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Abstract 

A new numerical integrating ·method is compared in this paper with the most popular 
two-level schemes, as the Crank-Nicolson (C.-N.), the Galerkin (G.), the EulerCauchy 
(E.-C.), the Backward Difference (B.-D.), and the 4th order Runge-Kutta (R-K.4). This 
procedure, the Weighting-Function Method (W.-F. M.) uses not a constant weighting fac
tor (like 1/2 in C.-N. scheme) but a weighting function. The weighting function depends 
on the actual problem and on the time step. The approximating weighting function is 
calculated in the first few steps until it reaches a constant value; after that, the calculation 
will be continued using this constant weight. The W.-F. M. was tested on different simple 
examples, and was compared with the analytical solution and with the results of other 
schemes. The W.-F. M. has the best accuracy. 

Keywords: numerical method, temperature fields calculation, differential equations, finite 
element method, heat-flow network method. 

1. Introduction 

After having discretized (either by finite element or by heat-flow network 
method) the equation of heat conduction in space co-ordinates, the sys
tem of first-order differential equations (S.D.E.) to be solved becomes the 
following form: 

C . T(r) + K . T(r) + KA . [T(r) - TAl = Q, (1.a) 

where T(r) is the vector of the temperatures, C is the (diagonal) heat
capacity matrix, K is the conductance matrix, KA is the conductance ma
trix of the boundary conditions, TA is the ambient temperature, and Q is 
the vector of heat sources. 

The initial values to the S.D.E. (1.a) are 

T(r = 0) = To. (1.b) 
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Various methods are known for the numerical integration of the 
Eq. (1.a). The most favourable two-level schemes have the following form: 

(2) 

where k denotes the k-th time step, Tk+l = T(rk + Dor) are the unknown 
temperatures at the end of the time step, and Tk = T(rk) the known 
temperatures at the beginning of the time step. At the beginning of the 
calculations is: Tk = T(r = rk = 0) = To, in other time steps Tk means 
1Jle temperatures at the end of the previous time step, K = K + K A , 

Q = Q + KATA , and "I is the weighting factor. 
We have to solve the items in the S.D.E. (2) one after other until 

the increase of temperatures becomes less than a given value or the time 
domain is over. The accuracy of the calculation depends not only on the 
chosen time step but on the chosen method, too. 

The weighting factor in the S.D.E. (2) differs from method to method 
e.g.: 

"I = 0 - Forward difference schemes (Euler-Cauchy), 
"I = 1/2 - Crank-Nicolson schemes, 
"I = 2/3 Galerkin method, 
"I = 1 Backward difference schemes. 

Stability, oscillation and accuracy determine the time step to be 
chosen for all methods [1, ... , 6]. The time step depends on the largest 
eigenvalue (Amaz) [3]: 

"1=0 
"I = 1/2 
"I = 2/3 
"1=1 

no oscillation, if 
Llr::; l/Amaz , 
Llr::; 2/Amaz , 
Llr::; 3/Amaz , 
Llr::; 00 , 

stable, if 
Llr ::; 2/Amaz , 
Llr ::; 00 , 

Llr ::; 00 , 

Llr ::; 00 • 

On the basis of the comparison of the solutions a lot of different 
problems [4] comes to the following conclusions: 

- the time step is the smallest, the results have the less 
accuracy, 

"I = 1 - the most stable, but less accurate than the methods below, 
"I = 1/2 - the truncation error is O(Dor3), (in all other cases O(Llr2», 

in some cases it is perhaps the most accurate method, but it 
tends to oscillate, 

"I = 2/3 - stable, good accuracy for a wide range of time steps. 
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[4] proposes to use I = 2/3 for the first time steps and for the con
tinuation I = 1/2 

[1] finds the Galerkin process significantly better for the treatment of 
fast-varying boundary conditions than the usual Crank-Nicolson scheme 
in matters of short time accuracy. 

Three different techniques are presented in [5] to treat the oscillations 
of the case I = 1/2. It states that the Crank-Nicolson scheme with a simple 
averaging process (using the average of the temperatures at the beginning 
and end of the first time step as a new, modified initial condition and using 
the Crank-Nicolson scheme for the calculation) seems to be an effective 
way of dealing with oscillations. 

The number of freedom influencee the time step to be chosen [5]. 
If the number of degrees of freedom is large, it is not convenient to 

decrease the noise by reducing of the time step extremely [5]. 
The method given in [8] shows a weak analogy to the weighting func

tion method. 
In [9] there are a lot of reasonable points of view. [10] has found 

I = 0.878 as the best weighting factor. 
[7] uses a weighting function (like in this paper Chapter 2.1), too, 

which depends on Fourier number. 
In practice we have no data about the accuracy of the results since 

we know neither the analytical solution nor the largest eigenvalue. 
To overcome some of the difficulties we do not use a constant weight

ing factor (like 1/2 in C.-N. scheme) but a weighting function. 

2. The Weighting-Function Method 

In order to allow the comparison with the analytical solution the method 
is derived for problems of single-degree of freedom systems. Similarly, this 
simple case we have made is a generalization for N -degree of freedom, in 
which the analytical solution is substituted with more accuracy solution 
produced by a usual numerical method (like C.-N.) but with a reduced 
time step. 

2.1 Single Degree-of-Freedom Systems 

The differential equation to be solved is, 

c· 1'(r) + KA . [T(r) - TA] = Q, (3.a) 
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the initial value 
T(1'=O)=TA · 

The analytical solution of Eq. (3.a), within (3.b) 

T = (Too - TA) (1- e-T
/

6
) +TA, 

where 8 = CIKA , and Too is the steady-state temperature. 
By substituting Eq. (4) into Eq. (2), then expressed 1, 

1 1 
1 = 1 _ e-Z - ;- , 

where x = 1::.1'/8. 

(3.b) 

(4) 

(5) 

The weighting function is defined by Eq. (5), and has values:::::: 0.5 ~ 
1 ~ 1.0, linked with:::::: 10-6 ~ x ~ 00, see Fig. 1 . 

.,...-------- ._ .. _--_._. , 

1 I 

0.9 +-I---@~----:~~ 

0.8 I ~ 
0.7 ./ 

/ 
0.6 V 
0.5 0 1 2 3 4 5 6 7 8 9 10 

Fig. 1. I weighting function depends on x = tl T / e 

Reversing this sequence of thoughts we can substitute 1 with Eq. (5) into 
Eq. (2) so Eq. (2) gives the analytical solution and the time step may be 
chosen in a wide range. 

2.2 N -Degree of Freedom Systems 

We coupled the weighting functions with each node (to each degree of 
freedom), so over the time interval 1'k ~ l' ~ 1'Hl = 1'k + tl1' the weighted 
average temperature of ith node is 

(6) 
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where'rf = constant (during the time step), and i = 1, ... ,j, ... ,N. 
Replacing (1- "Y)Tk + "YTk+l in Eq. (2) with the right side of Eq. (6), 

Eqs. ith and jth can be rewritten in the following form 

- .. Xi(.. ] [T~+l] '] I,] I 

£i. + ~~1(' . T~+l = 
~T '] ),) ) 

If the correct weighting functions "Yf (i = 1, ... ,j, ... , N) were known the 
accurate solution Tk+1 would be given by Eq. (7). 

In this case there is no point in calculating the weighting functions 
"Yf by the analytical solution. 

Substituting the analytical solution with more accuracy calculations, 
for example, using R.-K.4, C.-N. or G. methods with a reduced time step 
~'T* = ~'T/N~TI where N~T = 5 + 50. Since we have to know the analyti
cal solution, only during the first time steps until the weighting-functions 
become the steady-state values, it is enough to calculate the first time steps 
with more accuracy. 

For determination of "Yf weighting functions Eq. (9) is to be solved. 
We get Eq. (9) by the rewriting Eq. (7), 

[ K·· -K"] 1,1 ',) 

· . · '. · . 
-K·· K·· ),' ),) 

[ K·· -K"] [T.
k

] 
',I I,) I 

-k.. i..;~ ),' ),)) 

[ 

Q~ - £i.~T.·1 ' ~T I 

= 
-:-- c· 
Qj - ?s!:r~Tj 

(8) 

or written in matrix form 

(9) 
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The main steps of W.F. method are below: 
1. choosing of the time step (~-r), 
2. calculating a reduced time step by dividing the (first) time step into 

an equidistant time interval ~-r* = 6.-r/N~Tl (N~r = 5 + 50), 
3. calculating the temperatures with reduced time step, then calculating 

the increase of each temperature at the end of original (~-r) time step 

~T = Tk+l(-rk + 6.-r) - Tk(-rk) ' 

4. solving Eq. (9), then hf~Ti and 6.Ti are known) each ,f, i = 
1, ... , N weighting function is to be calculated, 

5. calculation is to be continued from point 3, until all the weighting 
functions convergent to the steady-state value: 

i::T.~N ('i -,j) :$ c (::::: 10-
3

) , 
j=l, ... ,.1V 

i#j 

6. calculation is continued from point 1. if the weighting functions in 
the first time step are out of the prescribed interval 0 :$ ,i :$ 1, the 
reduced time step (6.-r*) must be chosen smaller, 

7. the time step meets the requirements if all steady-state values of each 
weighting function (coupled with each node) lie in the interval 

0.5 :$'i:$ 0.7+0.95. 

We remark here that the calculations aren't unconditionally conver
gent. If a calculation is divergent we have to reduce the time step 
or we have to take another more accurate method to find the steady
state value of weighting functions. In the given examples we have to 
change the methods to solve the problems or to solve the problems 
with a larger time step: 
The W.-F. method was in our cases sometimes divergent, but in all 

of our cases the calculations get convergent by reducing the time step or 
changing the method for calculation of first time steps. 

3. Numerical Examples 

3.1 Example 1 

We assume the following differential equation to be solved 

0] [~'t] + [1 -1] [Tl] + [0.1 0] [TI-T.4.] 
1 T2 -1 1 T2 ° ° T2 - TA [4.5] 

25 ' 

-_. ---.--._----". -- .. """--""--.. _--_.""""""--------.--... _. ---. ""------------.. --.--. 
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Table 2 

Time [sJ Errors, K Errors, K 
C.-N. W.-F. 

(6T = 10s) El E2 E3 E4 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
300 
400 
500 
600 
700 
800 

0.000 0.000 0.000 0.000 
1.400 14.026 0.000 0.003 

-1.007 9.672 0.003 0.002 
0.640 -0.762 0.000 -0.003 

-0.519 4.597 -0.000 -0.003 
0.265 -3.283 -0.005 -0.004 

-0.287 2.164 0.003 0.004 
0.088 -1.614 -0.002 -0.004 

-0.175 0.998 -0.005 -0.002 
0.006 -0.816 -0.004 0.004 

-0.126 0.436 0.004 -0.004 
-0.059 -0.051 0.001 -0.002 
-0.040 -0.038 0.000 0.002 
-0.201 -0.022 -0.000 -0.002 
-0.005 -0.014 0.005 -0.004 
-0.006 -0.008 0.004 0.002 
-0.005 0.001 -0.004 0.001 
0.003 0.001 0.003 0.001 

(El = T1,anal - T1,G.-N., 
E2 = T 2,anal - T 2,G.-N., 
E3 = T1,anal- T1,w.-F., 
E4 = T 2,anal- T 2,w.-FJ 

Figs. 4 and 5 show that the kj values depend on time stochastically, 
so it is not applicable in our cases. 

All the rows of this table are linked with serial number of time steps. 
So the number of different rows with weighting function values are identical 
with the number of first time steps. 

For the weighting function values (in last rows of different cases in 
Table 3) the individual criteria were 

All the other tables are like Table 3. 
We remark here that our calculations using the 4th order Runge

K utta method were sometimes unsuccessful thereupon overflow. It is widely 
pmposed to choose the time step for R.-K. 4, to increase the accuracy by 
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~.~ ~ . 

o 100 200 300 400 500 600 700 800 

------> time, 5 
-El - E2 0 E3 "E4 

Fig. 2. The errors are in Table 2, D.r = 10 s 
(El = T1,anal - T1,c.-N., E2 = TZ,anal - TZ,C.-N., 

E3 = T1,anal - T1,w.-F., E4 = TZ,anal - TZ,W.-F.) 

using the following equation: 

k · = IK2,j - K3,jl < 02..!.. 03 
) IK· - K ·1 - . • . , 1,) 2,) 
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where j = 1, ... , N, and Ki,j is defined by the equations below (Ki,j is the 
jth element of the Ki vector), 

where 

Ki=C Q-KTi, -1 (-:- ~ ) 

k T1 =T , 
k f).:, 

Ti=T +-Ki 1 2 -

Fig. 4 shows kj (j = 1,2) in this case. 

i = 1, ... ,4, 

(i = 2, ... , 4). 
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;; ~ '6 8 10 12 14 16 18 
-----------> time s C:;!kl "k2 f 

3.2 ir'1 
3 4ii 2.8 

2.6 ~Ij 2.4 
2.2 ~~ 2 
1.8 4,'1; 
1.6 "il 
1.4 

""11 
1.2 ~'I 1 J:'I 
0.8 "JI 

0.6 
~:;j 
':f; 

0.4 -ffit 
0.2 ~ 0 

!ID 32 64 96 128 160 192 224 256 288 

-------------> time, s '" k1 • k2 

Fo.:g.. ~_lIrj"((j= 1,2), R.-KA. Llr = 1.65 

~'t2 Ezample 2 

',lt~n in space dimension of a unit length wire 
'-'bg e~-u.m equations for two nodes at the ends 

i l~ 1 
.~', J' + 1 .lj L12 '-

a.1 values TIt1/" = 0) = T2t( r = 0) = 0, 0 C. 
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The prescribed boundary conditions are for the cover of the wire 

Qp = aAp [T(x) - TAl = T(x) - TA, 

for the first node 

for the 'last' node 

QN = -A (~~) = 0, 

the ambient temperature is 
TA =0, 

and the other data are given by the equation. 
We calculate the two nodes model, and N nodes model which is pro

duced by dividing into N - 1 equidistant sections of the unit length wire. 
The results are given in Tables 4 - 1. In these tables the parameters 

of the calculation 6:r, N AT! N, and the method for the first time steps to 
determine the steady-state values of W.-F. are given. 

Tables 4 - 6 compare the results and it can be established that neither 
the R.-KA method nor the C.-N. scheme give the best results. 

Table 1 shows the results of G. method. In this case the time step 
was the largest, and -the number of first time steps was the less. 

Example 2 

Serial number 
of time steps 

1 
2 
3 

Table 4 

/::;.T = 10 s 
NAr = 10 

R.-K.4, N = 2 

11 12 

1.094 0.821 
-2.914 -2.871 
divergent divergent 

/::;.T = 10 s 

NAr = 20 
R.-K.4, N = 2 

11 12 

0.894590 0.880045 
0.884106 0.884106 

/::;.T=0.5s 
NAr = 40 

R.-K.4, N = 10 

11 110 

0.553390 0.527463 
0.537077 0.535493 
0.536199 0.536095 

Fig. 6 shows the temperature difference D(r) between the results 
produced by G. method and produced by C.-N. scheme in the Nth node, 
the parameters are the same. 

Note that all the values of weighting functions coupled with 2, ... , 
N - 1 nodes were less in our cases than the value for the 1st node and 
greater than the values for the Nth node. 

Fig. 6 shows that if the steady-state values of W.-F. are different 
(caused only by different methods) the results are different too, but the 
differences are less. 
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Example 2 

Serial number 
of time steP5 

1 
2 
3 

Example 2 

Serial number 
of time steps 

1 
2 
3 

Example 2 

Serial number 
of time steps 

Table 5 

I:1r = 0.55 
Nar == 40 

R.-K.4, N = 100 

11 1100 

overflow overflow 

1:17' = 2 S 

Nar = 40 
C.-N., N = 100 

11 1100 

0.648552 0.632208 
0.638122 0.638115 

1:17'=25 
Nar =40 

G., N = 100 

11 1100 

I:1r = 0.5s 
Nar = 40 

C.-N., N = 100 

11 1100 

0.552837 0.527464 
0.537027 0.535495 
0.536176 0.536078 

Table 6 

1:17'=55 
Nar = 40 

C.-N., N = 100 

11 1100 

0.788842 0.779913 
0.783370 0.783151 

Table 7 

1:17' = 55 
Nar = 40 

G., N = 100 

11 1100 

I:1r = Is 
Nar == 40 

C.-N., N = 100 

11 1100 

0;585945 0.563566 
0.571619 0.571531 

1:17'=10s 
Nar = 40 

C.-N., N = 100 

11 1100 

0.888241 0.883521 
0.923957 0.885224 
divergent divergent 

1:17'=10s 
Nar = 40 

G, N = 100 

11 1100 

1 0.651723 0.635524 0.789877 0.780995 0.888284 0.883580 
2 0.641379 0.641378 0.784217 0.784217 0.885288 0.885288 

3.3 Example 3 
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The problem to be solved is almost identical with example 2, but the bound
ary condition for the 1st node is Cb = 1000(Tl - TA)' The equilibrium 
equations are for two nodes model 
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1.3 

, , 
.I.. • .t. 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

o 
-0.1 
-0.2 
-0.3 

i i 

~ l 

~ I 
~ I 
il 
~, 

:/ 
i 

o 4 8 ],6 20 
------> time" s 

Q Tl00 . 100~~ 

Fig. 6. T1oo(r) and D(r) = T10o(r), [W.-F. (G.))"-"~ = 11®ID" & .. = 2s]- TJoo("i 
(C.-N.), IV = 100,6.1' = 2s] 

Divi&ed the unit length wire in equidistant Si€:C'nIDJrns (I1ke as we did 
ample 2), we get a model with N degree €ilff~ too. The res. 
in Table 8. 

Exampie 3 

Serial number 
of time steps 

Table 8 

6.1'=15 
NUT = 40 

G., N = 100 

"(1 'flOO 

2\\ .. =5 s 
l!Ii ,z,:lr = 40 

G .. " !fii = 100 

1100 

1 0.727668 0.626708 QlJEll@~ Ol.88053,: 
2 0.640743 0.640737 Oi.~8C41i!1IDl QJ.884701 

Fig. 7 shows in tht~ :;odes the tempera.itmk'"'e dliiterences bet·, 
results depending on 6:r = 1 sand f1r = 5s;" ithe itiime is r = 5 [, 
steady-state values of W.-F. are given in tfue lJast Jro\tV of Table 8.) 
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0.00004 ~-------

I 0.000035 

i /~ 0.00003 

0.000025 
, / I r 

/ 
0.00002 ~ fV"" 

,,./'i 

0.000015 ~ ~ 

I / ...r 
0.00001 

I 

--., 
--' 

! 
0.000005 ~ , 

i 
0 -l r 

0 10 20 30 40 50 60 70 80 90 100 

Fig. 7. --> i = 1, ... ,100 (number of nodes) 
Dj = Tj (1" = 55), [W.-F. (G.),.o.l" = 15]- Ti (1" = 55), [W.-F. (G.),.o.l" = 55] 

The temperature-time functions in Nth node calculated by W.-F. 
method and by original C.-N. scheme are shown in Fig. 8. The Fig. 8 
shows the differences between temperatures calculated by W.-F. method 
and by C.-N., too. 

4. Conclusions 

From the analysis of simple problems it seems that the weighting function 
method (W.-F. M.) is efficient for finding a near analytical solution. 

The steady-state value of weightingfunctions depends only on actual 
problems, and chosen time steps. 

Since the W.-F.M. differ from the other methods only in the weighting 
factor, branching from one scheme to the W.-F.M. is an easy matter. 

It will be clear during the first time steps whether the calculation is 
convergent or not. 

It's possible that the calculations are divergent caused by the chosen 
time step or caused by the accuracy of the method for the found of steady
state values of W.-F. In the last case it is necessary to change the method 
for a more accurate method in the first time steps. 

In our examples the Galerkin method was the best for calculation of 
the first time steps. 
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o 2 4 6 8 10 12 14 16 18 20 
-------> time s 

a W.-F.(G.) • C.N. ' 0 D 

Fig. 8. T100 (1') [W.-F. (G.), N = 100, ~1' = 2s], TlOO(1') [C.-N., N = 100, ~1' = 2s] 
and D(1') = T1oo(1'), [W.-F.(G.), N = 100, ~1' = 2s] - T100 (1'), [C.-N., N = 
100, ~1' = 2 s] 

The W.-F.M. can be used only for linear problems and the problem is 
to be calculated with a more accurate method during the first time steps. 

The W.-F.M. only seldom needs to repeat the calculations to get some 
value about the accuracy. 
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