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Abstract 

Group transformation theory and group representation theory are very effective tools 
for motion estimation and deriving invariants of an image. We study the properties of 
'the projection system which enables the description of 2D images, their motions and 
geometrical distortions in terms of group transformations. We consider the decomposing 
image function in the special orthonormal basis containing Krestenson functions. Two 
types of transformation are investigated: rotation and scaling of an image. 
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Introduction 

The subject of this paper is referred to as motion analysis and camera ge
ometrical calibration. Motion analysis capabilities are required for robotic 
visual guidance systems, visual inspection systems, autonomous aircraft 
landing and navigation systems and' for many other image processing and 
computer vision applications. We measure 'motion' by the estimation of the 
parameters of a transformation that relates scene object or (perhaps as an 
intermediate step image) point locations. We use the geometrical model 
of the perspective projection, (p-p) transform described by SCHALKOFF 

(1989). Our technique is in accord with the approaches based on the appli
cation of the algebraic forms for pattern recognition (Hu, 1962; SADJADI 

and HALL, 1980). Unlike the approaches using the statistical properties of 
an image (or - the properties of an ensemble of images) and performing 
the spatiotemporal interpolation of image perturbations, in our technique 
the motion is estimated thJ;ough the determination of precise geometric 

IThe paper was written when Gladkova 1. had the scholarship at the Technical University 
of Budapest (at the Institute of Precision Mechanics and Optics). 



238 I. L. EROSH and I. G. GLADKOVA 

parameter values. The mechanism of our approach contains 4 main steps: 
(1) The description of image transformations and geometrical distortions 
in terms of group theory and group representation theory. (2) The transla
tion of an image function is defined in an Euclidean space - 'f' to that is 
defined on the correspondent group tranformation elements set - 'F'. (We 
discuss the choice of the special projection system in the image plane which 
enables the performance of the translation: I -+ F) (3) The decomposing 
of the original and perturbed image functions I and F in the orthonormal 
basis proposed by VILENKIN (1965). To be concise in our paper, we do not 
explore this basis extensively. We must only mention that good results are 
available when Krestenson transformations are considered. (4) The match
ing of I and F in the spectral space with analysis of the correspondent 
phases and modules. 

Key Concepts of Group Transformation 
and Group Representation Theories 

Applied to Image Perturbations 

Recalling the p-p based geometric model we consider the motion of an 
object point in physical coordinates from Xo to x~. This yields a 3-D motion 
vector (x~ - xo). This 3-D motion vector has a 2-D image plane projection: 
the form b(Xi) = Xi - xi identifies the image plane motion. The 2-D affine 
transform is used to model small image perturbations (SCHALKOFF, 1989; 
EROSH and MOSCALEV, 1985). For an image function of the form I(x) 
where 

(1) 

the general' affine transformed version of this function is denoted by 

(2) 

where 
(3) 

Thus, the affine transform represents a linear transformation of the image 
plane onto itself. Expanding Eg. 3: 

(4) 

In Eg. 3, A is the homogeneous affine transform matrix, and b is the trans
lating vector. Two well-known versions of the homogeneous affine trans
form (b = 0) are discussed in our paper. 
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Magnification or dilation: 

A = [~ ~] 
and rotation about the origo with an angle 9: 

- sin 9] 
cos9 
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(5) 

(6) 

Note that b = 0 if global coordinate system (e. g. the coordinate system of 
the scene) is coincident with the image plane - centric systems. Basically, 
the origin of the image - plane coordinate system is placed in the 'center of 
mass' and moment invariance properties are used to obtain this coincidence 
(Hu, 1962; EROSH and MOSCALEV, 1985). 

The case of Eq. 5 is available when optics is not tuned and raster 
geometric distortions take place. Linear operator A describes the element 
of the group of the hyperbolic rotation in the case of Eq. 5 and the element 
of the group of the trigonometric rotation in the case of Eq. 6. 

Let us denote a transformation element by g, the set of transformation 
elements by G, g E G, group operation by *. G is considered to be a group 
if conditions (7')_(7111

) are fulfilled. 
1. Association of the group operation: 

(7') 

2. Existence of the unique element eEG, called the unitary element so 
that 

'V g EGg * e = e * g = g is true. 

3. Existence of the unique inverse. element g E G so that 

-1 . 
g * g = e IS true. 

(7/1) 

(7111
) 

If the condition (7/1/1) is fulfilled, a group of transformations is called 
commutative: 

4. Commutative law: 

'V gl ,g2 E G g1 * g2 = g2 * g1· (7/111) 

Both groups are commutative. 

Linear operator establishes the correspondence between old [~~] and new 

[ ~~] coordinates of the perturbed point location. 
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Discrete trigonometric rotation is defined by discrete parameter ek: 

(J,: = (27r/n) X k (8) 

with k ~ n. 
If we regard the group elementga as the image rotation with angle 

0: = 27r/n, we can denote: 

Hence, 

g2 = 9 * 9 = g2 

k 
gk = 9 * 9 * ... * 9 = 9 . 

n 
9 =e. (9) 

According to the group representation theory (VILENKIN, 1965), the com
mutative group has a one-dimensional representation r. Let us consider: 

(10) 

From (10) we have: 

'Y = exp (j . 27rk/n), k = 0,1, ... ,n - 1. (11) 

If we set a number of frequencies w = 0,1, ... , n - 1, we can get the set of 
the linear representations. ~hus, for n = 5 we have: 

fw\ e 9 g2 g3 g4 

fo 1 1 1 1 1 
fl 1 '1/11 '1/12 '1/13 '1/14 

f2 1 '1/12 '1/14 '1/11 '1/13 

f3 1 '1/13 '1/11 '1/14 '1/12 

f4 1 '1/14 '1/13 '1/12 '1/11 

The element 'I/1a of the representation rw can be written in the form: 

.1. ( • 27r0:) 
'f'0I = exp J -:;;: , (12) 
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Fig. 1. Image transformations examples 
a) case of trigonometric rotation 
b) case of hyperbolic rotation 
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The representation space is an orthogonal direct sum of the non
equivalent in pairs, finite-dimensional unitary irreducible representations: 

n 

r(k) = L rw(k). (13) 
o 

The result of a trigonometric rotation is shown in Fig. la. 
The result of a hyperbolic rotation is plotted in Fig. lb. The linear 

operator directing the group transformations depends on one parameter -
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a (EROSH and MOSCALEV, 1985). The representation of the hyperbolic 
rotation has some singularities. Since the group is non-compact, the repre
sentation space is the continuous direct sum of the nonequivalent in pairs, 
irreducible representations: 

00 

r(t) = J rw(t)dt 
00 

with w - frequency. 

Design of Special Projection System Allowing 
Simple Description of Image Transformations 

(14) 

To perform the translation of the function defined in the Euclidean 
space into the function defined on the group elements, set of the correspon
dence between classes of the conjugate stational subgroups and the points 
of the homogeneous space is established. By Fig. 2a,b related to the case 
of the trigonometric rotation one can understand the basic principles of the 
translation. By choosing the homogeneous space (the circle from the set 
of concentric circles) we obtain the class of conjugate stational subgroups 
related to the space points. Having projected the image to that defined on 
the homogeneous space points, we get the image function defined on the 
group elements set. 

The projection lines belong to the set of the homogeneous spaces of 
the group Q such that 'r:/ 9 E Q, 9 E G (G - the current group) it is true: 
q * 9 = g * q and any two points of Euclidean space can be transformed into 
each other by an element belonging to the group {q * g}q,g. 

Similarly, the homogeneous space for the group of hyperbolic rotation 
consists of the equilateral hyperbolas (Fig. 2b). 

VILENKIN (1965) proved that the complete set of the non-equivalent 
in pairs finite dimensional irredicable representations of the group elements 
constitutes the orthogonal basis for decomposing the function defined on 
the group elements set. He also showed that the group parameters can 
be estimated using the spectral representation of the function. We use his 
conclusions for our purposes of the motion estimation and raster distortion 
correction. 
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Fig. 2. Projection space 
a) case of trigonometric rotation 
b) case of hyperbolic rotation 
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Practical Procedures for Deriving Invariants 
and Parameters Estimation of Image Positions 

Let us consider the industrial situation when objects are transported by the 
assembling table or by conveyer. The objects can rotate and can be over
tuned?? 'l;'his situation often takes place in robotic assembling production 
or when the visual inspection is performed. 

F(tf) , 

Fig. 3. Projection of image function onto 53-sid~d regular polygon 

In Fig. 3 one can see the projection of the object onto the n-sided regular 
polygon, n = 53, 0 is the 'center of mass' and the center of the· circles 
constituting the homogeneous space (Fig . .fa). The shape of the object 
along the line of projection Ck is characterized by the specially defined 
function ~(Ck). This function may be defined as the integral sum of the 
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non-zero values of image function along the line of projection: 

ipk = ip(Ck) = J /(Xi) 
.ck 
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(15) 

or for instance, as the maximum length of the non-zero continuous region 
of image function along the line of projection, etc. Let us assign the value 
of function ip(Ck) to the n-sided regular polygon. In Fig. 3 binary image 
is used and function ip is defined according to (14). Thus, wft perform the 
translation and obtain the image function defined on group elements set: 
ip(k). Object rotations yield the discrete rotations of the n-sided regular 
polygon and the automorphism is available. The above expression (ll) 
describes the system of the group elements, being itself an orthonormal 
basis for a spectral representation of the image function ip(k), k - group 
parameter. We use a prime number to choose n - thus, we obtain the 
singular value of the angle ®k. The system (ll) (if n is a prime number) 
coincides with the system of the Krestenson functions (EROSH, 1981). 

Spectral representation for ip (k) is: 

n-l (2) 
Sew) = L ip(k) exp j: wk = 

k=O 

n-l (2) n-l (2) 
= L ip(k) cos ~wk + j L ip(k) sin ~wk = 

k=O n k=O n 
(16) 

= A(w) + jB(w), 

with w, k = 0, 1,2, ... , n-l, w - frequency, k - discrete angle of rotation. 
Spectrum (16) has a complex value and is characterized by modules: 

IS(w)1 = ,; S(w)S(w) = ,; A2(w) + B2(w) (17) 

and phase: 
rp = arctg[B(w)/A(w)] (18) 

Modulus is invariant under image rotation and is used for the identification 
of the objects in the camera field of view. Phase contains the information 
about object rotation related to some normal position. Let us have the 
spectrum (16) for the base position: So(w) = Ao(w) + jBo(w). Then the 
phase of the normal position is defined as follows: 

rpo = arctg[Bo(w)/Ao(w)]. (19) 
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Note that the frequencies in (19) and (18) are equal. Single-value calcula
tion of cp, cpo is possible using the signs of the real and imaginable parts in 
(18), (19). 

The rotation of the object for discrete angle kl yields the circle offset 
of the function <p(k) for kl takes: <p(k + kl), kl = 0,1, ... , n - 1. The 
relationship between the spectral representations of <p(k) and <p(k + kl) is 
given by . 

S<I>(k+kt}(W) = S<I>(k)(W) exp ( _j2: Wkl) = 

= IS(w)1 exp (;-2: (cpo - wk1)). 

From (20) we have: 

(21) yields: 
cp - CPo 

kl = mod (n). 
W 

In (22) n is the modulus of the congruence. 

(20) 

(21) 

(22) 

When robot teaching is performed, we define the frequency Wm cor
responding to the maximum value of the spectral representation of the 
function <P(k), this frequency should be used at the working stage. It is 
also necessary to calculate the phase of the spectral representation of func
tion <P (k) being acquired in the normal position of a scene and chosen by 
a teacher. 

The Practical Analysis of. 
Image Distortion Parameters 

If optics of a sensor is not tuned, different geometric distortions arise. 
Examples of geometric distortions are shown in Fig. 4. To achieve the 
geometric distortion correction, we require to model the appropriate trans
formation of an image. There are lots of techniques, described in litera
ture (SCHALKOFF, 1989; KARARA, 1980) that use the set of correspondent 
points to approximate the transformation by different polynomial models. 
We extend our group representation-based approach to the problem of the 
geometric distortion correction. In the paper we consider the case of the 
scale transformations (Fig. 4b), which are described by the group of the 
hyperbolic rotation. As with the case of an image rotation, 4 entities are 
required. We already pointed out the properties of the group of hyperbolic 

""------.-~ .. -------------------------- --------------~---
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111111111 
b) 

a) 

tI 1 
n T\ ,... 
,.... i""" 

t7 ..- .Q '-l .d 
c) d) 

Fig. 4. Examples of raster geometric distortions 
a) original image 
b) scale distortions 
c) pincushion distortion 
d) barell distortion 

rotation and considered the homogeneous space and the projection system 
for it (Fig. lb, 2b). 

The representation space of the hyperbolic rotation is the continuous 
direct sum of the non-equivalent subspaces yielding the spectral represen
tations of the image function defined on group elements set in the form of 
Fourier integral: 

00 

~(o:) = J F()..)ej).ad)", (23) 
-00 

(24) 
-00 

In industrial systems we use the test objects and consider finite
dimensional, discrete image function ~(k) of them. Given the step .6.0: 

for the group parameter 0: we obtain the discrete parameter O:k: 

(25) 
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! 

~------------------. 

Fig. 5. Projection of image functiol1 onto hyperbolas 

and define the bounds for k : k = -N, N. Thus, the field of view (Fig. 5) 
is restricted. Practically, the values of N, b.o: should be chosen so that in 
any case of a distortion parameter k is an integer. Given A.n equal with 

n = -N,N (26) 

we establish the relationship: 

N 

F(A.n) = b.o: L <.P(O:k)e-i21TAnltk, (27) 
k=-N 

N 

<.P(O:k) = b.A. L F(A.n)ei21TAnltk. (28) 
k=-N 

(27) and (28) are the discrete versions of (23) and (24). Since function 
F(A.n) has a period 1/ b.m, we may demand: lA.nl < 1/2b.m 'r:/ n E 
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[-N, NJ and use for An the interval of change [O,l/.6.mJ instead of in
terval [-1/2.6.m, 1/2.6.mJ. Given An = 1, we obtain 0 < .6.0: ~ 1. From 
(27) and (25) we have: 

N 

F(l) =.6.0: L 4?(O:k)e -j21r~ak. (29) 
k=-N 

There is the relationship between spectral characteristics of original (prime 
0) and distorted (prime ko) images, with An = 1: 

(30) 

The difference of phases r.p and <po is used to obtain group parameter: 

(31) 

The number of projection lines in a sector [-N, NJ should be enough to 
acquire explicit image functions of the test object used for calibration. Let 
us have (2P + 1) lines to obtain the origin image function with required 
explicity. So we can calculate the sector /30 (Fig. 5): 

1r ( -2~a ) /30 = 2" - 2 arctg e p. (32) 

When the test object is distorted, the corresponding points of hyperbola 
shift up or down for T positions and sector /30 is expanded to that defi!1ed 
as follows: 

/3 - 11" 2 t (-2~a(p+T)) - 2" - arc g e . (33) 

The overall number of points is equal to : 

2N + 1 = 2(p + T) + 1. (34) 

The values of p and T are chosen according to the explicit of calibration 
we want to obtain. 

Conclusions 

The computational procedure used to obtain both motion and geomet
ric distortion parameters with the above mentioned techniques is often 
referred to as camera calibration. The general calibration scheme repre
senting group theory-based approach is shown in Fig. 6. We use the test 
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Test object Scene 

"\'"' ~ 
'-/ .. Q 

l Invariant 1 + ! Teaching 1 initial angle 1 '1:: Geometric 

Marker 

III ---. Invariant 2 + Calibration Teaching 2 initial angle 2 

Fig. 6. General scheme of calibration 

image consisting of non continuous concentric circles for geometric distor
tion calibration. 

There are different applications where we have achieved good result in 
the explicity using the described technique: - In the land remote sensing 
one can estimate the distances between important points matching the 
acquired image and the map in the spectral space by (20), (27). - In the 
robotic assembling manufacturing the position of objects can be defined by 
calculation the phase according to (22). 
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