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Abstract 

The paper details the different types of system variables. A system vector is composed 
which is suitable to describe the whole system and, at the same time, satisfies a Markov 
type condition. Accelerated 'tests, pattern recognition methods and maintenance opti­
mization are shown to make use of this approach. 
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1. Introduction 

The present paper sets out to give a'general mathematical framework for 
the theoretical description, statistical inference and optimal control of op­
eration, deterioration and maintenance processes. 

The approach applied in the paper is a synthesis of earlier works of 
the authors in, the field of system modelling ([1], [2], {3],[4], [5], [6]). 

The central idea of the model is a choice of the system state vector in 
such a way that from its earlier observed values it 'remembers' only the one 
observed last, and the rules governing its behaviour are time independent. 

With this way of description the operation and/or reliability of a wide 
range of different products, complex systems can be characterized in spite 
of many, in itself also very complicated subproblems. 

2. Dynamic Model of the Operation, Deterioration 
and Maintenance Process 

Examining the reliability of some industrial products or complex systems 
we try to describe possible system states as completely as possible. 

lLecture presented at the Advanced Studies on Reliability Engineering, 3-7 September, 
1990, Budapest, Hungary. -
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Independently of the given object it is reasonable to distinguish the 
following types of states: 

- quality state characterizing the ability to perform the proper job; 
- operational state describing the realization of the proper job and sub-

ject to quick changes in any instant; 
inner state consisting of slowly changing inner parameters connected 
to the components of the system. 
During the operational phase the objective of influencing, controlling 

the system is to maintain a prescribed value of some reliability character­
istics, or to reach an optimal state, e.g. concerning the accessibility, avail­
ability of the system, or the minimum of the life cycle cost, etc. 

In order to give an exact description of the system structure and 
operation we introduce the following variables: 
u- the vector of external effects influencing the system. These factors 

constitute the policy of operation. They usually mean either stress or 
control. These two types of external effects are, however, not always 
clearly separable from each other. 

e- the vector representing the stress type external effects. 
d- the vector representing the control. 
y- the vector of parameters characterizing the technical state of the sys­

tem (quality, aging). These parameters are chosen and observed by us. 
It depends on basic properties of constituting elements, on the inner 
structure of the system, on the operational policy (stress and control). 

x- the vector giving a satisfactory representation of inner physical state 
characteristics from the point of view of the given model. We choose 
it in such a way that it provides the necessary information for the 
description of the inner physical, chemical, etc. processes. 

v- the vector representing all output signals characterizing the functional 
operation of the system. Its undesirable values represent erroneous 
operation, while the trend of its trajectory may point to functional 
disturbances. 

b- the vector containing the full set of parameters of the system (inner 
parameters, basic properties of components). It is not directly depen­
dent on x, only on the long-term effect of operation. 

w- the vector representing the operational state of the system. 
We introduce the notation 

( TT T)T z= w ,b ,u . 

We suppose that the operation of the system is described for any t > 0 by 
the relations 

z(t) = 'l'(z(to);u(s),O ~ to < s < t) , (1) 
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3(z(t)) = 0 , 

A(z(t)) ::; 0 , 
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(2) 

(3) 

where 3, A are appropriate functions, and relations (2)-(3) describe the 
hypersurface of feasible system states at time t, while W is an appropriate 
operator, and relation (1) characterizes the time behaviour of the system. 

It follows from (1)-(3) that the response to any feasible control policy 
depends only on the initial state and the control applied but not on the 
time when we begin to apply the given control. This means that the input­
output relation is independent both of the time and the history preceding 
the given system state. 

We remark that if 

W(z: (to);u(s),O::; to < s::; t) = 

= z(to) + W(z(to))(t - to) + o(lIt - toll) , 

where wO is an appropriate function, then (1) can be replaced by the 
differential equation 

z = W(z) . 

The parameter vector y intended to qualify the given device is formed on 
the basis of technical and economic considerations. The fact that the device 
is faultless, i.e. the system is able to perform all of its prescribed functions, 
will be defined in such a way that the vector y stays within a given domain. 

From the point of view of qualification of proper operation we have to 
distinguish between failure (y leaves its tolerance domain) and erroneous 
operation (w leaves its tolerance domain but y does not). Diagnosis is 
actually performed by means of a statistical test: if the phenomenon turns 
up several times in a given time interval, then we accept failure as hypo­
thesis. There may exist, however, reversible failure when the system returns 
into the tolerance domain by itself and does not show any kind of failure 
for some time. This latter case is hard to be handled by a hypothesis test. 

The vector x, describing the inner physical state of the device, changes 
in time according to the operational policy u - control and environmental 
effects - and to the complete set of inner parameters contained in b. 

The change of state vector x has in turn an effect on the inner pa­
rameters of the system, which after all leads to a change in the functional 
(technical) parameters, therefore also in the quality of the system. 

The connection between the full set of inner parameters and the qual­
ity parameters is described by the relation 

yet) = K(b(t)) , (4) 
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where the function 1'i. is a representation of the technical structure and 
operational principle of the device. So 1'i. is considered to be independent of 
both time and individual inner parameter values of the given object. With 
other words: quality is equal to inner parameter values substituted into 
structure. 

We choose the controllable part of u (the actual policy of operation) 
in such a way that some functionals of argument w or y are optimal ac­
cording to some predetermined assumptions, e.g. maximum life cycle or 
accessibility, minimal operational cost. 

3. Stochastic Version of the Model 

The processes taking place within the device can be very complicated de­
pending on the structure of the device and the components of the param­
eter vector b. The change of state vector x can be often described only 
through stochastic relations 

If we allow the system variables to be random, then z(t) will be a 
stochastic process. Its nature is described by relations (1)-(3). 

(2) and (3) in the stochastic case mean that the state space is actually 
limited to a hypersurface. 

(1) means that if we have several observations on a trajectory, the 
process will later 'remember' only the preceding one. Together with the 
given form of time independence this defines a homogeneous Markov pro­
cess. Under mild regularity assumptions z(t) is specified to a diffusion pro­
cess. The statistical inference and optimal control of such processes have 
an extensive literature, see e.g. the classical work [7]. 

4. Accelerated Reliability Tests 

Let the life time distribution function of a device operating under stress 
level e = (et, ... ,ek) be F(tj e). 

The main objective of accelerated reliability testing is to make infer­
ence on the life time distribution under usual (nominal) stress level F(tj eu) 
from observation of the life time under an accelerating stress level ea. The 
result of the increased stress level will be 

F(tjell) :5 F(tj ea) . 

If F(·je) is a member of a parametric family G(·j8), acceleration can be 
described by the dependence of the parameter 8 on e, i.e. 
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B(e) = ,p(e; a,,8, ... ) , 

where a,,8, . .. are constants to be estimated. 
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The estimation of the constants in an assumed or known model can be 
based on the regression analysis of observed life testing data under different 
test levels. 

However, one cannot avoid making a decision on the hypothesis that 
the physical model of deterioration does not change with the increased 
stress level. 

This problem is simplified by the Markov property; which in this 
case means that the relia.bility of the system depends only on the lost 
amount of operational reserve irrespective of the way it has been lost. With 
other words: the damages are linearly accumulated, the system does not 
'remember' . 

5. Pattern Recognition Methods in Reliability Forecast 

When forecasting reliability characteristics we have to give an estimation 
of the future trend on the basis of the history of the device. 

The stochastic model of the problem is exposed in the sequel. 
Suppose that at t = ti (i = 0,1,2, ... ,n) we have observations Wj 

on the vector w describing the operational state of the device, and we have 
also the empirical distribution functions Ra(w). We have to determine 

Ln+;(~) = P(IW n+; - wul < ~) , 
where 
W u- vector of the nominal (usual) values 
~- tolerance bound 

The application of pattern recognition methods is justified by the fact 
that we have no satisfactory information needed to apply parametric mul­
tivariate statistical methods (e.g. regression. analysis). This is usually the 
case in practical situations. Therefore non parametric classification meth­
ods must be preferred. 

In order to forecast by means of pattern recognition methods we ob­
serve w at the initial time or time interval.and from the observed data we 
compute characteristics which are essential from the point of view of the 
failure or deterioration process. On the basis of these characteristics we 
can now classify the given device and we forecast according to the class. 

It is possible to forecast a physical characteristic, quality parameter, 
complex reliability feature or the event that the operation process does not 
leave the tolerance domain. 
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The methods facilitating the proper choice of essential parameters 
and classes as well as the decision on the classification of the given de­
vice belong to the mathematical pattern recognition (statistical classifica­
tion). 

The problem is not solved but made somewhat easier that we have 
actually a multidimensional Markov (diffusion) process. The observability 
is anyway i.ncomplete because of the inner parameters contained in b. This 
incompleteness can be more or less serious according to the structure and 
the measurement methods applied. 

6. Optimization of Maintenance 

Suppose that the time behaviour of a given system is described by the 
vector valued stochastic process z(t). At given discrete times t = tl, t2, .. ' 
we observe z(t) and make corrective interventions (if necessary) in order to 
keep the system inside the tolerance domain. The intervention d(tj) has 
the cost if>(d(tj)). We want to optimize the intervention policy, i.e. 

if> is supposed to mean costs or time losses involved by technical mainte­
nance (regulation, change of units, etc.). 

We have an optimal control problem relating again to a Markov (dif­
fusion) process possibly with incomplete observations. 

7. Some Closing Remarks 

We demonstrate some system variables introduced in Chapter 2 on a car. 

y- acceleration, braking distance, motor overwarming 
vv- motor temperature, speed 
b- corrosion, deformation 

In certain cases it may happen that vv = (xT, v T? or u = (eT, d T? 
Nevertheless, this does not hold in general. 

As we can see, the introduction of the vector y apart from b is not su­
perfluous. The observation of the set of parameters b completely describ­
ing the system would be too difficult, even practically unaccomplishable, 
therefore y, chosen by us, does not necessarily carry full information on 
the proper operation of the given system. (Some authors fail to distinguish 
between the set of observable and that of actually observed parameters.) 
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There are cases when the system 'remembers' how it reached a given 
state, and later developments also depend on the earlier history. As an 
example, we can mention the process of neutron adsorption in a nuclear 
plant. 
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