 'ca' is before 
the bend and after the t :::::: 5.5 s is constant with a good approximation 
while the velocity decreases rapidly in the bend. In Fig. 8 the connection 
velocity-time Ca = f(t) is shown magnified in the bend. 

The Fig. 9 shows the acceleration in function of time. From the figure 
may be seen that in the straight section before the bend after t :::::: 1.5 s the 
value of the acceleration is close to zero. The value of the acceleration is 
also zero after the already mentioned t :::::: 5.5 s in the vertical section. 

In Fig. 10 the diagram acceleration-time can be seen magnified in the 
bend. In Figs. 11 and 12 the path made is represented in function of time. 
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Fig. 6. Forces acting on the plug in the pipeline and in the bend conducting from the 
horizontal into the vertical plane in function of time. a)j The frontal area of the 
plug is at the beginning of the bend. b)j The frontal area of the plug is at the 
end of the bend. c)j The back of the plug is at the beginning of the bend. d)/ 
The back of the plug is at the end of the bend. The segments lined vertically 
are proportional to the braking force influencing on the plug. 

Marks 

A = D:7r [m2
] pipe cross-section 

Ao = a~/2 Cg2 * + (a3 Cg2 *2 + 1) 1/2 [-] constant 

Al = a~/2(Cg2* - Ca *) + [a3(Cg/ - Ca *)2 + 1]1/2[_] reduced variable 
A I - -(a )1/2 - Cl3(Cg2'-Ca ') [_] reduced variable 

1 - 3 [Cl3(Cg 2'-ca ')2+1jl/2 

aa [m/s2] acceleration of the plug 
aa * = ~~ [-] dimension less acceleration of the plug 

Cl = - enn - o/r - f [1/s2] constant 

Cl 1 = -11"011"2P2 * - t (ft, + 1) H dimensionless constant 

C2 = - etJn + f [~(1 + JL) - JL] - i(l + JL) [1/s2] constant 

C21 = -11"011"2P2 * - 11"0(1 + JL) + i [(11" 1!J.I - JL)] [-] dimensionless constant 
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Fig. 7. The velocity of the plug in the pipeline and in the bend conducting from the 
horizontal into the vertical plane in function of time. a)1 The frontal area of the 
plug is at the beginning of the bend. b)1 The frontal area of the plug is at the 
end of the bend. c)j The back of the plug is at the beginning of the bend. d)j 
The back of the plug is at the end of the bend. 
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Fig. 8. The velocity of the plug in the bend conducting from the horizontal into the 
vertical plane in function of time. a)/ The frontal area of the plug is at the 
beginning of the bend. b)/ The frontal area of the plug is at the end of the 
bend. c)/ The back of the plug is at the beginning of the bend. d)/ The back 
of the plug is at the end of the bend. 

d [m] diameter of the particle 
dh [m] hydraulic diameter 
d * - dh H dimensionless hydraulic diameter h - L 
Fe [N] resultant force 
Fp [N] force component along the path 
Fs; FsI ; Fs2 [N] friction force 
g [m/s2

] gravity acceleration 
Ko = 2 1/" H constant 

0:2 (0:3) -

Kl = ~ 
0:0 [-] constant 

K-~ 
2 - .401/KI [-] constant 

k [-] friction factor, experimental qata 
L [m] length of the plug 
ma [kg] material mass of the plug 
mg [kg/s] gas mass flow 
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Fig. 9. The acceleration of the plug in the pipeline and in the bend conducting from 
the horizontal into the vertical plane in function of time. a)1 The frontal area of 
the plug is at the beginning of the bend. b)1 The frontal area of the plug is at 
the end of the bend. c)1 The back of the plug is at the beginning of the bend. 
d)1 The back of the plug is at the end of the bend. 

P [Pal pressure 
* =L H dimensionless pressure P Po 

PO [Pal atmospheric pressure 

PI [Pal pressure on the surface Q) of the plug 

P2 [Pal pressure on the surface @ of the plug 

px [Pal pressure on the place marked 'X' of the plug 
b:.p [Pal pressure difference 
b:. *-~ P - Po H dimensionless pressure difference 

R [m] radius of the bend 
R* - E. - L H dimensionless radius 
Re H Reynolds number 
s [m] path 
s* s H dimensionless path -y; 
t [s] time 
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Fig. 10. The acceleration of the plug in the bend conducting from the horizontal into 
the vertical plane in function of time. all The frontal area of the plug is at the 
beginning of the bend. b)/ The frontal area of the plug is at the end of the bend. 
c)/ The back of the plug is at the beginning of the bend. cl)/ The back of the 
plug is at the end of the bend. 
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Fig. 11. The path made by the plug in the pipeline and in the bend conducting from the 
horizontal into the vertical plane in function of time. a)1 The frontal area of the 
plug is at the beginning of the bend. b)1 The frontal area of the plug is at the 
beginning of the bend. c)1 The back of the plug is at the end of the bend. d)1 
The back of the plug is at the end of the bend. 
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coordinate of length within the plug 
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a [grad] angle 
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Fig. 12. The path made from the plug in the bend in fUllction of time. all The frontal 
area of the plug is at the beginning of the bend. b)1 The frontal area of the plug 
is at the end of the bend. ell The back of the plug is at the beginning of the 
bend. d)1 The back of the plug is at the end of the bend. 

1/ [m2 /s] kinematic viscosity 

f2 [kg/m3
] density 

* ~ H dimensionless gas density f2g = go 
7r H Ludolphian number 

7rO = 1 H constant 
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Indexes: 

a material 
ad material particle 

e resultant 
g gas 
h bulk, hydraulic 
o atmospheric state 
x refers to the cross-section marked by 'x' of the plug 
c¥ angle 
1 refers to the cross-section CD of the plug 
2 refers to the cross-section @ of the plug 
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