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Abstract 

A computation method is described for determining hydraulic parameters of lower air 
distribution space of an air-slide conveyor with open top air space. Equations are of 
a form directly solvable if friction is omitted. Solving the differential equations by the 
Runge-Kutta method for the case of friction, variation of parameters as a function of the. 
duct length is presented. 

In a duct long enough, velocity of the fluidizing air flowing through the air distri
bution layer assumes a minimum, taking the friction into consideration. 

Equations help plotting the characteristic curve of the duct, and intersection with 
the fan's characteristic curve defines the common work point of the duct. 

Keywords: Pneumatic conveying, air-slide conveying. 

Longitudinal Velocity Distribution 
in the Air Distribution Space of the Duct. 

No-Friction Case 

The mathematical-physical model for determining velocity and pressure 
distribution in the air distribution space of a duct, and longitudinal distri
bution of velocity v f of fluidizing air flowing through the air distribution 
layer involves some simplifying assumptions, such as: 

Air compressibility is ignored, reckoning with approximation p = 
const. 
Air ~ow over the flowing material layer in the open top duct is omitted, 
reckoning with pressure PO =const. along the duct. 
Velocity profile variation in the air distributing space of the duct is 
omitted, only the prevailing mean velocity is reckoned with. 
In writing pressure drop of air flowing through the air distribution 
layer, resistance of the overlaying material layer is omitted. This 
causes no significant error since in designing the duct, resistance at 



4 L. KOVACS - S. VARADI 

the distribution layer is chosen as multiple (6 to 15 times) of the 
material layer. It is, of course, feasible to reckon in the following with 
a distribution layer of a resistance increased by that of the material 
layer flowing along the duct, of a thickness mo considered constant at 
a fair approximation. 

- The air distribution duct is mostly confined on three sides by metal 
sheets, while on the top by the air distributing fabric or some other 
porous layer. The duct resistance is reckoned as if all the four sides 
were made of material of the same quality. 
Effect of the material layer proceeding on the air distribution layer is 
omitted. 

r----+x 

Fig. 1. 

Continuity equation for the elementary duct section cut out at x of the 
aeration duct in Fig. 1: 

(v + dv) p ab - v p ab + v I p adx = 0 . 

After possible reductions, Eq. (1) becomes: 

dv 
dx = -b-. 

vI 

Making use of simplexes below: 

b* - !:. 
- L' 

* v v =-; * vI 
V - • 1--' 

VI VI 

* P P = 
Po 

(1) 

(2) 

(3) 
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Eq. (2) may be written also in dimensionless form: 

d * - b*dv* 
x -- -* . 

vI 
(4) 

Pressure drop of air flowing through the air distribution layer, and the 
fluidized material layer: 

(5) 

In conformity with those stated above, it is no great error to apply approx
imation: 

(6) 

With this approximation, pressure drop of air flowing through the air dis
tribution layer: 

/);.p = p - po = kpv I . (7) 

Making this equation dimensionless, then expressing from it the v I value: 

vi = ~(p* - 1) = 1Tl(P* - 1). 
kPVl 

Combining Eqs. (4) and (8) 

dx*=-~~. 
1Tl p* - 1 

(8) 

(9) 

Momentum equation written for the elementary section cut out at x yields: 

pab - (p + dp)ab - dFr = (v + dv)pab(v + dv) - vpabv + vladxpv. (10) 

Elementary mass flow across the elementary distribution layer in the last 
term of the right-hand side of Eq. (10): 

dm = vIpadx. (11) 

Thereby component in direction x of the impulse of air flowing out of 
elementary surface a dx: 

dI:z: ~ dmv ~ vIpadxv. (12) 

Reckoning with condition 

>. 2 
dFr = 2dh p v dx = 0 (13) 
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in Eq. (10), that is, considering the lower air distribution space of the dust 
as exempt from losses, Eq. (2) may be directly integrated, taking Eq. (2) 
into consideration. 

Integrating for no-friction case yields: 

P 2 C P = --v + . 
2 

(14) 

Eliminating integration constant G at the duct inlet under conditions P = 
PI and v = VI: 

P 2 P 2 
P + 2"v = PI + 2"vI . (15) 

Introducing total pressure pt=p + ~v2 

pt = Ptl = const. (16) 

meaning that in no-loss case, the air distribution duct acts as a diffusor. 
Equation (16) becomes in dimensionless form: 

2 
* * vIP *2 * *2 

Pt =p + -2 v =P + 1r2V = const. 
PO 

(17) 

Combining Eqs. (9) and (17) yields the dimensionless equation: 

dx* = (18) 

that can be integrated. The integral value becomes: 

(19) 

Integration constant C of Eq. (19) may be determined from the condition 
that at the duct inlet, at x* = 1, velocity along the duct v* = 0, the duct 
outlet being closed. Under this condition G = l. 

Equation (19) expressing relationship x* = f(v*) - - taking the inte
gration constant into consideration and expressing from it the v* value may 
be written as: 

(20) 

---~---- ---- --_._------_.- - - ... _--_ .... _-_ ....• - .... __ .... _----_._-
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Distribution along the Duct of Air Flow Velocity 
across the Air Distribution Layer 

7 

To determine longitudinal distribution of air flow velocity v I through the 
air distribution layer, vi is expressed from Eq. (4): 

* * dv* 
vI = -b dx* . (21) 

Substituting dv* jdx* from Eq. (18) in (21) yields vi = /(1.1*) for air flow 
velocity through the air distribution layer, to be written as: 

* (* 1) (1 2 *2-v I = 7I"} Pt - - 71"31.1 ), (22) 

which, substituting the 1.1* value from Eq. (20), yields relationship vi = 
/(x*), namely: 

Determination of the Total Air Volume 
Flowing through the Air Distribution Layer. 

Volume of Air Supply to the Duct 

(23) 

dq* flowing across the elementary air distribution layer cut out at x from 
the duct: 

* * vI * dq = -dx . 
b* 

(24) 

Taking Eq. (23) into consideration, Eq. (24) may be integrated to determine 
* q . 

There is also a direct, simpler way to obtain the equation for the air 
volume supplying the duct, namely by determining velocity v} involved in 
factor 71"3 in Eq. (20). Product of this velocity by the inlet cross section 
yields air volume supply to the duct. Substituting in Eq. (20) x* = 0 for 
the duct inlet, here 1.1* = 1. 

Substitution yields: 

(25) 
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hence: 

(26) 

Since: 

(27) 

Furthermore: 
1 

[~(p; - l)r 
11"4 = -"---'--:-:----"--

kb* 
(28) 

Since at the duct outlet, vi =0, here also: 

* * Pt = P2' (29) 

Then Eq. (28) takes the form: 

(30) 

Velocity VI of air entering the duct inlet may be obtained by determining 
11"3 from Eq. (20) substituting x* = O. Velocity VI is being involved in 11"3 in 
conformity with Eq. (27), hence inlet velocity: 

(31) 

Hence, air volume supplying the duct, taking Eq. (30) into consideration: 

(32) 

Equation of the Duct Characteristic Curve 

Characteristic curve of the duct is understood as relationship Ptl - PtO = 
Pt! -PO = f(q). In knowledge of it, as well as of the air supply mechanism 
for the duct, the work point can be marked cut, and the duct operation 
adjusted to it. After Eq. (17), non-dimensional total pressure 

P; = const. (33) 

throughout the duct. 
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At 1 at the duct inlet, v* = 1, while at 2 at the duct inlet - being 
closed - v* =0, hence: 

* * * Pt! = P! -,- 71"2 = P2, (34) 

that is: 

Pt! = P! + P07l"2 = P2 . (35) 

P2 (equal to ptd being inexpressible from factor 71"4 in Eq. (32), relationship 
Pt!-PO = f(q) cannot be given analytically. Assuming fluidizing velocity 
v f at e. g. x* = 1, the characteristic curve can be computed point-wise by 
means of Eqs. (7) and (32). Fig. 2 shows a set of characteristic curves for a 
frictionless duct of length L = 50 m. Parameters are constant characteristic 
of the distribution layer, and fluidization velocity vf at x* = 1. It appears 
from the diagram that relationship Pt! -PO = f(q) is but approximately 
linear. 

f1. 14 
-'" 

Ci. 12 

OS 
'0 

~ 10 
L-

'0 
i5.. 

8 

6 

4 

2 

L= 50 m 
0= b=0.25m 

>.=0 

NVH - 63/3150 
fan 

Fig. 2. 
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Longitudinal Velocity Distribution 
in the Air Distribution Space of the Duct. 

Frictional Case 

Taking friction into consideration, resistance of the lower air space of the 
duct is computed as if the air distribution duct were confined on all four 
sides by sidewalls of the same quality. This is but partly true, since the 
duct is topped by an air distribution layer, different in roughness from the 
three - mostly metal sheet - sidewalls. 

In Eq. (10) dFr was zeroed, referring to a frictionless case. Thereby 
equations could be directly integrated. Omitting friction causes little error 
for short ducts. For long ducts, however, with L> 25 m (taken to illustrate 
the kind of distributions for constant parameters in the model problem) 
friction was shown in tests not to be omissible any more. 

Taking condition dFr = 0 as well as Eq. (9) into consideration, after 
transformation and arrangement, Eq. (10) can be written in non-dimen
sional form: 

d * *2 
P () v * -d = >.. Re 11"5 --1 - 211"2V • 
v* p*-

(36) 

Equation (36) may be solved e. g. by the Runge-Kutta method, relying on 
the initial condition 

v* = 0 (37) 

at the duct end. 
For the solution, the program computes friction coefficient>.. = f (Re) 

point-wise, based on approximate relationships found in literature. 
Taking solution of Eq. (36) into consideration, other parameters of 

the duct may be determined by Eqs. (8) and (4). 
Fig. 3 shows a velocity distribution diagram vf = f(x) obtained by 

solving Eq. (36). 
Fluidizing air velocity varies at maximum for perlon fabrics of the least 

resistance (k = 10666 m/sec). The velocity first decreases from the duct 
outlet value vf = 10 cm/sec, then it increases and assumes the maximum 
value v f = 10.8 cm/sec at the duct inlet. Velocity v f is seen from the 
diagram to be the lowest, namely vf = 9.88 cm/sec, for a duct length x = 
27.8m. 

In Fig. 4 pressure distribution along the duct length is seen, computed 
with constant, and with varying friction coefficients, respectively. The two 
diagrams deviate, showing that reckoning with an in fact variable friction 
coefficient, the pressure is higher at the duct inlet. 
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L=SOm 
0= b=0.2Sm 

A = f(Re) 

Fig. 3. 
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'X ,m 

Two diagrams in Fig. 5 are similar to those in Fig. 4. Obviously, since 
fl. uidizing velocity v j is proportional to the pressure difference, relationship 
vj=f(x) has a course similar to that ofp=f(x). 

The set of curves in Fig. 6 is similar to that in Fig. 2 excepted that 
the set of curves has been plotted as solution of Eq. (36) taking the friction 
effect into consideration. 

Numerical Example for Determining Parameters 
of an Air-Slide Conveyor Omitting Friction 

Duct data: 
a = b = 0.25m 
P = 1.2kg/m3 

L = 50m 
k = 10666 m/sec (perlon fabric SZ8) 

v j = 0.05 m/sec at x* = 1, where v* = 0 
From Eq. (7): 

b.p = kpvj = 10666 ·1.2·0.05 = 640Pa, 
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L=SOm 
0= b=0.25m 

vf= 10 cm /5 ,(X*= 1) 
k=10666 m/s 

Fig. 4. 

* * ~P + PO 06 [ ] Pt = P2 = = 1.0 4-
Po 

x,m 

[ 
2po * ] t [ 2 . 10

5 
. 50

2 1 t 
1T'4 = b*2k2p (Pt - 1) = 0.252.106662.1.2.0.0064 = 0.6124, 

Air supply volume to the duct is obtained from Eq. (32), namely: 

0.25 eO.6I24 - 1 3 
= 0.25·0.25·10666· 50".0.6124 eO.6I24 + 1 = 0.606m Is. 

Hence, mean velocity of air entering at the duct inlet: 

q 0.606 
VI = ab = 0.25.0.25 = 9.7m/s, 

Longitudinal velocity variation of air flowing in the air distribution duct 
can be point-wise determined by Eq. (20). So can be, e. g., the velocity 
value at the duct mid-section :z:* =0.5. 
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L= SOm 
a=b=0.2Sm 

k = 10666 m/s 

Fig. 5. 
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x ,m 

In the relationship, value of constant 11"3, taking Pt =P2 into consider
ation: 

1 1 

[ ]
t [ 2]2 [ 1.2.9.7

2 
]2 

11"3 = P211"~ 1 = 2Po~;1_ 1) = 2.105 .0.0064 = 0.297. 

Thereby air flow velocity in the .air distribution duct at x* = 0.5: 

e1r4 (1-xO) _ 1 eO.6124(1-0.5) - 1 
v* = = = 0.5115 11"3[e1r4 (1-xO) + 1] 0.297· [eO.6124(1-0.5) + 1] 

that is, 
v = V*V1 = 4.97m/sec. 

Hence, velocity of air flowing through the air distribution layer at x* =0.5 
- taking value 

PO 1· 105 . 
11"1 = kPV1 = 10666. 1.2 . 9.7 = 0.805 
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.l 

~ 16 l= 50 m 
~ a = b = 0.25 m c 

vt =20cm/s:(x*=1) 

J2 14 A=f(Re) 
15.. 
Gi-

12 :2 
Vi 

I 

'13 10 a. 

8 

6 

4 

2 

0 ~------nF-------7.~----~~------~------~~----~~~ 

q,m3/s 
Fig. 6. 

- can be determined from Eq. (23) as: 

{ 

[eO.6124.(1-0.5) It} 
= 0.805 . (1.0064 - 1)· 1 - 2 = 0.00503, 

[eO.6124.(1-O.5) + 1] 

vf = vjvl = 0.00503·9.7 = O.0488m/s. 

Thus, at the duct mid-section, velocity of air flow across the distribution 
layer has little changed compared to 5 cm/sec at the duct end, thanks to 
the distribution layer of relatively high resistance. 

If e. g. the fan characteristic curve crosses point k = 30000 m/sec, 
vf=12cm/sec (x*=I), then 

Pt! - po = 4.32 kPa , q = 1.46 m3/sec. 
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Thus, the power needed to drive the fan at an efficiency TJt = 0.68: 

Pt = qL'::l.Pt = 1.46· 4320 = 9275 W . 
TJt 0.68 . 

Legend 

a [m] duct width 
A=ab [m2

] duct cross section 
b [m] duct headroom 
b* H dimensionless headroom of air 

distribution space 
C integration constant 

dh = 4A 
K 

[m] hydraulic diameter 

Fr [N] friction force 
k [m/s] constant characteristic of the 

distribution layer 
K=2{a+b) [m] perimeter of the air distribution space 

PO [-] constant 71"1 = --
kpVl 
pvr [-] constant 71"2 = -
2po 

71"3 = [ 71"2 ] t 
Pt -1 

[-] constant 

71"4 = [2PO * ] t b*2k2p (Pt - 1) [-] constant 

b* 71"2 
[-] constant 71"5 = --

dh 71"1 
L [m] duct length 
m [kg/s] . air mass flow 
mo [m] material layer depth 
P [Pal pressure 

* P [-] dimensionless pressure P =-
Po 

Pt [Pal total pressure 
L'::l.Plb [Pal pressure drop of air distribution layer 
L'::l.pm [Pal pressure drop of material layer 
L'::l.p = P - po [Pal air pressure drop 
/:::.P* = p* - 1 [-] dimensionless pressure drop 
q [m3/s] air volume flow 
* q 

[-] non-dimensional air volume flow q = 
AV1 
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Re = dhv 

1/ 
v 
* v v =-

VI 

x 
x 

x* = 
L 

A 
p 
1/ 

Subscripts 

1 duct inlet 
2 duct outlet 

[-] 
[m/s] 

[-] 

[m/s] 

[-] 

[m] 
[-] 
[-] 
[kg/m3

] 

[m2/s] 

Reynolds number 

air velocity in the distribution duct 

dimensionless velocity 

air flow velocity across the air 
distribution layer 

dimensionless velocity 

longitudinal coordinate 

dimensionless coordinate 

friction coefficient 
air density 
kinematic viscosity 

References 

MARSCHALL, J. - PRESZLER, L.: Stromungstechnische Untersuchungen an Filterschlau
chen .. Periodica Polytechnica Ser. Mechanical Engineering, Vo!. 27, No. 1-2, pp. 46-
65 (1983). 

MUSCHELKNAUTZ, E.: Die Berechnung der pneumatischen Fliessforderung. Pneumati
sche und hydraulische Forderung. Kongress "Transmatic 76" Karlsruhe, Section C. 
pp. 29-43. 

TALLIAN, A.: Hydraulic Dimensioning of a Densely Branching-off Distribution Duct. 
Doctor's Thesis, Budapest, 1982 (In Hungarian). 

Address: 

Dr. Laszl6 KOVACS 

Dr. Sandor VARADI 

Department of Fluid Machinery 
Technical University Budapest 
H-1521 Hungary 


